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Abstract
Proteins are the most abundant biomolecules in living organisms and tissues and are also present in many natural and pro-
cessed foods and beverages, as well as in pharmaceuticals and therapeutics. When exposed to UV–visible light, proteins 
containing endogenous or exogenous chromophores can undergo direct and indirect photochemical processes, resulting in 
protein modifications including oxidation of residues, cross-linking, proteolysis, covalent binding to molecules and inter-
faces, and conformational changes. When these modifications occur in an uncontrolled manner in a physiological context, 
they can lead to biological dysfunctions that ultimately result in cell death. However, rational design strategies involving 
light-activated protein modification have proven to be a valuable tool for the modulation of protein function or even for the 
construction of new biomaterials. This mini-review describes the fundamentals of photochemical processes in proteins and 
explores some of their emerging biomedical and nanobiotechnological applications, such as photodynamic therapy (PDT), 
photobonding for wound healing, photobioprinting, photoimmobilization of biosensors and enzymes for sensing, and bio-
catalysis, among others.
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Direct and photosensitized photochemistry 
of proteins

The light absorption properties of proteins depend on the 
amino acid sequence, and generally, the lowest-energy 
UV absorption bands of proteins are between 250 and 
320 nm, mainly due to tryptophan (Trp, λmax = 280 nm 
and ε = 5600 M−1 cm−1), tyrosine (Tyr, λmax = 275 nm and 
ε = 1400 M−1  cm−1), phenylalanine (Phe, λmax = 257 nm 
and ε = 200 M−1 cm−1), and, to a lesser extent, disulfide 
bonds, with a broad absorbance between 250 and 320 nm 
(Prasad et al. 2017). Therefore, when exposed to ambient 
light, proteins with aromatic residues (PX, X = Tyr, Trp, 
and Phe) absorb mainly solar or artificial UVB radiation 
(280–320 nm), generating the short-lived (ns) singlet excited 
state (P1X*), Fig. 1. This state decays by photophysical 

unimolecular pathways to the ground state, emitting fluo-
rescence and heat, and by intersystem crossing (isc) to the 
long-lived triplet state (P3X*). The latter excited state can 
generate the neutral radical (PX•) and the solvated electron 
eh− by unimolecular photoionization reaction, or reacts 
with dissolved oxygen O2 and other molecules (e.g., cystine 
RSSR), generating the protein radical cation (PX•+) that rap-
idly deprotonate to the neutral radical (PX•), and the anion 
radical superoxide O2

•− and RSSR•−, respectively (Kerwin 
and Remmele Jr. 2006; Davies 2016). Subsequently, the PX• 
can add O2 to form the peroxyl radical PXOO•, which in the 
presence of a hydrogen donor RH yields the protein hydrop-
eroxide PXOOH and a carbon-centered radical R•. In turn, 
the eh− may react either with O2 or any C- and N-terminus of 
other protein residues or RSSR, to produce O2

•− and radical 
anions (e.g., P•− and RSSR•−). Under physiological condi-
tions, O2

•− is the predominant species in equilibrium with 
HO2

• (pKa = 4.8), which can be disproportionate to hydro-
gen peroxide (H2O2) (Hayyan et al. 2016). Although these 
reactive oxygen species (ROS) are relatively damaging to 
biomolecules, the presence of heavy cations (Mn+  = Fe2+, 
Cu2+, etc.) disproportionate H2O2 to form the highly reactive 
hydroxyl radical (HO•) and also catalyzes the degradation 
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Fig. 1   Schematic representation of the main photophysical and pho-
tochemical pathways occurring by direct UVB excitation of the pro-
teins, and by UVA-vis excitation of a photosensitizer molecule (PS) 

leading to photosensitized reactions. Adapted from (Kerwin and 
Remmele Jr. 2006; Pattison et al. 2012; Davies 2016; Baptista et al. 
2021; Hipper et al. 2021)
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of PXOOH to yield alkoxyl radicals PXO• and HO• caus-
ing extensive oxidative damage (Davies 2016; Baptista et al. 
2021). Besides all the photoinduced oxidative degradation 
pathways shown in Fig. 1; the generation of crosslinking 
(PX-XP) and proteolysis products by the radical recombi-
nation of two PX• and radical-mediated break-bond chain 
reactions are also feasible, respectively (Pattison et al. 2012; 
Davies 2016; Hipper et al. 2021).

Although proteins are transparent to the light above 
the UVB region, some endogenous (e.g., pterins, flavins, 
porphyrins) or exogenous (e.g., organic dyes, drugs, metal 
complexes) molecules, either unbound or covalently or 
non-covalently bound to proteins, can absorb UVA-vis 
light (320–800 nm) and trigger photochemical reactions 
that modify another molecular entity, in most cases with-
out self-degradation. This process is called photosensitiza-
tion, and the molecule that absorbs the light is the photo-
sensitizer (PS) (Baptista et al. 2021). In biological milieus, 
photosensitized processes can generate secondary reactive 
intermediates (e.g., reactive oxygen species, side-chain radi-
cals) that damage or modify the protein structure (Alarcón 
et al. 2009, 2010, 2017; Zainudin et al. 2019; Savina et al. 
2020; Lorente et al. 2021). Photosensitized processes are 
initiated by the long-lived (µs) triplet excited state of PS 
(3PS*) formed by intersystem crossing from the singlet 
excited-state 1PS* (Baptista et al. 2021), Fig. 1. Since the 
excited states are stronger oxidizing or reducing agents 
than the ground states, and 3PS* can react with surround-
ing molecules, such as PX and O2 by an electron-transfer 
reaction depending on the value of the free energy change 
as the driving force, i.e., ΔG =  − nFΔE. Thus, depending 
on the difference between the excited-state reduction poten-
tial value of 3PS*, *Ered°(PS*/PS•−), and oxidation poten-
tial of the PX, Eox° (PX/ PX•+), the formation of PS•− and 
PX•+ can be feasible. In aerated neutral aqueous solutions, 
Ered° (O2/ O2

•−) =  − 0.18 V (vs. NHE at 25 °C) (Koppenol 
et al. 2010), then the electron-transfer reaction from 3PS* 
to O2 will occur at excited state oxidation potentials of PS 
*Eox°(PS*/PS•+) > 0.18 V, producing O2

•− and PX•+. Once 
PX•+ is formed, this species follows the cascade of side reac-
tions discussed above to produce proteolysis, cross-linking, 
and oxidized products. Eventually, ground-state PS is recov-
ered from both ion-radical species PS•+ or PS•− by the back 
electron-transfer reactions with O2

•− and PX, respectively, 
Fig. 1.

Moreover, 3PS* can react with O2 (a triplet state) by 
energy transfer to generate the basal state of PS and sin-
glet oxygen 1O2, which is the lowest excited state of O2 
with an energy gap ES(1O2) = 22.5 kcal.mol−1. Since the 
excited triplet-state energy, ET(3PS*), of most PS is higher 
than ES(1O2), the energy-transfer reaction is very efficient 
(k≈109 M−1 s−1) because it is a downward energy and spin-
allowed process (Schweitzer and Schmidt 2003). Both 

electron- and energy-transfer processes of 3PS* with O2 are 
termed type I and type II mechanisms, respectively. How-
ever, this classification does not mean that only ROS species 
are involved in oxidative degradation pathways of any bio-
logical substrate (BS), since in type I processes the chemical 
changes can be also produced by radical species formed by 
oxidation of BS, i.e., BS•+/BS•, despite O2

•− is involved 
in further reactions; while in type II reactions, 1O2 is the 
only ROS responsible for BS photooxidation (vide infra) 
(Baptista et al. 2021). Finally, oxygen-independent photo-
sensitized reactions can also occur, such as the formation of 
photo-adducts by covalent binding of the PS to the protein 
(P-PS), resulting in the formation of a macromolecular PS 
(Baptista et al. 2017, 2021).

Protein photooxidation

Direct photolysis or photosensitized reactions with a PS 
result in photooxidative changes of the proteins that may 
include the formation of side chain carbonyls and (hydro)
peroxides by the addition of oxygen atoms, intra- and inter-
molecular crosslinking via radical species, fragmentation 
of the main chain bond, mainly involving Trp, Tyr, cysteine 
(Cys), histidine (His), and methionine (Met) residues, as 
described in several reviews (Kerwin and Remmele Jr. 2006; 
Grosvenor et al. 2010; Pattison et al. 2012; Hawkins and 
Davies 2019; Hipper et al. 2021).

Under aerobic conditions, both direct photolysis and pho-
tosensitized type I reactions can give rise to similar interme-
diate and end products, as the key intermediate PX•, which 
by sequential side reactions with the addition of oxygen 
atoms and/or scission of bonds produces oxidized side-
chain radicals and also the highly reactive HO•. In contrast, 
in photosensitized type II reactions, 1O2 is the only oxida-
tion intermediate, which is a non-radical, highly reactive, 
electrophilic species with a lifetime of ≈3 μs in aqueous 
media (Schweitzer and Schmidt 2003), enough to diffuse 
into protein solutions by reacting with π- and n-electrons 
of Tyr, Trp, Met, Cys, and His, oxidizing them with rate 
constants between 0.2 and 5 × 107 M−1 s−1 (Michaeli and 
Feitelson 1994). Typical reactions of 1O2 with olefinic bonds 
include (i) [2 + 4] cycloadditions to produce endoperoxides, 
(ii) [2 + 2] cycloadditions forming dioxetane molecules, 
and (iii) ene-type reactions or phenol oxidations to produce 
hydroperoxides; while residues with sulfuryl groups are oxi-
dized to sulfoxides (Greer 2006). Figure 2 summarizes the 
main photooxidation products obtained from the degradation 
of Tyr, Trp, Phe, Cys, Met, and His residues of proteins, 
among others, by both direct photolysis and photosensitized 
reactions (Kerwin and Remmele Jr. 2006; Pattison et al. 
2012; Schöneich 2017; Hipper et al. 2021). These oxida-
tive modifications in proteins have biological consequences 
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like protein denaturalization, aggregation, malfunctioning, 
loss of enzymatic activity, changes in cell signaling, redox 
homeostasis, proteolytic turnover of damaged molecules, 
and cell survival (Pattison et al. 2012; Fuentes-Lemus and 
López-Alarcón 2020). Among the deleterious effects of pho-
tooxidations can be mentioned the formation of molecular 
filters and insoluble protein aggregates in cataractogenesis 
(Davies and Truscott 2001). In particular, oxidation of Trp 
in proteins leads to the formation of N-formyl kynurenine 
(NFK) and kynurenine (KYN) residues, which are UVA 
photosensitizers that transform the oxidized protein into a 
macromolecular PS (Parker et al. 2004; Savina et al. 2020). 
In addition, Tyr- and Trp-derived radical residues exposed to 
the solvent are prone to recombine to form diTyr and diTrp 
crosslinking, as well as Tyr-Trp crossed dimers (Fuentes-
Lemus et al. 2022).

Foods and beverages may be affected by photooxida-
tions. For instance, blue-light absorption by riboflavin 
(vitamin B2) as endogenous PS in milk and beer leads to 
the 1O2-mediated oxidation of sulfur-containing amino acids 
in proteins with the formation of off-flavors and off-odors 
(Hellwig 2019). The photo yellowing of wool fibers is also 
produced by 1O2-mediated oxidation of Trp to form NFK 
and KYN and of Tyr in diTyr, and DOPA, among others 
(Dyer et al. 2006). During the preparation and handling of 
therapeutic antibodies and protein preparations, photooxi-
dative degradation occurs during exposure to ambient light 
by impurities acting as PS. Since the impurities can be not 
destroyed at the end of photosensitization reactions, to 

ensure the quality of proteins in complex matrices, it is nec-
essary to analyze the photodegradation processes of protein 
formulations and to protect them from ambient light during 
manufacturing and storage (Hipper et al. 2021).

Oxidative damage of biological substrates (DNA, lipids, 
proteins, etc.) produced exclusively by type I and II photo-
sensitized reactions that ultimately lead to cell death is called 
photodynamic action (PDA) (Kessel 2021). This effect is 
being used beneficially in medical and clinical applications 
and is called photodynamic therapy (PDT), which includes 
the elimination of tumor cells (Benov 2015), pathogenic 
microbes (Liu et al. 2015; Vera et al. 2021), and the treat-
ment of skin wounds (Nesi-Reis et al. 2018). The advantages 
of PDT are its near-null invasiveness, high spatial control 
and target selectivity, low inflammatory effects, no or very 
low development of microbial resistance, and the absence of 
toxic effects in the dark (Cieplik et al. 2018).

Photocrosslinking

Protein photocrosslinking refers to the photoinduced for-
mation of intra- or inter-protein covalent bonds, conducting 
structural changes, dimerization, and/or oligomerization 
(Mishra et al. 2020). Photocrosslinking mechanisms can 
include: (i) recombination of intermediate protein radicals 
PX• generated by either direct photolysis or photosensitized 
reactions (Fig. 1) (Wertheimer et al. 2019; Redmond and 
Kochevar 2019); and (ii) by photoclick chemistry approaches 

Fig. 2   Representative oxidation derivatives of the reactive residues 
Trp, Tyr, Phe, His, Cys, and Met of proteins exposed to direct pho-
tolysis and photosensitized reactions. Adapted from (Kerwin and 

Remmele Jr. 2006; Grosvenor et al. 2010; Pattison et al. 2012; Davies 
2016; Hipper et al. 2021)
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using specific agents as photoinitiators (e.g., aryl azides, 
diazirines, and benzophenones) that can undergo various 
reactions such as 1,3-dipolar cycloadditions, Diels − Alder 
and inverse electron demand Diels − Alder additions, radi-
cal propagation and chain-transfer, and nucleophilic addi-
tion (Fairbanks et al. 2021). Upon absorption of light by 
the photoinitiator, the above reactions proceed by any of 
these mechanisms: (i) photocleavage with loss of N2, CO2, 
or some protecting group to generate a reactive intermedi-
ate; (ii) isomerization of the photoactivated precursor to give 
rise to a highly unstable intermediate that can react with the 
molecular partner or revert to the non-activated state; and 
(iii) by the intervention of a photocatalyst (Kumar and Lin 
2021). These “photoclick handles” can be incorporated into 
proteins by chemical binding, by chemoenzymatic modifi-
cation, or by site-directed mutagenesis by specific amino 
acid substitution. (Yamaguchi et al. 2016; Sadiki et al. 2020; 
Sandland et al. 2021).

As for the crosslinking of native proteins, the so-called 
induced photocrosslinking of unmodified proteins (PICUP) 
(Fancy and Kodadek 1999; Kodadek et al. 2005) is a conven-
ient and efficient method, since by means of a brief irradia-
tion (few seconds) with blue light of the tris(2,2′-bipyridyl)
ruthenium (II) complex, Ru(bpy)3

2+, in the presence of an 
electron acceptor such as the persulfate anion S2O8

2−, the 
oxidized cation Ru(bpy)3

3+ is produced, a potent oxidant 
capable of abstracting an electron from a donor amino 
acid as Tyr, to generate a protein tyrosyl radical (PTyr•) 
and recover Ru(bpy)3

2+, Fig. 3. The recombination reac-
tion between PTyr• of different neighboring proteins give 
rise to covalent cross-linking via diTyr bonds. Since diTyr 
bonds are detectable by UV–vis and fluorescence spectros-
copies (for deprotonated diTyr, pKa≈ 7, λab = 320 nm and 
λem = 400 nm) (Malencik and Anderson 2003), and by SDS-
PAGE, the PICUP method allows the easy monitoring of the 

oligomer populations as a function of light dose (Kodadek 
et al. 2005; Borsarelli et al. 2012; Rey et al. 2021). It has 
been recently shown that the oligomerization pattern 
obtained by PICUP is almost O2-independent, but under 
aerobic condition the 1O2-mediated oxidation of protein 
residues also occurs, increasing the total content of carbonyl 
groups with the formation of NFK and KYN by oxidation 
of Trp residues (Rey et al. 2021), Fig. 3. This is the con-
sequence of the efficient generation of 1O2 by Ru(bpy)3

2+ 
in protein solutions (Giménez et al. 2016). Therefore, to 
avoid or minimize 1O2-mediated modification of proteins 
by PICUP, anaerobic conditions are recommended.

Protein photocrosslinking is a powerful tool for the study 
of protein–protein interactions in living cells combined 
with the identification of the crosslinked proteins by mass 
spectrometry, enabling the identification of protein–protein 
complexes and the mapping of protein interaction networks 
(Müller et al. 2019). The PICUP method has been applied 
to study the effect of oligomerization on the interactions of 
several neuronal amyloidogenic proteins (Bitan and Teplow 
2004; Piening et al. 2006; Borsarelli et al. 2012). Compared 
to chemical crosslinking, photocrosslinking offers unique 
advantages, such as the rapid production of oligomers under 
mild conditions, with high selectivity and no toxicity due 
to the low concentration of photocrosslinking agents used 
(Mishra et al. 2021).

Photobonding

Photopolymerization is a special medical application of 
photosensitized crosslinking that uses visible light to bond 
tissues for wound suturing and tissue repair (Tsao et al. 
2012; Pupkaite et  al. 2016, 2017; Alarcón et  al. 2017; 
Redmond and Kochevar 2019). In photobonding, the main 

Fig. 3   Schematic representa-
tion of the photocrosslinking 
reaction of unmodified proteins 
(PICUP) under both anaerobic 
and aerobic conditions. The 
latter condition includes photo-
sensitized generation of singlet 
oxygen (1O2) by the Ru(bpy)3

2+ 
coordination complex and sub-
sequent 1O2-mediated oxidation 
of the protein and/or cross-
linked oligomers. Adapted from 
(Fancy and Kodadek 1999; Rey 
et al. 2021)
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target macromolecule for tissue attachment is collagen, an 
abundant extracellular protein that provides support. Typi-
cally, a PS (e.g., riboflavin or rose Bengal) is irradiated with 
visible light, triggering by radical chemistry the covalent 
cross-linking between collagen and target tissue to bind 
them together. Photobonding applications also include the 
treatment of accommodative intraocular lenses to reverse 
presbyopia (Alejandre-Alba et al. 2018) and in tissue bio-
printing where photoactivated materials can be used to drive 
the formation or degradation of chemical bonds with spati-
otemporal control (Van Hoorick et al. 2019; Mu et al. 2020). 
Photobonding offers many advantages over other medical 
treatments, such as the absence of long-term side effects 
when properly administered, and is usually performed as 
an outpatient procedure in a short time. In summary, photo-
bonding is an adhesive- and solvent-free alternative to tra-
ditional tissue bonding methods that can be cytotoxic and is 
also a promising technique in regenerative medicine, such 
as for wound closure and tissue bioprinting with a resolu-
tion and build size ranging from nanometers to centimeters 
(Mironov et al. 2009; Mu et al. 2021).

Light‑induced formation of new 
biomaterials

Due to the suitable reactivity of various residues, different 
sizes, and shapes, proteins are adequate building blocks for 
the preparation of new biomaterials. Bovine serum albumin, 
lysozyme, collagen, and fibrinogen are examples of proteins 
used for this purpose, and the design of biomaterials can 
combine them with synthetic chemical groups, other macro-
molecules, and/or nanomaterials (Jutz and Böker 2011; Bao 
et al. 2015). Recent examples are the preparation of bioma-
terials with specific properties, such as hydrogels, which can 
be used for tissue engineering and drug delivery (Elvin and 
Vuocolo 2011; Abbate et al. 2012), allowing further func-
tional modulation by anchoring molecular modules to the 
sidechains of the backbone proteins (Hardy et al. 2018); and 
protein/enzyme immobilization onto carbon-based materi-
als, metallic surfaces, or protein fibrils, for many applica-
tions including biocatalysis and biosensing (Chaves et al. 
2016; Alonso et al. 2018; Thomas et al. 2020).

In some cases, it is possible to take advantage of intrin-
sic structural features of proteins, such as the accessibility 
of photoreactive residues that are not compromised in the 
active/binding site, thus allowing direct or photosensitized 
crosslinking (Chaves et al. 2016; Della Ventura et al. 2019). 
Some photoclick reactions were also adapted to be selec-
tively targeted to side chains of Cys or Lys residues (Alonso 
et al. 2018; Choi et al. 2020; Guo et al. 2020). Thanks to the 
development of numerous strategies to modify or replace 
specific amino acid residues, the incorporation of photoclick 

handles into protein structure has been greatly improved in 
the last decade (Fairbanks et al. 2021). As mentioned above, 
these strategies include chemical modifications, chemoen-
zymatic modifications, and optogenetic approaches. (Red-
dington et al. 2013; Thomas et al. 2020).

Summary and perspectives

Proteins are the most abundant biomolecules in living organ-
isms and tissues and are also present in many natural and 
processed foods and beverages, as well as in pharmaceutical 
and therapeutic (Hayes 2020; Jiang et al. 2020; Hipper et al. 
2021). Whether under direct or photosensitized illumina-
tion, proteins can be converted into reactive macromolecules 
that can result in a plethora of modifications, such as oxida-
tion and reduction of amino acid residues, conformational 
changes, proteolysis, cross-linking, covalent binding to other 
molecules, immobilization on surfaces and interfaces, for-
mation of nanoaggregates and nanocomposites, all modi-
fying the functionality of native proteins. Promising new 
applications related to these photoinduced modifications of 
proteins are emerging in the fields of biomedicine and nano-
biotechnology, such as PDT, photobonding and wound heal-
ing, photo-bioprinting, photo-immobilization of biosensors 
and enzymes for sensing and biocatalysis, among others.
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