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Single cell multiomic analysis reveals
diabetes-associated β-cell heterogeneity
driven by HNF1A

Chen Weng1,2,8, Anniya Gu1,3,8, Shanshan Zhang1,2,8, Leina Lu1, Luxin Ke 1,2,
Peidong Gao1, Xiaoxiao Liu 1, Yuntong Wang 1, Peinan Hu1,2, Dylan Plummer4,
Elise MacDonald 1, Saixian Zhang1, Jiajia Xi1, Sisi Lai 1,2, Konstantin Leskov 1,
Kyle Yuan1,5, Fulai Jin 1,4,6,7 & Yan Li 1

Broad heterogeneity in pancreatic β-cell function and morphology has been
widely reported. However, determining which components of this cellular
heterogeneity serve a diabetes-relevant function remains challenging. Here,
we integrate single-cell transcriptome, single-nuclei chromatin accessibility,
and cell-type specific 3D genome profiles from human islets and identify Type
II Diabetes (T2D)-associated β-cell heterogeneity at both transcriptomic and
epigenomic levels. We develop a computational method to explicitly dissect
the intra-donor and inter-donor heterogeneity between single β-cells, which
reflect distinct mechanisms of T2D pathogenesis. Integrative transcriptomic
and epigenomic analysis identifies HNF1A as a principal driver of intra-donor
heterogeneity between β-cells from the same donors;HNF1A expression is also
reduced in β-cells from T2D donors. Interestingly, HNF1A activity in single β-
cells is significantly associated with lower Na+ currents and we nominate a
HNF1A target, FXYD2, as the primary mitigator. Our study demonstrates the
value of investigating disease-associated single-cell heterogeneity and pro-
vides new insights into the pathogenesis of T2D.

Loss of β cell mass and impaired β cell function are key mechanisms
leading to type I diabetes (T1D) and type II diabetes (T2D)1,2. Broad
heterogeneity in β cell function and morphology has been reported
both within and between islets from the same individual3–8. Although
unproven, an attractive hypothesis is that β-cell heterogeneity may
play a role in diabetes pathogenesis. Presumably, single cell genomic
technologies will provide the much-needed tools to investigate β-cell
heterogeneity. In the past few years, multiple studies have used single
cell RNA-seq (scRNA-seq) and single nuclei ATAC-seq (snATAC-seq) to

map cell type-specific transcriptomes and epigenomes in pancreatic
islets9–16. However, although some scRNA-seq studies have indeed
examinedβ-cell heterogeneity and reportedβ-cell subpopulations9,11,13,
marker genes defined in these studies do not overlap. More impor-
tantly, little is known about the common pathways or factors that
govern β-cell heterogeneity, and it remains unclear if β-cell hetero-
geneity contributes to diabetes.

Several scRNA-seq studies, including our own, mapped T2D
signature genes in pancreatic endocrine cell types9,10,16. One common
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conclusion from these studies is the lack of discrete T2D-specific β-cell
subpopulations. Instead, the differences between health and disease are
subtle and often masked by individual variation. Due to this reason,
conventional statistical methods lack the power to identify disease
genes, especially since all past studies only analyzed a handful of T2D
donors. Inspired by the successes of single cell trajectory analyses in
developmental biology17,18, we previously developed a regression-based
approach (RePACT) to improve the sensitivity to identifydiseasegenes10.
The key assumption underlying the high sensitivity is that among the
β-cells fromeachdonor, there is still heterogeneity relevant toT2D10.We
demonstrated that evenwith a small number of donors, RePACT can still
identify T2D signature genes in β-cells, many of which have insulin-
regulatory functions10. However, diabetes-relevant β-cell heterogeneity
within the same donor has not been explicitly characterized yet.

Here we aim to directly characterize β-cell heterogeneity with
single-cell genomic data and seek evidence for its relevance to dia-
betes. Because scRNA-seq data is sparse, a major challenge to achieve
this goal is to determinewhether the observed transcriptomevariation
represents real cellular heterogeneity or is due to random transcript
dropout. To address this problem, we developed a new RePACT-based
strategy to connect disease-driven β-cell variation to the single-cell
heterogeneity within each individual. We also reason that orthogonal
β-cell snATAC-seq data can provide a key validation at the epigenetic
level. Furthermore, integration of scRNA-seq, snATAC-seq, Patch-seq,
and 3D genome data will allow us to reveal the mechanism and func-
tion of β-cell heterogeneity. Our results demonstrate that a better
understanding of β-cell heterogeneity may create novel therapeutic
opportunities for diabetes.

Results
Both scRNA-Seq and snATAC-seq define human islet cell types
We generated 20,437 scRNA-seq (via Drop-Seq19) and 37,200 snATAC-
seq20 data using fresh human islets from 7 healthy and 4 T2D donors
(Fig. 1a, b, Supplementary Fig. 1, Methods). To ensure robust com-
parative analysis of endocrine cells between different individuals, we
applied a doublets-filtering pipeline for scRNA-seq data based on
hormone gene expression and filtered out possible doublet nuclei
from the snATAC-seq data using a weighted k-nearest neighbors
(KNN)-based approach (Supplementary Fig. 1a, b, Methods). We next
used canonical correlation analysis (CCA) co-embedding followed by
support vector machine (SVM) classification21 to simultaneously clus-
ter the clean scRNA-seq cells and snATAC-seq cells into 4 endocrine
cell types (α, β, δ, and PP) and 4 non-endocrine cell types (duct, pan-
creatic stellate cells, acinar, and endothelial cells, Fig. 1c, d) (Methods).
Most cells (~80%) are endocrine cell types according to both scRNA-
seq and snATAC-seq data (Fig. 1g).

We defined 4353 differentially expressed genes across all cell
types which are consistent with our previous reports (Supplementary
Fig. 1c, Supplementary Data 1)10. After clustering, the aggregated
pseudo-bulk ATAC tracks show cell type-specific chromatin accessi-
bility at the expectedmarker genes (Fig. 1f).We also confirmed that the
snATAC-seq data can reveal key lineage-specific transcriptional factors
(TFs) activated in different cell populations. For example, NEUROD
motif is enriched in all four endocrine populations; PDX motif is
enriched in β and δ cells; EHF and RUNX motifs are enriched in duct/
acinar cells and PSCcells, respectively22–26 (Fig. 1c, e).Wedefined 10,137
endocrine-specific peaks and 21,925 non-endocrine specific ATAC
peaks (Fig. 2a);most of these variable peaks are located at intronic and
intergenic regions (Fig. 2b), suggesting enhancer functions.

We further clustered the endocrine- and non-endocrine ATAC
peaks into 13 clusters based on their cell-type-specificity (Fig. 2c,
Supplementary Data 2, Methods). These peaks are predictive on the
cell type-specific expression of nearest genes, especially those at the
promoter/5’UTR (Supplementary Fig. 2a–c). We observed that many
cell type-specific genes have multiple long-distance enhancer peaks

with consistent cell type specificity, such as NEUROD1, SIX3, and IRX1
(Fig. 2d–f, Supplementary Fig. 2d–e). Finally, we scanned the variable
peaks (C1 ~ C13) for transcription factor (TF) motif enrichment that are
also supported by concordant RNA expression patterns (Fig. 2g, h). As
expected, theseTFs includemanyknownendocrineTFs, such asMAFA,
RFX3, RFX6, NKX6-1, FOXA2, ASCL1, PAX6, etc.

Multiomic annotation of the specific 3Dgene regulome inα- and
β-cells
Using a low-input “easy Hi-C” (eHi-C) method27, we generated Hi-C
maps with ~30 K sorted α- and β-cells and performed compartment-,
TAD-, and loop-level analyses at 250kb, 25 kb, and ~5 kb resolution,
respectively (Fig. 3a, Supplementary Fig. 3a–b, Methods). At com-
partment level, there is significant variation between α-cells and β-
cells. We identified 310 β-cell-specific and 220 α-cell-specific com-
partment A regions (euchromatin) (Supplementary Fig. 3c, Methods).
Although the cell type-specific A-type compartments are enrichedwith
consistent open chromatin and gene activation (Supplementary
Fig. 3d), most of the cell type-specific ATAC-peaks are not present in
the compartment switch regions (Supplementary Fig. 3e). At TAD level,
the variation between α-cells and β-cells is minimal without significant
correlation to cell type-specific transcription or open chromatin
(Supplementary Fig. 3a, f–h).WeusedHiCorr27 andDeepLoop28 for loop
level Hi-C analyses (Methods). This workflow combines a rigorous Hi-C
bias-correction strategy with machine learning-based noise removal,
which allows robust identification of chromatin loops from low-depth
Hi-C data (Fig. 3a, Supplementary Fig. 3b)28. We identified 19,733 β-cell-
specific and 17,131 α-cell-specific loop interactions (Fig. 3b, Methods).
We found that the cell-type specific loops are significantly enriched
with specific ATAC peaks and gene expression (Fig. 3c). Again,
although the specific loops are enriched at dynamic compartments,
most of the specific loops are present in unchanged compartments
(Supplementary Fig. 3i–j).

We next build 3D gene regulation modules to explain cell type-
specific gene expression. In both α- and β-cells, >70% cell type-specific
genes aremarked by specific ATACpeaks at promoters, indicating that
transcription initiation is the driving mechanism (Fig. 3d, e). Many
specific genes are associated with dynamic long-range epigenetic
events and these events appear to be very diverse. We classified the
dynamic events into (1) specific loops but enhancers are common (e.g.,
BAALC and ARNTL2); (2) both loops and enhancers are specific (e.g.,
OTUD3, LRRTM3, LOXL4, and IRX2) (3) common loops but enhancers
are specific (e.g., LUZP6 and SLC14A1). The same genes may associate
with multiple types of events but again, only a small number of these
loop-level events also overlap compartment changes (e.g., LUZP6 and
IRX2) (Fig. 3d–g). Taken together, we conclude that chromatin loops
best explain gene transcription and in this study we use loop data to
reveal long-range enhancer-promoter gene regulation.

ScRNA-seq reveals intra-donor T2D-associated β-cell
heterogeneity
We previously showed that if we assume the presence of disease-
associated β-cell heterogeneity, a trajectory-based algorithm RePACT
has much improved sensitivity to identify T2D marker genes from a
handful of donors10 (Fig. 4a). Here we repeated the RePACT analysis
with a new cohort of seven healthy and four T2D donors (Fig. 1b).
Consistent with our previous results, we observed a continuous tran-
scriptome variation associated with T2D status (Fig. 4b, c). RePACT
computed a T2D trajectory and identified 207 up-regulated and 512
downregulated genes from the new cohort; these genes are also con-
sistently changed in our previous Fang et al. cohort (six healthy and
three T2D)10 (Fig. 4d, e, Supplementary Data 3), supporting the
robustness of this T2D trajectory.

In the RePACT analysis, cells from the same donor may have dif-
ferent “T2D pseudo indexes” in the T2D trajectory (Fig. 4c), this allows
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us to directly test if any T2D signature gene is also variably expressed
among cells from the same donors, thus revealing the source of T2D-
associated β-cell heterogeneity. For example, after grouping β-cells
from each donor into quartiles based on their T2D pseudo indexes,
downregulated T2D marker genes S100A10, FXYD2, and PPP1R1A and
upregulated T2D marker genes CDKN2A, PDE4B, and SIX3 all demon-
strated a clear trendof heterogeneitywithin the samedonor (Fig. 4f, h),

in both healthy and T2D donors. In contrast, the expression of T2D
marker genes RPL36AL and FOS differ between healthy and T2D
donors but show little intra-donor variation along the T2D trajectory
(Fig. 4g, i). Based on these observations, we used Fisher’s method to
systematically classify all T2D marker genes into “intra-donor”
and “inter-donor” heterogeneous groups (Fig. 4j, Methods).
Interestingly, the “intra-donor” heterogeneous T2Dmarker genes are
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enriched with terms relevant to insulin secretion, stimulus response,
and cell proliferation, while the “inter-donor” T2D marker genes are
enriched for housekeeping terms such as mitochondria and riboso-
mal functions (Fig. 4k). These results suggest that intra-donor het-
erogeneity and inter-donor variation may play different roles in T2D
pathogenesis.

SnATAC-RePACT reveals T2D epigenome heterogeneity in
β-cells
With snATAC-seq data in matched donors, we can investigate if the β-
cell heterogeneity is encoded at the epigenetic level. We firstly identify
T2D associated dynamic ATAC-peaks by extending the RePACT tra-
jectory analysis to snATAC-seq data with latent semantic indexing
(LSI)29 analysis (Methods). We identified 4623 and 5359 peaks that gain

or lose chromatin accessibility in T2D (Fig. 5a–c, Supplementary
Data 3); the dynamics of these peaks can be visualized after grouping
allβ-cells intobins basedon their T2Dpseudo index, suchasCDKN2A/B
and HNF1A (Fig. 5c, f, g). We used chromVAR30 to identify TF motifs
that are enriched or depleted along the T2D trajectory; these results
were then cross-referenced to the scRNA-RePACT results to predict
causal TFs (Fig. 5d, e). Notable downregulated TFs include HNF1A/B
and RFX6, which have known diabetes association and/or play
important roles in β-cell function31–35. Notable up-regulated TFs
include NEUROD1, nuclear transcription factor (NFYs), and TP53, etc.
(Fig. 5d, e), which may reflect the β-cell death and dedifferentiation
reported in diabetes36,37.

We next test if the T2D-associated ATAC peaks also have intra-
donor heterogeneity. Again, using Fisher’s method (Methods), we

Fig. 1 | A single-cell multiomic atlas of human islets of Langerhans. a Schematic
of the overall experimental design. Isolated islets from 11 human donors were
subjected to donor-matchedDrop-Seq and snATAC-seq, as well asHi-C for sorted β

and α cells. b Summary of key donor information. c–e Unsupervised clustering of
both single nuclei from ATAC-seq and single cells from RNA-seq in the same UMAP
space for human islets using CCA-based co-embedding method. In (c), both RNA
and ATAC datapoints are shown, with the highlights of the cell-type identities
assigned to eachnucleus of ATAC. In (d),whereonly the RNAdatapoints are shown,

RNA expression levels of signature genes and the cell-type identifications are
visualized on each single cell of RNA. In (e), where only the ATAC datapoints are
shown, key transcription factor motif frequencies are shown on each nucleus of
ATAC. f Genome browser snapshots for aggregated pseudo-bulk ATAC tracks of
different cell types. 7 signature loci are shown. Each track (row) shows aggregated
peaks from single nuclei of each clustered cell type. g Summary of cell-type com-
position in each donor from both the Drop-Seq (scRNA) and the snATAC.
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a Heatmap displaying 58,111 open chromatin peaks that are accessible in at least
one of the 7 islet cell types. All peaks are classified into three groups: common
peaks that are open in all 7 cell types; endocrine-specific peaks, and non-endocrine-
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clusters in (g), and the corresponding transcription factor gene expression level by
Drop-Seq in (h).
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defined 1962 downregulated and 1602 T2D upregulated ATAC peaks
that show “intra-donor” heterogeneity (Fig. 5h). Two examples at
CDKN2A andHNF1Apromoters are shown in Fig. 5i, j, in whichwe show
four ATAC-seq tracks for each donor after grouping the β-cells into

quartiles based on their T2D pseudo-index. Importantly, many “intra-
donor” heterogeneous peaks are proximal to “intra-donor” hetero-
geneous genes from the scRNA-RePACT analysis, including down-
regulated genes HNF1A, A1CF and up-regulated genes CDKN2A, SIX3
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(Figs. 4j, 5h), therefore providing an orthogonal validation for the
transcriptomic intra-donor heterogeneity.

We further use FIMO38 to scan TF motifs that are enriched in the
four categories of T2D trajectory peaks (down- and upregulated peaks,
with intra-donor or inter-donor heterogeneity, Fig. 5k, Methods, Sup-
plementary Data 4). Notably, HNF1Amotif is enrichedwithin the “intra-
donor down” ATAC-peaks (Fig. 5k), agreeing with Fig. 4k that islet
HNF1A targets are enriched among “intra-donor down” genes from the

scRNA-RePACT analysis. Similarly, p53 motifs are enriched in the
“inter-donor up” ATAC-peaks (Fig. 5k), and p53 pathway genes are
enriched among “inter-donor up” genes (Fig. 4k).

We finally integrated the scRNA-seq, snATAC-seq, and β-cell Hi-C
data to reconstruct regulatory circuits between T2Dmarker genes and
ATACpeaks. Among all the T2D trajectory genes,we identified 68T2D-
down and 154 T2D-up genes that can be explained by at least one T2D
trajectory peak at the promoter or distal regions connected by Hi-C
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loops (size range 41 kb to 1.3Mb; median size 221 kb) (Fig. 6a, Sup-
plementary Fig. 4). As expected, T2D-down genes are more likely to
connect with T2D-down peaks, and T2D-up genes are more likely to
connect with T2D-up peaks; the enrichment is more significant
between “intra-donor” heterogeneous genes and “intra-donor” het-
erogeneousATAC-peaks (Fig. 6b). These results strongly argue that the
observed T2D-associated β-cell heterogeneity is encoded in the epi-
genome and driven by variable transcription programs in indivi-
dual cells.

HNF1A drives both intra-donor and inter-donor β-cell
heterogeneity
Our analyses repeatedly highlight the loss ofHNF1A activity in the T2D
trajectories at both inter-donor (Fig. 5d, e, g) and intra-donor levels
(Figs. 4k, 5h, j, k). We therefore looked for T2D trajectory peaks con-
tainingHNF1Amotifs and used the peak-gene connections fromFig. 6a
to predict HNF1A downstream genes (Fig. 6c, Methods). For example,

promoter or enhancer peaks at TTR, SMIM6, and SPRY1 loci all contain
HNF1A motifs and lose accessibility along the T2D trajectory (Fig. 6d,
Supplementary Fig. 5a–b); all three are downregulated in T2D and
show intra-donor heterogeneity. We also picked predicted HNF1A
target genes for RT-qPCR validation with HNF1A siRNAs in a human β
cell line (EndoC-βH3). Two distinctHNF1A siRNAs both achieve knock-
down efficacy at 30 ~ 40%. Out of the twelve genes tested, eight genes
are significantly downregulated by at least one siRNA (Fig. 6e). Finally,
we verifiedwithCut&Run in EndoC-βH3cells thatmostof thepredicted
target genes have HNF1A binding sites, andHNF1A colocalizes with the
T2D-downregulated ATAC-seq peaks (Supplementary Fig. 6).

We further compared HNF1A levels in β cells from eight cadaveric
human islets (four healthy and four diabetic) using two-way flow
cytometry analyses after immunostaining with antibodies against both
C-peptide and HNF1A. Consistent with genomic results, the HNF1A
signal in β-cells (C-pep+) from diabetic donors is significantly lower
than those from healthy controls, again suggesting a connection
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four quartiles.kTranscription factormotifs enriched in the four categories of ATAC
peaks, color of the boxes indicates the significance of enrichment from two-sided
Fisher’s exact test.
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between HNF1A activity and disease state in β-cells (Fig. 7a, Supple-
mentary Fig. 5c). Consistent with these results, after siRNA knockdown
of HNF1A in EndoC-βH3 cells, we observed lower overall levels of
secreted insulin under both low- and high-glucose conditions (Fig. 7b).

To validate the “intra-donor” heterogeneity of HNF1A, we further
performed three-way flow cytometry analyses on human islets from
healthy donors: each experiment includes antibodies against C-pep-
tide, HNF1A, and a third protein of interest. Despite a general positive

correlation between C-peptide and HNF1A in β-cells, we reproducibly
observed β-cells with high HNF1A levels relative to C-peptide levels
(Fig. 7c, d, Supplementary Fig. 5d, e, middle panels). Similar β-cells are
also observable when we plot HNF1A target genes (TTR, A1CF, PKIB,
and TMED6) against C-peptide (Fig. 7c, Supplementary Fig. 5d, right
panels). In contrast, none of the control genes (NEUROD1, NKX2-2, and
SIX3) show noticeable β-cell deviance in the same analysis (Fig. 7d,
Supplementary Fig. 5e, right panels). Importantly, theHNF1A-high cells

Proximity-based
Hi-C-based Distance(log scale)

Peak accessibility on T2D trajectory
Peak-Gene connection Connection distance

Gene expression on T2D trajectory

HT T2D HT T2D

−2 0 2

Chromatin accessibility (Z score)

−1 0 1 2

Rela.Expression (Z score)

a

b

−2

−1

0

1

2
Enrichment

Depletionlo
g2

(o
dd

s 
ra

tio
)

Intra-donor
 het.(Peak)

Intra-donor
 het.(RNA)

100kb10kb1kb 1Mb
chr12:109535710−109536719

chr6:136560462−136561122
chr3:177199898−177200579
chr3:177194195−177194787
chr3:177192979−177193683
chr3:177089540−177090249

chr14:89071800−89072456
chr14:89020428−89021452
chr14:88889296−88889859

chr7:47237586−47238152
chr13:75922198−75924062
chr15:40731938−40733752

chr9:102581737−102584825
chr1:151918008−151919176
chr1:151913670−151914148
chr2:102434954−102436340
chr2:102135057−102135741
chr2:102027136−102027513

chr7:24859666−24860912
chr1:202112550−202114337

chr11:62042956−62043660
chr20:42186531−42187878

chr1:178693943−178696394
chr2:231923431−231924408

chr22:25201944−25203810
chr22:32553712−32555619
chr17:74390185−74390652

chr4:124570345−124572473
chr11:66045147−66045675
chr20:34741866−34742997
chr20:34734112−34734449
chr20:34680032−34682004
chrX:16737347−16738250

chr1:110282376−110283527
chr8:124550708−124551037
chr3:149191364−149192959

chr17:68070643−68071773
chr11:2397876−2398580
chr17:5411890−5412830
chr17:5403173−5405035

chr6:3227215−3228889
chr8:136468900−136471192

chr2:11886458−11887433
chr2:11816278−11816910

chr15:23114647−23115699
chr11:117746501−117748478

chr11:9594543−9596840
chr11:9590522−9591040
chr11:9587425−9588064

chr12:53320855−53321567
chr4:57537312−57538475

chr10:14653858−14654620
chr10:14645831−14647620
chr10:14596307−14598661

chr4:1166988−1167956
chr15:38855959−38857503
chr15:38851051−38851442
chr15:38848152−38848518
chr19:54707170−54707453

chr20:8112287−8113750
chr7:6413541−6414701

chr15:45878727−45880641
chr7:87228784−87230437
chr7:87227630−87228175

chr19:1103743−1105103
chr11:2289037−2291753

chr7:128090417−128090834
chr20:17560401−17560789
chr20:17549713−17551842
chr15:45722390−45723266

chr1:20820379−20821449
chr1:20811814−20813758
chr1:20810513−20811046
chr1:20806930−20808077

chr17:73641433−73642922
chr17:73521007−73522475

chr19:3480063−3480886
chr10:95327693−95328760
chr10:95326232−95327223

chr8:37756390−37757395
chr8:37748995−37749798

chr16:3070311−3072860
chr16:69384646−69385921

chr12:105724046−105725911
chr4:57975718−57977295

chr10:95359644−95361543
chr10:52652100−52653647
chr10:52644998−52645467
chr10:52642092−52644342
chr12:54984823−54987947
chr18:29175936−29176486
chr18:29170964−29172901

chr1:241803050−241804033
chr1:241991865−241992354

chr10:69595225−69596197
chr10:70088181−70088488
chr10:69912989−69914089

chr6:11224894−11225255
chr6:11362859−11363161

chr10:63810461−63811144
chr10:63784845−63786500
chr10:62702585−62704707

chr6:122970755−122971148
chr6:123118973−123119981
chr6:123092010−123092886
chr6:123056783−123058019
chr6:123054181−123054718
chr2:238600144−238602102
chr2:238596221−238596568
chr2:238535641−238537109
chr2:238641662−238643678

chr11:117698616−117699787
chr11:117817460−117818202 ++ ++++ ++ ++++ +++++++++ +++++++ ++ ++++ +++ +++ ++++ +++ ++ + ++ + +++ + +++ +++ ++++ ++++ + + ++++++ +++ +++++ ++ +++ +++ + +++ + ++++ +++ +++ ++ ++++++++++ +++ ++++ +++++++

LINC01014
LINC01146

IGFBP3
UCHL3
SRP14

SEC61B
S100A10

CYCS
ELF3

SCGB2A1

C22orf42

EPB41L1
SYAP1

GSTM3

TM4SF4

LOC728392
TUBB2B

KHDRBS3
LPIN1

LOC283683
FXYD6

HOPX
FAM107B

SPON2
RASGRP1

RPS9

RAC1
BLOC1S6

ABCB1
GPX4

ASCL2
HILPDA

DSTN
C15orf48

CAMK2N1
SMIM6
LLGL2

SMIM24
FFAR4

RAB11FIP1
TNFRSF12A

TMED6
C12orf75
IGFBP7

RBP4
A1CF

PPP1R1A
TTR

SMPDL3A
DNAJC12

NEDD9
ARID5B

PKIB
LRRFIP1

FXYD2

ISCU
AHI1

MAP4K4

SGK2
RALGPS2

PSMD1
SGSM1

SPHK1
LINC01091

CNIH2

FBXO32

KCNJ16
CD81

WEE1
KRT8

PLCB1

OPN3

X X

X

X

Ta
rg

et
s 

of
 

T2
D

   
pe

ak
s

T2D   genes

32

21

5

4

8

18

4

10

10

17

42

40

20

37

47

57Ta
rg

et
s 

of
 

T2
D

   
pe

ak
s

T2D    genes

***

***

*** **

***

* *

*

qPCR for HNF1A-targeted
T2D-down genes in EndoC-βH3 cells

c
5 kb hg19

T2
D

 P
se

ud
o-

st
at

e 
in

de
x(

sn
AT

AC
) 

HT

Bin1

Bin2

Bin3

Bin4

Bin5

Bin6

Bin7

Bin8

Bin9

Bin10T2D

d e

TTR
HNF1A motif

HNF1A target network

A1CFHOPX
KIFC3

PPP1R1A

RPS9

SMIM6

SMPDL3A

SPON2

TMED6

TTR

BHLHE41

PKIB

S100A10

SGK2

DNAJC12

FAM107B

SPRY1

50

50

50

50

50

50

50

50

50

50

CALD1

COA3

LRRFIP1

NEDD9

SRP19

TM4SF4

HNF1A

LOC101927960

MIA2

FXYD2

**
* **

***
* ** **

**
*

**
*

**
*

**
*

**
**

* **

R
el

at
iv

e 
ex

pr
es

si
on

0.0

0.5

1.0

1.5

2.0

H
N

F1
A

TM
ED

6

D
N

AJ
C

12

PP
P1

R
1A

SG
K2

S1
00

0A
10

KI
FC

3

BH
LH

E4
1

A1
C

F

TT
R

PK
IB

FX
YD

2

siRNA1 siRNA2 siRNA-Scramble

Fig. 6 | Multiomic reconstruction of the T2D gene regulatory circuits in β-cells.
a Connect T2D downregulated ATAC peaks to downregulated genes from RePACT
analyses through multiomic integration (T2D upregulated peak-gene pair in Sup-
plementary Fig. 4). Leftmost panel: heatmapof peaks losing accessibility along T2D
trajectory; peak locations (hg19) are on the left of each row. Peaks highlighted in
red show intra-donor heterogeneity. Second panel shows the peak-gene connec-
tions. Green lines: peakswithin 10 kbof the TSS; orange lines: distal peak-gene pairs
supported by Hi-C loops. Third panel: the distance of each peak-TSS connection.
Rightmost panel: heatmap of T2D downregulated genes. Red-highlighted gene
names indicate intra-donor heterogeneous genes. b Enrichment analysis between
T2D trajectory genes and T2D-trajectory peaks. Color intensity indicates the odds

ratio.P values (two-sided Fisher’s exact test) and the numbers of genes are shown in
the squares. c A subnetwork of predicted T2D downregulated genes controlled by
HNF1A (Methods). Green lines: peaks within 10 kb of the TSS; orange lines: distal
peak-gene pairs supported by Hi-C loops. Maroon: both proximal and distal peaks.
dGenome browser snapshot of TTR locus (chr18:29,169,915-29,180,800) which is a
putative HNF1A target. e qPCR validation of selected HNF1A targets following
HNF1A knock-down. P-values are from two-sided paired t-test. ∗∗∗p <0.0005,
∗∗p <0.005, ∗p <0.05 (three biological replicates each, HNF1A has four biological
replicates. Each biological replicate is the average of three technical replicates).
Data are presented as mean values +/− SEM.

Article https://doi.org/10.1038/s41467-023-41228-3

Nature Communications |         (2023) 14:5400 8



are significantly overrepresented amongst the high TTR, A1CF, PKIB,
and TMED6 cells (highlighted cells Fig. 7c and Supplementary Fig. 5d).
Taken together, the flow cytometry data are consistent with the
genomic results and support β-cell heterogeneity driven by HNF1A
activity.

HNF1A is linked to reduced sodium influx in β-cell heterogeneity
To further explore the physiological function of HNF1A marked β-cell
heterogeneity, we analyzed independent human islet Patch-seq data
which combines scRNA-seq with electrophysiological measurements
of exocytosis and channel activity39. Due to the issue of high dropout
rate, HNF1A transcripts are detectable in only 33 out of 358 β-cells in

this dataset. Nevertheless, the 33 HNF1A + β-cells show significantly
lower peak Na+ influx, while other electrophysiological properties,
including Ca2+ currents and exocytosis activity, are not significantly
different (Fig. 7e).

Since the statistical power of Patch-seq analyses are affected by
the high dropout rate of HNF1A gene transcripts, we reasoned that
HNF1A target genes may serve as better markers for β-cell hetero-
geneity. We firstly reanalyzed the transcriptome component of the
Patch-seq data and confirmed that 8 (out of 18) putative HNF1A target
genes express significantly higher in the 33 HNF1A+ cells (Supple-
mentary Fig. 7a). Strikingly, nearly all (14 out of 18) the HNF1A target
genes, but not the control genes, are associated with decreased Na+

a

3.0 3.4 3.8

0
1

2
3

4
5

6
D

en
si

ty

HNF1A level in islet β cells b

0
10

20
30

Pe
ak

 N
a+

 C
ur

re
nt

 (p
A/

pF
)

0
20

0
10

00
N

a+
 C

on
du

ct
an

ce
 (p

S/
pF

)

40

60
0

*** ***

2.5

2.0
1.5

1.0

0.5

0.0

C
pe

p 
(p

m
ol

) 

Insulin Secretion

Scramble

siRNA#1
siRNA#2

low glucose

high glucose** **
**

*

0
10

20
30

Pe
ak

 N
a+

 C
ur

re
nt

 (p
A/

pF
)

0
40

0
80

0
N

a+
 C

on
du

ct
an

ce
 (p

S/
pF

)

0.
0

0.
4

0.
8

1.
2

C
a+

 C
ha

rg
e 

En
try

 (p
C

/p
F)

0
2

4
6

8
Ea

rly
 C

a+
 C

ur
re

nt
 (p

A/
pF

)

0
1

2
3

La
te

 C
a+

 C
ur

re
nt

 (p
A/

pF
)

0
50

10
0

15
0

La
te

 C
a+

 
C

on
du

ct
an

ce
 (p

S/
pF

)

0
1

2
3

4
5

6
7

To
ta

l E
xo

cy
to

si
s 

(fF
/p

F)

0
40

80
12

0
La

te
 E

xo
cy

to
si

s 
(fF

/p
F)

0
10

20
30

Ea
rly

 E
xo

cy
to

si
s 

(fF
/p

F)

ExocytosisCa+ currentsNa+ currents

SC
N

1B

SC
N

2A

SC
N

3A

SC
N

M
1

SC
N

3B

SC
N

9A

KC
N

J8

KC
N

J1
1

AB
C

C
8

AB
C

C
9

C
A

C
N

A1
A

C
A

C
N

A1
C

C
A

C
N

A1
D

C
A

C
N

A1
H

C
A

C
N

A2
D

1

C
A

C
N

A2
D

2

C
AC

N
B2

FX
YD

2

A
TP

1B
1

A
TP

1A
1

ATP-sensitive K+ channel Ca2+ channelsNa+ channels Na/K-ATPase

−1
0
1
2
3
4

N
or

m
. T

ra
ns

cr
ip

t

T2D

Healthy

HNF1A

HNF1A

HNF1A

HNF1A level

low high
HNF1A motif

HNF1A motif

insulin

insulin

FXYD2

FXYD2

Na+

Na+

NKA

NKA

c

e

f

g

i

j

Na+ currents

FXYD2 high
 (n=179)

FXYD2 low
 (n=179)

20 kb(hg19)
FXYD2

HT

T2D
HNF1A motif

 T
2D

 p
se

ud
o-

st
at

e 
in

de
x 

(s
cA

TA
C

)

50

50

50

50

50

50

50

50

50

50

β

δ
α

PP
Duct

Acinar
PSC

log2(FXYD
2 R

P
K

M
)

2

6

% cells

h

HNF1A_PEd

2.
5

3.
5

4.
5

2.
5

3.
5

4.
5

5.
5

Cpep+
30.3

N
KX

2-
2_

AP
C

H
N

F1
A_

PE
250K

200K

150K

100K

50K

0

SS
C

-H

Cpep_BV421Cpep_BV421Cpep_BV421
3.5 4.0 4.5 3.5 4.0 4.5

p-value=0.7

-10³ 0 10³ 10⁴ 10⁵

2.
0

3.
0

4.
0

5.
0

2.
0

3.
0

4.
0

5.
0250K

200K

150K

100K

50K

0

SS
C

-H Cpep+
30.8

H
N

F1
A_

PE

TT
R

_A
PC

Cpep+
31.1

2.
5

3.
5

4.
5

5.
5

H
N

F1
A_

PE

2.
5

3.
5

4.
5

5.
5

A1
C

F_
AP

C

250K

200K

150K

100K

50K

0

SS
C

-H

Cpep_BV421Cpep_BV421Cpep_BV421

3.5 4.5
Cpep_BV421Cpep_BV421 Cpep_BV421

-10³ 0 10³ 10⁴ 10⁵

Step1:
select Cpep+ cells 

Step2:
select HNF1A-high cellls

Step3:
highlight HNF1A-high cellls

4.0 3.5 4.54.0

3.5 4.54.0 3.5 4.54.0

p-value < 2.2e-16

p-value < 2.2e-16

-10³ 0 10³ 10⁴ 10⁵

Step1:
select Cpep+ cells 

Step2:
select HNF1A-high cellls

Step3:
highlight HNF1A-high cellls

HNF1A targetsHNF1A non-targets

HNF1A + (n=33)
HNF1A − (n=325)

HNF1A + (n=33)
HNF1A − (n=325)

p=0.0015p=0.04

p=0.03 p=0.04

FXYD2
cell type expr

p=0.03

Healthy (n=4)
T2D (n=4)

0 20

chr11:117,669,536-117,719,298 bp

Cut&Run HNF1A EndoC

Healthy donors

T2D donors

scATAC-seq 
β-cell

pseudo-bulk

k
FXYD2

Article https://doi.org/10.1038/s41467-023-41228-3

Nature Communications |         (2023) 14:5400 9



influx (Supplementary Fig. 7b). Therefore, the Patch-seq data inde-
pendently validate the putative HNF1A target genes and strongly
support a connection between HNF1A activity and reduced Na+ influx
in β-cells.

In patch-clamp experiments, the variable ion current is most fre-
quently attributed to changes in ion channels. To explore why
HNF1A+ β-cells have lower Na+ influx, we examined the Patch-seq data
of all detectable ion channel genes. As expected, the fluctuations of
several key ion channel genes are associatedwith variable ion currents.
For example, high levels of Na+ channel (SCN3A) and ATP-sensitive K+
channels (KCNJ8 and ABCC9) are all associated with high Na+ influx;
Ca2+ channel CACNA1A is positively correlated with Ca2+ current but
not Na+ current (Supplementary Fig. 7c). However, none of the ion
channel genes show variable expression between HNF1A+ and HNF1A-
cells except CACNA1D, which shows higher expression in HNF1A+ cells
(Fig. 7f). However, CACNA1D heterogeneity is not associated with Na+
activity (Supplementary Fig. 7c) and therefore cannot explain HNF1A’s
association to the Na+ phenotype.

Interestingly, out of all predictedHNF1A target genes, FXYD2 is the
only one with known function to regulate ion transport across the cell
membrane (Fig. 6a, c, e). FXYD2 is highly expressed in β cells (Fig. 7h)
and like HNF1A, FXYD2 is downregulated in the T2D trajectory at both
transcriptome and epigenome levels with intra-donor heterogeneity
(Figs. 4f, 6a, 7g). HNF1A binding at the FXYD2 locus, corresponds to
chromatin accessibility peaks downregulated in T2D (Fig. 7j). FXYD2 is
an inhibitory subunit of the Na+/K+-ATPase40,41. In cells, the Na+/K
+-ATPase plays a critical role in maintaining ion gradients and mem-
brane resting potential. Therefore, FXYD2 may lower ion gradients,
facilitate membrane depolarization, and presumably reduce the Na+
influx necessary for an action potential. Consistent with this model,
Patch-seq data show a significant negative association between FXYD2
and Na+ current (Fig. 7i, Supplementary Fig. 7c). Conversely, ATP1A1
(the catalytic subunit of Na+/K+-ATPase) is positively associated with
Na+ current (Supplementary Fig. 7c). Taken together, these results
support a model that HNF1A reduces Na+ current in β-cells by upre-
gulating FXYD2 (Fig. 7k, see discussion).

Discussion
The heterogeneity of β-cells has been described with many molecular
and behavioralmeasurements3–8, but few studies havemanaged to link
β-cell heterogeneity to diabetes pathogenesis. In this study, our
trajectory-based scRNA-seq analysis pinpointed a subset of “intra-
donor”T2D signature genes that are also variable among cells from the
same donors, enabling the genomic characterization of disease-
relevant β-cell heterogeneity. We found that in contrast to the “inter-
donor” T2D signature genes, “intra-donor” T2D signature genes are
enriched with genes relevant to cell cycle regulation and β-cell

functionality. Importantly, because the “intra-donor” gene signature
shows variation in cells from both healthy and diabetic donors, a very
attractive hypothesis is that these genes mark the transition toward a
disease state.

It is interesting that inter-donor heterogeneous T2D genes are
enriched with house-keeping functions including mitochondria genes.
Mitochondria play a central role in coupling glucose metabolism to
insulin release, andmitochondrial metabolism is substantially inhibited
in diabetic β-cells5,42–46. For example, the respiratory chain genes NADH
dehydrogenase (NDUFA1/A12/B1/B2/B4/B9), Cytochrome C Oxidase
(COX7A1), and Ubiquinol-Cytochrome C Reductase (UQCRQ) are all
downregulated in T2D patients, but largely homogeneous within the
cells from individual donors. There are two possible mechanisms: (i)
inter-donor heterogeneous genesmay represent a pre-existing uniform
expression pattern that varies by individual, which might confer dif-
ferent susceptibility to T2D; (ii) alternatively, inter-donor hetero-
geneous genes may obtain this variation after the onset of disease, and
all cells respond to the disease state rather uniformly. Supporting the
second possibility, immediate early genes (IEGs) FOS and EGR1 both
respond tometabolic stimuli including glucose and cAMP3,47,48; they are
also both upregulated in T2D without intra-donor heterogeneity.

In single cell analysis, subpopulations can be most reliably
identified as discrete cell clusters; we did not observe discrete β-cell
clusters from our data. However, β-cell heterogeneity can also be
continuous, which may still cause molecular consequences with dis-
ease relevance. Conversely, discrete subpopulations are not necessa-
rily disease-relevant even if they exist. With RePACT, we explicitly
investigated continuous β-cell heterogeneity within the same donor
and identified HNF1A as a disease-relevant heterogeneity driver. It
remains to be determined whether the continuous heterogeneity is a
stable condition or represents dynamic cells transitioning between
HNF1A-low or HNF1A-high states. Regardless, by integrating scRNA-
seq, snATAC-seq, and Hi-C data, we identified many HNF1A target
genes with consistent intra-donor heterogeneity at both transcrip-
tional and epigenetic levels, thus providing important evidence that
HNF1A-driven intra-donor heterogeneity is indeed functional.

In humans, heterozygous mutations in HNF1A are sufficient to
cause the most frequent form of maturity onset diabetes of the young
(MODY3)31. Since most of the HNF1A mutations in MODY3 are simple
loss-of-function mutations, it has been proposed that the β-cell is
particularly vulnerable to decreased HNF1A gene dosage49,50. Further-
more, both rare and common variants at the HNF1A locus have been
associated with T2D51,52. We also observed compromised insulin
secretion in EndoC-βH3 cells after knocking down HNF1A, consistent
with several reports in mice and stem cell models53–56. Taken together,
the link to HNF1A suggests a causal role of β-cell heterogeneity in T2D
pathogenesis.

Fig. 7 | Intra-donor heterogeneity of HNF1A and its target genes. a The dis-
tribution of HNF1A level from flow cytometry analyses in β cells from four healthy
islets (blue) and four T2D islets (red). Statistical significance determined via two-
sided Wilcox test. b Glucose stimulated insulin secretion in HNF1A siRNA knock-
down EndoC-βH3 cells or scrambled siRNA control cells. C-peptide levels in low
glucose (2.8mM) and high glucose (20mM) conditions. Statistical significance was
determined using paired two-sided t-test from n = 12 wells collected from four
separate experiments by comparing corresponding glucose conditions to each
other. *p-value < 0.05, **p-value < 0.005, ***p-value < 0.0005. Data are presented as
mean values +/− SEM. c, d Three-way flow cytometry analysis of β-cells. Left panel:
we first select the β-cells (C-pep+).Middle panel: HNF1A-high β-cells (highlighted in
red) can be determined from the HNF1A vs. C-pep scatter plots. Right panel: for the
β-cell population, we plot the gene of interest against C-pep in a scatter plot,
HNF1A-high cells are highlighted in red. Examples of HNF1A target genes TTR and
A1CF are shown in (c); Example ofHNF1A non-target geneNKX2-2 is shown in (d). In
the right panels, one sided t.test is used to measure the difference of target gene
expression between HNF1A high cells and the rest of the cells. e Compare the

electrophysiologicalmeasurements of exocytosis and channel activity inHNF1A + β

cells (n = 33) and HNF1A- β cells (n = 325) from Patch-seq data, p-values from two-
sided Wilcox test. Boxplots show median ± upper and lower quartiles. f Compare
channel gene expression inHNF1A+ andHNF1A-β cells in Patch-seqdata (Methods).
p-value from two-sided Wilcox test. Boxplots show median ± upper and lower
quartiles. g Browser snapshot of FXYD2 locus (chr11:117,660,352-117,716,145) with
HNF1A motifs indicated. Same as Fig. 5f–g, each track (row) is a pseudo-bulk ATAC
track of one bin of cells (out of 10) on the T2D trajectory. h FXYD2 expression in
pancreatic islet cell types from the scRNA-seq data. i Na+ current measurements in
FXYD2 high (n = 179) and FXYD2 low cells (n = 179) from Patch-seq data. ***p-
value < =0.0005, two-sided Wilcox test. Boxplots show median ± upper and lower
quartiles. j Genome browser snapshot of FXYD2 locus with HNF1A Cut&Run (blue)
and pseudo-bulk ATAC track in β cells from T2D and healthy donors (green). k A
schematic to show the role of HNF1A in β-cell heterogeneity and T2D. HNF1A
expression has cell-to-cell variation in β-cells and is lower in T2D. HNF1A regulates
FXYD2, an inhibitor of theNa+/K+-ATPase (NKA). FXYD2decreasesNKA’s affinity for
Na+ ions and promotes depolarization and insulin secretion.
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By leveraging Patch-Seq data, we found an unexpected associa-
tion of HNF1A activity to decreased Na+ influx in β-cells, most likely
through upregulating FXYD2, a negative modulator of the Na+/K
+-ATPase. This model is intriguing because FXYD2 is the only β-cell
differentially expressed gene in T2D that has been convincingly repli-
cated across multiple scRNA-seq studies, regardless of the choice of
platform and analytic tools57. However, there is a suspicion that FXYD2
may not be important for β-cell dysfunction in diabetes since it is not
genetically associated to T2D57. Our discovery of FXYD2 being a pri-
mary target of HNF1A-driven β-cell heterogeneity explained its robust
detection as a T2D signature gene and supports its disease relevance.

FXYD2 loss has been shown to hyperpolarize membrane potential
in neurons and decrease action potential firing41. We propose that a
similar mechanism may exist in HNF1A-driven β-cell heterogeneity,
where partial or progressive loss of HNF1A and FXYD2 causes mem-
brane hyperpolarization and impaired insulin secretion in MODY3 or
T2D (Fig. 7k). Interestingly, this model can also explain why HNF1A-
MODY patients are particularly sensitive to sulfonylureas58, which
block ATP-sensitive K+ channels and promote membrane depolariza-
tion. Taken together, our single cell integrated genomic analysis
demonstrates the existence of T2D-associated β-cell heterogeneity
with a specific electrophysiological trait driven by a HNF1A/FXYD2
module. Future studies are needed to validate the contribution of the
HNF1A/FXYD2 pathway to diabetes and to explore options to manip-
ulate β-cell heterogeneity for clinical uses.

Methods
Ethics declaration
All research was carried out in compliance with the relevant ethical
regulations. The research in this study is not considered human sub-
jects research and was deemed exempt from IRB approval by the
CWRU IRB.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Experiment
Tissue culture and experimental validation
Human islet culture. Human islets were purchased from Prodo
Laboratories Inc. Upon receiving, the islets were washed twice with
complete PIM(S) Prodo Islet Media (Prodo Laboratories Inc, PIM-
S001GMP). Islets were then collected and gently resuspended in
complete PIM(S) media and cultured in a six-well non-tissue culture-
treated plate overnight. To dissociate islets into single cells, cells were
washed once in HBSS (Sigma-aldrich, #6648) and incubated in Accu-
tase (Innovative Cell Technologies, #AT104) at 37 °C for 20–25min.
The islets were broken up gently with a 1ml pipette every 5min. When
>95% of the islets were digested into single cells, PIM(S) medium was
added to neutralize the Accutase and the suspension was passed
through a 40μm cell strainer. Single cells were washed again with
HBSS and resuspended in HBSS at the concentration of 2 × 105/mL for
Drop-Seq analysis. To collect sorted human β and α cells, the obtained
single cells were first fixed and permeabilized with BD cytofix/ cyto-
permbuffer (BD, Cat# 51-2090KZ) for 20min. Then, cells were stained
with anti-glucagon antibody (BD Biosciences, Cat# 565891) for α cells
and anti-insulin antibody (BD Biosciences, Cat# 565689) for β cells
before they were sorted on a BD FACS ARIA II cell sorter.

Cell culture. EndoC-βH3 cells were acquired from Univercell-
Biosolutions. EndoC-βH3 cells were cultured on 10 cm TPP plates
(Sigma #Z707686) as described59. Plates were first coated with ECM
solution (10ml of DMEM (Gibco #11960044), 100μl ECM gel (Sigma

#E1270), 20μl fibronectin (Sigma #F1141), 100μl Streptomycin-
Penicillin (Gibco #15140122), 5ml per 10 cm dish) for 1 h at 37 °C
before use. Cells were cultured in DMEM (Sigma #D6046) with 2% BSA
fraction V (Sigma #10775835001), 50μM 2-mercaptoethanol (Gibco
#31350010), 10mM Nicotinamide (Sigma #481907), 5.5μg/ml Trans-
ferrin (Sigma #T8158), 6.7 ng/ml sodium selenite (Sigma#214485), and
Penicillin/Streptomycin (Gibco #15140122). Before use, cells were
treated with 1uM tamoxifen (Selleck #S7827) 2x/week for 21 days.
Successful excision of the immortalizing transgene was confirmed by
observing the cell morphology.

siRNA knockdown and qPCR. EndoC-βH3 cells were plated in 12-well
plates at ~0.25M cells/well one day before transfection. siRNAs were
purchased from Dharmacon. Nontargeting control (#D-001810-01-
20),HNF1A siRNA #1 (#D-008215-01-0010), andHNF1A siRNA #2 (#D-
008215-02-0010) were added at a final concentration of 25 nM with
1ul lipofectamine RNAi Max (Invitrogen #13778030) diluted in opti-
MEM (Gibco #31985070). Media was changed 24 h after transfection.
At 72 h post-transfection, RNA was harvested using Zymo’s Micro-
prep kit (#R1050). cDNA was generated using Applied Biosystems’
high-capacity kit (#4368814). Each qPCR reaction contained 20 μl of
final volume (1ul input cDNA at ~10 ng/ul, 10 μl Radiant SYBR Green
Lo-ROX 2x qPCR Master Mix from Alkali Sci (#QS1050), and 1ul for-
ward and reverse primers from 10 μM stock solutions.) qPCR primer
sequences are listed in Supplementary Table 4. All gene values were
normalized toGAPDH or actin andboth siRNAswere then normalized
to the scrambled control using the ΔΔCt method. Statistics were
calculated using a paired t-test from three biological replicates with
each biological replicate being the average of three technical repli-
cate wells except HNF1A which was calculated from four biological
replicates.

Flow cytometry. Human islets from Prodo Laboratories were cultured
anddigested into singlets aspreviously described. After counting, cells
were washed with 1× dPBS, fixed using eBioscience’s Transcription
Factor Staining Set (#00-5523-00) and stored at −80 °C until ready for
use. Samples were thawed in blocking solution (5% BSA-PBS+0.1%
Triton X-100) for 1 h on ice. After washing with 1x Perm/Wash buffer,
samples were aliquoted into FACS tubes and primary antibody was
added at ~1:50 dilution and stained overnight at 4 °C. Unless otherwise
noted, each tube was stained for HNF1A, Cpep, and select target gene.
All antibodies are listed in Supplementary Table 5. Minus one controls
were used to gate for negative populations. Before adding the sec-
ondary antibody, samples were washed once with 1× Perm/Wash buf-
fer. Secondary antibody was added at ~1:125 dilution and stained in the
dark at room temperature for 20min. Samples were washed once
more with 1× Perm/Wash buffer, resuspended in 1× dPBS, and run on a
BD LSR II, FACS ARIA, or FACS ARIA-SORP. Gating of Cpep+ popula-
tions was done using Flowjo v10. The scale values of the Cpep+
populations were then exported, and further analysis was performed
using R.

Glucose-stimulated insulin secretion. 48 h after siRNA transfection,
cells were starved for 24 h in 2.8mM EndoC-βH3 media (basal media
Thermofisher #11966025 with supplemented glucose from Gibco
#A2494001, and supplements as described above). 72 h post-trans-
fection, cells were then starved for 1 h in 2.8mM KRB buffer (115mM
NaCl, 5mM KCl, 1mM CaCl2, 1mM MgCl2, 0.2% BSA, 10mM HEPES,
24mM NaHCO3, 2.8mM glucose). After 1 h, cells were washed with
2.8mM KRB buffer and then cultured in either low glucose (2.8mM)
or high glucose (20mM) KRB buffer for 1 h. Supernatant was col-
lected and spun down at 800 × g for 5min to pellet cell debris.
C-peptide levels were quantified using Mercodia’s Ultrasensitive
C-pep Eliza Kit (#10-1141-01). Further analysis was generated in
Prism v6.
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Library preparation
Drop-Seq. We have established an in-house Drop-seq protocol based
on previous publications10,19. Briefly, three pump-controlled syringes
with cell suspension (200,000 cells/mL), barcoded beads in lysis buffer
(200,000 beads/mL), and droplet generation oil were connected to a
microfluidic device undermicroscope supervision to generate droplets.
Next, the droplets were broken with Perfluoro-1-octanol followed by
vigorous shaking and beads were recovered and used to perform 1st
strand cDNA synthesis. The resulting full-length cDNAwere fragmented
and prepared for sequencing. Libraries were sequenced on HiSeq X
sequencers with 150 paired end sequencing.

Transposome generation. The Tn5 oligo sequences are listed in
Supplementary Table 2. All oligos were diluted into 200uM using
dilution buffer (10mM Tris-pH7.5, 50mM NaCl). 200uM barcode oli-
gos were mixed (1:1) with 200uM eluted pMENT oligos incubated at
95 °C for 3min on a thermal cycler and −1 °C/min for annealing. The
annealed oligos were stored at −20 °C.

Tn5 enzymewas produced withminormodifications60. The pTXB1-
Tn5 expression vectorwas transformed into C3013 cells (NEB) following
themanufacturer’s protocol. Single colonies of transformed C3013 cells
were cultured 37 °Covernight (12–14 h) and seeded in 1 L LB. The culture
was incubated at 37 °C for 3 h until A600= 1.0. IPTGwas added to a final
concentration of 0.25mM. Then the culture was incubated at 23 °C for
8 h to express Tn5 enzyme until A600= 2.3 ~ 2.5. One 50mL-bacteria
pellet was resuspended by 10mL HEGX Buffer (20mM HEPES-KOH at
pH 7.2, 0.8M NaCl, 1mM EDTA, 10% glycerol, 0.2% Triton X-100 with
protease Inhibitors (W/O EDTA) (to 1×)). Resuspended bacteria were
sonicated on a Branson sonicator: 6 cycles (25 bursts/cycle) 50% duty
cycleOutput=4. After sonication, bacteriawere centrifugedat 13,523 × g,
30min, 4 °C. The supernatant was collected and 100μL 10% neutralized
PEI (PH 7.0) was added dropwise and then centrifuged at 13,523 × g,
10min, 4 °C. Next, a Chitin columnwas prepared andwashed four times
with HEGX. The supernatant from the previous step was loaded on to
the Chitin column and rotated at 4 °C for 1.2 h. After incubation, the
bottomcapwasopenedand the liquidflow-throughdiscarded, followed
by four times wash with HEGX. The annealed oligos were then diluted
intoHEGXbuffer and loadedonto the columnand incubatedat 37 °C for
1 h followed by 4 °C for 2 h. The liquid flow-through was discarded fol-
lowed by 4 times wash with HEGX. After the final wash, 3mL HEGX
buffer supplied by 100mM DTT was added to the chitin and incubated
at 4 °C for 48–72 h. Theflow-throughwas collected and concentratedby
Amicon Ultra centrifugal filters (MWCO 30kDa). The concentrated
proteinwaswashedonce by dialysis buffer (100mMHEPES-KOHpH7.2,
0.2M NaCl, 0.2mM EDTA, 2mM DTT 0.2% Triton X-100, 20%Glycerol).
The concentrated transposome is ready for the snATAC-Seq.

snATAC-seq. Combinatorial single nuclei ATAC-seq was performed as
previously described with minor modifications20. Islets were cen-
trifuged at 180xg for 3min at room temperature. Supernatant was
discarded. 3ml pre-chilled lysis buffer (10mM Tris-HCl ph7.4, 10mM
NaCl, 3mM MgCl2, 0.1% NP40, 0.1% Tween-20, 0.01% Digitonin) was
added and the samplewas homogenizedbydounceron ice, followedby
incubation on ice for 10min. Islet nuclei were then filtered by a 40um
cell strainer and centrifuged 450× g for 5min at 4 °C. The supernatant
was discarded and washed once by wash buffer (10mM Tris-HCl ph7.4,
10mM NaCl, 3mM MgCl2, 0.1% Tween-20), followed by 450× g for
5min at 4 °C. The supernatant was discarded, and nuclei were resus-
pended into TD buffer (10mM Tris-HCl, 5mM MgCl2, 10% Dimethyl
formamide, 70uM Pstop) and counted by hemocytometer. Concentra-
tion was adjusted to 450 nuclei/μl. 4000 nuclei (9μl) were dispensed
into each well of a 96-well plate. 1ul unique combination of barcoded
Tn5 was added to each well, mixed thoroughly and incubated at 55 °C
for 15min. To stop the reaction, 10 µL of 40mM EDTA were added to
eachwell and the platewas incubated at 37 °C for 15min. Nuclei from all

wells were then combined for sorting. Twenty-five nuclei were sorted
into each well of a 96-well plate with 6ul collection buffer (10mM Tris,
10mM NaCl, 0.02% SDS, 2% BSA). After sorting, the collection plate
was incubated 55 °C for 15min and quenched by triton-X100 to final
concentration 1%. The quenched plate can be stored at −20 °C for
weeks or moved to the next step for PCR amplification. For PCR,
0.6 μl primer N7** and 0.6 μl primer N5** (listed in Supplementary
Table 3) were added in each well and 6 μl NEBNext High-Fidelity 2×
PCR Master Mix (NEB) was added in each well. The plate was PCR
amplified by 11–15 cycles (72 °C 5min, 98 °C 30 s, (98 °C 10 s, 63 °C
30 s, 72 °C 60 s) *cycles. After PCR amplification, all wells were
combined and purified with Zymo DNA Clean & Concentrator-100,
followed by SPRI 1× purification. The snATAC library was sequenced
on NovaSeq-6000 SP using customized sequencing primers:

snATAC.S.read1: TCGAGGACGGCAGATGTGTATAAGAGACAG;
snATAC.S.read2:GTCTCCGCCTCAGATGTGTATAAGAGACAG;
snATAC.S.index1: CTGTCTCTTATACACATCTGAGGCGGAGAC).
The sequencing read length is as follows, R1:33nt, i7:29nt, i5:28nt,
R2:33nt.

eHi-C. We generally followed our previous easy Hi-C protocol to
generate the eHi-C libraries for humanα and β cells27. In order tomake
the protocol compatible with low input sorted primary cells, we made
a few changes and modifications. For each library, ~20–30k sorted
primary α or β cells were subjected to eHi-C processing and library
construction. Briefly, the nuclei were first extracted by lysing the cells
with cell lysis buffer (10mM Tris-HCl pH 7.5, 0.2% NP-40, 10mMNaCl,
1× proteinase inhibitor cocktail). The extracted nuclei were then sub-
jected to HindIII digestion followed by proximity ligation with T4 DNA
ligase to create spatial ligates. After proximity ligation, the DNA was
extracted and prepared for the secondary restriction enzyme (DpnII)
digestion. All DNA obtained was subjected to DpnII cutting before
being self-ligated to form self-circles. The unligated DNA was then
removed using Lambda exonuclease. To create the eHi-C library, the
self-circles were re-linearized by digesting again with HindIII. All DNA
recovered was applied to generate sequence-able libraries using the
Illumina Truseq platform. Briefly, fragment ends were first repaired
with the DNA end-repair enzyme cocktail. Then, a base “A” was added
to each end by Klenow fragment (NEB, M0212) before being ligated to
a modified Truseq adapter using Quick ligase (NEB, M0202). We used
the regular i7 indexes as sample indexes and i5 as fragment indexes by
changing it to random indexes (i5: NNNNNN).

Cut and run. 500–600k EndoC-βH3 cells per sample were digested
into single-cell suspension with 0.05% Trypsin, EDTA 0.5mM.We used
the Cutana ChIC/CUT&RUN Kit from Epicypher (#14-1048) following
manufacturer’s instructions. Briefly, ConA Beads were resuspended
and 11μl of beads per reaction was transferred to a 1.5ml tube. Beads
were resuspended in 100μl bead activation buffer per reaction and
washed 1×. Then resuspended in 11μl buffer per reaction and aliquoted
10μl into 8-strip PCR tubes. Harvested cells were spun down at 600× g
for 3min. Cells were then resuspended in 105μl/reaction of wash
buffer and aliquoted into 8 strip tubes with the 10μl of activated ConA
beads. After 10min. incubation, 50μl of antibody buffer was added.
HNF1A antibody for Cut&Run (Abcam #ab204306) was added at 1μg
per reaction. Tubes were incubated on nutator overnight at 4 °C.

The next day, tubes were collected andwashed 2×with 200μl cell
permeabilization buffer. Beads were resuspended in 50μl cell per-
meabilization buffer and 2.5μl pAG-MNase was added. After 10min.
incubation at room temperature, beads were washed with another
200μl cell permeabilization buffer 2×. Finally beadswere resuspended
in 50μl cell permeabilizationbuffer. 1μl of 100mMCaCl2 was added to
activate the enzyme. Tubes were then incubated for 2 h on nutator at
4 °C. Finally, the reaction was stopped with 33μl of stop master mix.
DNA was then purified and quantified using a Qubit fluorometer.
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For library preparation, we used the CUTANA CUT&RUN Library
Prep Kit from Epicypher (#12-1002) with slight modifications. During
the End Repair step, we used the following modified PCR protocol to
better retain small TF fragments: 20 °C for 20min, 55 °C for 1 h, 4 °C
hold. Adapter ligation and U-excision were performed following
manufacturer’s instructions. We used 1.75× SPRIselect beads for DNA
cleanup to better retain >100 bp fragments. After indexing PCR, we
then used 1.2× SPRIselect beads for DNA cleanup prior to sequencing:
150PE, 16M reads per sample.

Bioinformatic analysis
Drop-Seq reads processing. We performed raw reads processing fol-
lowing the instructions described in the original Drop-Seqpublication19.
Briefly, the sequenced Drop-Seq libraries yield 150-base paired-end
reads (PE150). The first 20bp of read 1 are cellular and molecular bar-
codes (base 1–12 cell barcode, base 13–20 UMI). We trimmed base
21–150 of read 1 before further analysis. We first removed all data with
the quality score of read 1 (base 1–20) lower than 10. Read 2 was trim-
med at the 3’ end to remove poly A tails of at least 6 bases and trimmed
at the 5’ if template switching oligo (TSO) adapter sequences appear.
Clean reads were then aligned to hg19 using STAR v2.5.1 with default
settings. We only kept uniquely mapped reads on gene exons. We next
filtered out PCRduplicateswith the same coordinates, cell barcode, and
UMI. We then grouped the reads by cell barcode and generated the
digital UMI-count matrix after counting transcripts for every gene with
every cell barcode (Supplementary Data 5).

snATAC-seq reads processing. The paired-end raw reads were
aligned to hg19 using bowtie2 v2.2.6 with default settings. We next
filtered out mitochondrial reads and PCR duplicates with the same
coordinates or cell barcode using picard v1.93 and converted bam files
to bedgraph files using bamtobed v1.2.0. MACS2 v2.2.7.1 was used to
call peaks with default parameters with the ratio of reads on ATAC
peak over 0.15 and the total reads over 1500 as the cutoff to define a
qualified cell (Supplementary Data 5).

scRNA-seq and snATAC-Seq clustering and QC analysis. Here, we
made use of both the single-cell RNA and ATACdata to achieve the best
clustering resolution and consistency. We have previously compre-
hensively profiled the human single-cell transcriptome for nine donors
which clearly resolved the islet cell types in transcriptome space10. It is
known that snATAC data are sparser than scRNA-seq but show sub-
stantial correlations with the gene expression. Therefore, in this study,
we used scRNA-seq data for the initial clustering and annotation, and
then applied a canonical correlation analysis (CCA)-based co-
embedding to propagate the information into the snATAC-seq data.

The scRNA-seq filtering and clustering strategy for islets is as
reported earlier10 with a hormone-based doublet filtering algorithm.
Briefly, we firstfiltered out STAMPs (single cell transcriptome attached
to microparticles) expressing two hormones (Supplementary Fig. 1a)
before clustering analysis. In this step, one STAMP is considered as a
doublet if it has two hormone genes that are highly expressed (defined
as more than 10% of the median expression level in the positive
population). As discussed previously, this step is important as the
percentage of doublets in the primary islet is significantly greater than
estimated from species mix experiments due to the nature of tissue
adhesion. We used Seurat v3 package for clustering analysis with
default parameters. In Seurat, PCA was performed with the 500 infor-
mative genes. Using PC1 to PC10, cells were embedded in a K-nearest
neighbor (KNN graph). Smart local moving algorithm (SLM) was
applied to group cells into communities. PC1 to PC10 were used
as input to visualize cell clusters in two-dimensional UMAP space. We
used Seurat FindMarker function to find marker genes of each
cell cluster, and defined cell types based on previous datasets and
literature. After clustering, we performed a secondary filtering by

removing cells with hormone genes inconsistent with their cell type
classification (>15 transcripts) (Supplementary Fig. 1b). We aggregated
the raw countmatrix into pseudo-bulkRPKMmatrix (Cell by cell types)
for both datasets and performed the correlation analysis (Supple-
mentary Fig. 1c)

We used the snATAC (Cell-GeneScore) count matrix and the fil-
tered scRNA-seq count matrix as input for co-embedding clustering.
Both snATACand scRNA countmatrices are normalized and combined
into a common canonical correlation analysis (CCA)-based space using
RunCCA in Seurat v3, followed by L2 normalization. We then used half
of the RNA data on the common CCA space which has known cell-type
annotations from the previous step, to train a Support VectorMachine
(SVM) model with radial kernel and cost=10. We tested the remaining
half of the RNA data as validation which yielded up to 99% assignment
accuracy. We then applied the trained SVM model to assign the cell
type labels for the snATAC data on the same CCA space. To filter out
potential doublets in snATAC data, we further reconstructed a
k-nearest RNA neighbor graph for each snATAC. The Euclidian dis-
tanceonCCA spacewas used toweight theKNN graph.We computed a
unambiguity score that is defined as the average distance ratio
between the first nearest cell type versus second nearest cell type
(k = 20).We took the unambiguity score 10 as a cut off that filtered out
the potential doublets from SVM-annotated snATAC data (Supple-
mentary Fig. 1g). After snATAC data are assigned and filtered, we
reconstructed ATAC fragment-level data (bam file) and call peaks
separately in a cell-type specific manner (using MACS2). The union of
all peaks called from each cell type followed by filtering out blacklist
regions are used to produce a new Cell-Peak matrix for downstream
analysis and visualization.

HNF1A CUT&RUN reads processing. We used the default settings of
bowtie2 v2.2.6 to align the paired-end raw reads. Then we use samtools
v1.3.1 to sort and extract uniquely mapped raw reads. Then we filtered
out PCR duplicates with the default parameter by using picard v1.93,
and MACS2 v2.2.7.1 was used to call peaks. After having the non-
duplicated sorted bam file we converted bam files to bedgraph files
using bedtools v 2.25 (bamtobed,genomecov). Finally we use bed-
GraphToBigWig to convert bedGraph to a bigWig file and upload to
UCSC for track graphing.

eHi-C data pre-processing for QC and performance analysis
eHi-C data pre-processing. The sequencing data were mapped to
human reference genome hg19 using Bowtie v1.1.2. Because nearly all
the mappable reads start with HindIII sequence AGCTT, we trimmed
the first 5 bases from every read, took the next 36 bases, and added the
6-base sequence AAGCTT to the 5’ of every read beforemapping using
the whole 42 bases. After mapping, we further filtered the reads
requiring the positions of both ends to be exactly at the HindIII cutting
sites. After removing PCR duplications, we next split all the remaining
reads into three classes based on their strand orientations (same-
strand, inward, or outward). and estimated the total number of real cis-
contacts as twice the number of valid same-strand pairs.

Compartments calling. We performed compartment level analysis
following theoriginalmethod61.Wedivided thegenome into 250 kbbins
and generated the contactmatrices between bins for each chromosome
and next normalized the matrix by genome distance. Briefly we calcu-
lated the average of all interaction values with the same distance.

We next generated the Pearson’s correlation matrix from the
distance-normalized matrix. And performed the principal compo-
nent analysis on the correlation matrix then assigned the genome
into two compartments depending on whether the PC1 of a bin is a
negative or positive value. The TSS data were used to determine
compartment A and B (More TSS sites: compartment A; fewer TSS
sites: compartment B).
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Loop calling. We appliedHiCorr27 to remove bias from eHi-C fragment
pairs data and got contacts at ~5 kb anchor level, and then used
DeepLoop28 to enhance contact signals. Then we ranked the contacts
by their interacting strength value output fromDeepLoop and took the
top 300K pixels as the strong contact signals (Supplementary Data 6).

Specific gene expression with loops. For the genes specifically
expressed in α cells, we further annotated the source of specificity by
checking: a. If the gene located inα specific A compartment. b. If there
areα specific ATAC peaks on the TSS of the gene. c. If the TSS of genes
linked to α specific ATAC peaks by α loops. d. If the TSS of the gene is
linked to ATAC peaks by α specific loops. e. If the TSS of the gene is
linked to α specific ATAC peaks by α specific loops.We performed the
same analysis for β specifically expressed genes.

Downstream analysis
snATAC peak and motif analysis. We started with the snATAC count
matrix (all cells versus union peaks identified above). We firstly
aggregated single cell counts in the same cell type and computed
RPKM for each peak in each cell type. Next, we calculated the max-
imum peak in endocrine (β, α, δ, PP), as well as the maximum peak in
non-endocrine cells (Acinar, PSC, Duct). For any given peak, the RPKM
ratio between maximum in one of the endocrine and non-endocrine
cell types is computed. We classified the peaks with this ratio >2 as
endocrine-specific peaks, whereas the ones <0.5 as non-endocrine
specific peaks. The rest of the peaks were classified as common peaks.
Both the endocrine and non-endocrine specific peaks were further
grouped by K-means clustering.

Weperformed two levels ofmotif analysis. Onewas at cell level, to
study the overall motif enrichment in a group of cells. The other was at
peak level, to resolve the enriched motif in a group of peaks. For cell
level analysis,we applied chromVar that computed the z-scoreofmotif
enrichment in each single cell given the cell-peak count matrix. The
peak level enrichment followed the identification of endocrine and
non-endocrine peak clusters (C1 ~ C13). First, we generated the back-
groundmotif frequency by scanning over all sequences of all peaks for
human Hocomoco v11 motif database (FIMO, MEME suit). For each
group of peaks, we computed the observedmotif occurrence by FIMO
scanning. P-value < 1e-6 was used as the cutoff to define a significant
motif. By comparing theoccurrenceof theobservedmotif count to the
background, we computed the motif enrichment score by Binomial
test. The p-value is further adjusted into q-values.

Peak-gene analysis. We performed three ways of peak-gene assign-
ment. One is distance based. All peaks are annotated using Homer
(annotatePeaks.pl) that assigns a gene to the given peak by the dis-
tance from theTSS topeak (nearest in principle). Theother isHi-C loop
based, which is specified in the following section. These two mea-
surements are both further applied in downstream regulatory network
analysis. The third method is correlation based. We computed the
Pearson’s correlation between the aggregated peak RPKM versus
expression RPKM across seven different cell types. We chose a 1Mb
window for the potential peak-gene pair candidates. And only classi-
fied the ones with Pearson’s correlation >0.7 as potential regulatory
peak-gene link (Supplementary Fig. 2).

RNA-RePACT. We have developed RePACT (Regressing Principal
components for the Assembly of Continuous Trajectory) as a general
method to sensitively identify disease relevant gene signatures using
single cell RNA-sequencing data2. The key step is to find the best tra-
jectory to rank single cells (e.g.,β cells) reflecting the changeof disease
status.

We took β cells from all donors, performed PCA analysis, and
picked the top 10 PCs. We next performed a logistic regression for
binary variables such as (T2D/Healthy).

With the regressedβ values,we computed theT2D-index for every
cell. The T2D-index is used to rank the cells, and its value indicates how
far a cell is transformed toward T2D status. To identify genes asso-
ciated with the T2D trajectory. We grouped all cells into 20 bins with
equal T2D-index intervals; every bin contains hundreds of single cells.
For every gene, we then calculated the average transcript counts from
cells in each bin and obtained a vector of 20 values. A linear regression
was performed between the average transcript counts and the index
values of the bins with p-value. The p-values of all genes were adjusted
with Bioconductor package q value to obtain q-values. Genes with q-
value <0.05 were called significant trajectory genes.

ATAC-RePACT. The ATAC-RePACT follows the same principle as RNA-
RePACT and is generalized into the epigenetic level. This algorithm
aims to sensitively identify disease relevant epigenetic signatures using
snATAC data. In general, the first step is computationally isolating one
cell type of interest. If multiple cell types are of interest, the analysis is
recommended to be done separately tominimize confounding effects
from the cell-type level difference. In the current study, we first used
the β cell from snATAC data (starting with a cell-peak matrix as dis-
cussed above).Weperformed theTF-IDFnormalization anddimension
reduction into the LSI space (Latent Semantic indexing space, dims =
50). On the LSI space, we built a logistic regression for binary phe-
notypes (T2D/Healthy). The regression model reconstructed the dis-
ease/phenotypeoriented single cell trajectory alongwhich the cells are
gradually changing cell states (chromatin accessibility in this case).
Along this trajectory, we binned all cells into 20 bins. We used another
linear regression to model the chromatin accessibility changing trend
associatedwith the phenotype.We defined the peaks with q-value 0.01
and slope >0.5 as gain of accessibility, whereas the peaks with slope
less than −0.5 as loss of chromatin accessibility.

We performed both cell level and peak level transcription factor
motif enrichment analysis. Briefly, we used Chromvar to compute the
motif enrichment Z-score in each single cell and applied a linearmodel
to measure the motif usage change along the trajectory. Also, gain of
accessibility and loss of accessibility peaks were used for peak level
enrichment analysis by FIMO as described above.

Intra-donor-level RePACT. The General RePACT is designed to take
multiple donors that have different phenotypes (i.e., T2D/Healthy;
variable BMI, etc.). These phenotypes are critical as the input to train
the phenotype-oriented single-cell trajectory. To further analyze the
phenotype associated single cell heterogeneity within a given donor,
we developed the followingmethod for the intra-donor-level RePACT.
Both scRNAand snATAC follow the sameprinciple.We startedwith the
dimension-reduction space of total cells including all donors that have
already built the general RePACT trajectory (PCA space for RNA, LSI
space for ATAC, respectively). On the same space, we iteratively
focused on eachdonor and regrouped the single cells into 20bins. The
gene expression change (or chromatin accessibility change) across the
20bins in the givendonor is thenmodeledby linear regression and ap-
value and slope were computed to describe the heterogeneity trend
for each gene in each donor. Next, Fisher’s method was used to com-
bine the p values across all donors to measure the reproducibility of
the heterogeneity in different donors.

Combined pvalue=P X>� 2 ×
X

k

logðpvaluekÞjX ∼ χ2ðdf = 2 × kÞ
 !

Where k is the number of donors, pvaluek is the individual RePACT p
value. The combined p-value after Fisher’s Method was further adjus-
ted by qvalue. qval(Combined pvalue). We defined the genes with
Fisher’s method q-value <0.01 as intra-donor heterogeneous RePACT
genes, which suggest a reproducible intra-donor variability that is
consistent with the global phenotype association. The intra-donor

Article https://doi.org/10.1038/s41467-023-41228-3

Nature Communications |         (2023) 14:5400 14



heterogeneity score was defined as -log 10ðqval Combined pvalueð ÞÞ
based on the chi-square distribution.

HNF1A target gene identification. For the T2D trajectory peaks with
HNF1A motifs (motif calling as discussed above), we first find their
nearest genes, and then check if the peaks are connected to some
distal genes by chromatin loops. And we further overlap these genes
with T2D trajectory genes to get the HNF1A target gene prediction.

GSEA analysis. Gene function enrichment analysis was performed by
integrating MSigDB (v.5.2). All functional term lists were read into R
using the package ‘gage’. For any given group of genes, a binomial test
was performed iteratively through all annotated functional terms.
P-values for enrichment were further adjusted using the qvalue pack-
age. Enrichment terms were ranked by q value. The most representa-
tive top terms were selected and visualized using heatmaps. On each
heatmap, q-values of enriched termswere visualized by color intensity
as enrichment scores.

Reanalysis of Patch-seq in islet β cells. The cell-gene expression
matrix and cell meta data with variable electrophysiological mea-
surements for each cell were obtained fromGEOaccessionGSE124742.
To validate if the identified target genes were regulated by HNF1A, we
separated β cells by if HNF1A transcripts were detected and compared
the normalized expression of the target genes between the two
groups. To explore the genes that were associated with electro-
physiologicalmeasurements, for eachgene,wefirst dividedβ cells into
two groups, cells with the gene expressed, and cells without the gene
expressed. If there are more than half of β cells expressing the gene,
then we ranked the cells by expression and regroup the cells to high
expression and low expression. We further compared each electro-
physiological measurement between these two groups of cells. All
current measurements were transformed to positive values regardless
of flow direction across the cell membrane. Wilcox.test was used to
compute p-values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw scRNA-seq, snATAC-seq, eHi-C, andCut&Rundata generated in
this study are available in the NCBI GEO database under accession code
GSE195523 and GSE234754. The cell type specific genes are provided in
SupplementaryData 1. The cell type specificATACpeaks areprovided in
Supplementary Data 2. The T2D trajectory dynamic genes and peaks,
intra-donor, inter-donor genes and peaks are provided in Supplemen-
tary Data 3. The peak-gene regulatory links are provided in Supple-
mentary Data 4. The QC summary for single cell data is provided in
Supplementary Data 5. The chromatin loops identified in α and β cells
data are provided in the Supplementary Data 6. Source data are pro-
videdwith this paper. Theweb app to visualize the gene expression and
chromatin accessibility across cell types, and RNA-RePACT and ATAC-
RePACT is available at https://hiview.case.edu/public/BetaCellHub.

Code availability
The code is available is available at Zenodo (https://doi.org/10.5281/
zenodo.8264879) and GitHub (https://github.com/JinLabBioinfo/
RePACT).
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