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Key Points

• L:R ratios rise after
conditioning,
independent of
regimen or diagnosis,
and return to baseline
by day +30 in most
patients receiving
allogeneic HSCT.

• Intestinal permeability
correlates directly with
LBP levels and
inversely with
dysbiosis.
Intestinal permeability may correlate with adverse outcomes during hematopoietic stem cell

transplantation (HSCT), but longitudinal quantification with traditional oral mannitol and

lactulose is not feasible in HSCT recipients because of mucositis and diarrhea. A modified

lactulose:rhamnose (LR) assay is validated in children with environmental enteritis. Our study

objective was to quantify peri-HSCT intestinal permeability changes using the modified LR

assay. The LR assay was administered before transplant, at day +7 and +30 to 80 pediatric and

young adult patients who received allogeneic HSCT. Lactulose and rhamnose were detected

using urine mass spectrometry and expressed as an L:R ratio. Metagenomic shotgun

sequencing of stool for microbiome analyses and enzyme-linked immunosorbent assay

analyses of plasma lipopolysaccharide binding protein (LBP), ST2, REG3α, claudin1, occludin,
and intestinal alkaline phosphatase were performed at the same timepoints. L:R ratios were

increased at day +7 but returned to baseline at day +30 in most patients (P = .014).

Conditioning regimen intensity did not affect the trajectory of L:R (P = .39). Baseline L:R ratios

did not vary with diagnosis. L:R correlated with LBP levels (r2 = 0.208; P = .0014). High L:R

ratios were associated with lower microbiome diversity (P = .035), loss of anaerobic organisms

(P = .020), and higher plasma LBP (P = .0014). No adverse gastrointestinal effects occurred

because of LR. Intestinal permeability as measured through L:R ratios after allogeneic HSCT

correlates with intestinal dysbiosis and elevated plasma LBP. The LR assay is well-tolerated

and may identify transplant recipients who are more likely to experience adverse outcomes.

Introduction

Intestinal permeability may be associated with posttransplant outcomes

There is growing evidence that dysregulated intestinal physiology contributes to adverse outcomes
during hematopoietic stem cell transplantation (HSCT). Cytotoxic conditioning for HSCT causes gut
mucosal barrier injury and dysregulation of the intestinal microbiome.1,2 Dysbiosis is associated with
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morbidity and nonrelapse mortality after transplant,3-5 particularly
related to graft versus host disease (GVHD)6-9 and bloodstream
infections (BSIs).10-12 REG3α (regenerating family member–3
alpha), a marker of intestinal damage from gastrointestinal GVHD
(GI-GVHD), and ST2 (suppression of tumorigenicity–2 protein) are
biomarkers predicting GVHD risk and treatment response.13-16 The
inflammatory response to bacterial lipopolysaccharide (LPS) is
mediated by LPS binding protein (LBP), and circulating LBP levels
are high in patients with bacterial or fungal sepsis, including
oncology patients having febrile neutropenia.17-19 Impaired intes-
tinal barrier function may be a mechanistic link between altered
microbial composition, intestinal damage, and elevated levels of
circulating LBP, allowing translocation of pathogenic microbes or
microbial products. However, the association of impaired intestinal
barrier function with outcomes after HSCT is not well-delineated
because measurement of intestinal barrier function is rare, likely
because of lack of a convenient clinical assay. Typical assays
measure fractional excretion of orally ingested probes, most
commonly saccharides such as lactulose, mannitol, and rhamnose.
These decades-old techniques require urine collection from 5 to
24 hours and ingestion of 50 to 100 mL solution of 51Cr-EDTA,
lactulose-mannitol, or lactulose-rhamnose (including 5g lactu-
lose),20-23 which is not feasible in peritransplant patients experi-
encing significant mucositis, vomiting, or diarrhea. These assays
are even less feasible in children.

Interaction between intestinal barrier and

microbiome

Epithelial tight junctions of the intestinal tract closely regulate the
passage of small molecules. Intestinal barrier injury can be gener-
ated by inflammation from inflammatory bowel disease,24-26

microbial toxins,27,28 or chemotherapy21,29-32 but can be amelio-
rated by intestinal flora. p40 and p75 proteins produced by
Lactobacillus rhamnosus regulate intestinal epithelial cell survival
and stabilize tight junction proteins.33,34 Furthermore, microbial
metabolites butyrate and tryptophan also regulate intestinal
epithelial function.35,36 Studies conducted in patients with auto-
immune diseases, such as multiple sclerosis and type 1 diabetes,
and acute pathologies such as pancreatitis report both increased
intestinal permeability and dysbiosis; however, the causal and
temporal relationships remain unclear.37-39

Challenges of direct intestinal permeability

quantification

Clinical measurement of intestinal permeability requires active
participation and is challenging in patients undergoing HSCT,
especially during the period of mucositis when barrier function is
likely altered maximally. Traditional saccharide-based permeability
assays rely on the different molecular weights and volumes of the
disaccharide, lactulose and monosaccharides, mannitol and L-
rhamnose, which are absorbed by the gut but are poorly metabo-
lized.40 The smaller size of monosaccharides enables transcellular
transport through the intestinal epithelium, whereas lactulose can
only permeate when tight junctions between enterocytes are dis-
rupted (Figure 1A). Using a ratio of disaccharide:monosaccharide,
therefore, distinguishes intestinal absorption pathways. Compared
with mannitol, L-rhamnose is less often added to food and thereby
less likely to contaminate human samples.41
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Novel validated intestinal permeability protocol in

children

Faubion et al refined the traditional saccharide permeability assay
and validated it in infants in the United States, Zambia, and Peru to
study environmental enteric dysfunction.42 The accuracy of high-
performance liquid chromatography mass spectrometry for detec-
tion of urinary lactulose:rhamnose (L:R) levels allowed for a 5-fold
dose and volume reduction of LR solution. Urine collection was
also shortened to 2 hours after LR ingestion to focus on small
intestinal permeability, and evaluable samples were obtained from
87% of participants. This modified LR protocol was well-tolerated
by young children and applicable in both resource-abundant and
resource-limited settings, and its results correlated with environ-
mental enteritis markers.

Surrogates of direct intestinal permeability

measurements

Others have addressed the difficulty of clinical intestinal perme-
ability measurements by investigating small molecule regulators,
correlative markers, and tight junction components. Plasma levels
of zonulin, a modulator of intercellular tight junctions, have been
used as a measure of intestinal permeability in several studies.43,44

There are 3 genotypes of zonulin, also known as prehaptoglobin2,
of which HP1-1 homozygotes do not produce active zonulin,
whereas HP1-2 and HP2-2 individuals do.45 HP2 genotypes are
more frequent in celiac disease and inflammatory bowel disease
cohorts.46,47 Loss of expression of another molecule, intestinal
alkaline phosphatase (IAP), is associated with decreased expres-
sion of intestinal junctional proteins and barrier function in mice,
and in humans biallelic mutations in IAP cause inflammatory bowel
disease.48-51 Tissue expression of tight junction proteins, claudin
and occludin, are known to change with inflammation,52-56 and
circulating levels are being explored in inflammatory and infectious
states.57-60 In contrast to the above surrogate markers, LR excre-
tion is a direct measure of intestinal permeability.

Study objectives

We take advantage of the refined LR protocol from the study by
Faubion et al to test the hypothesis that intestinal permeability in
pediatric and young adult allogeneic HSCT recipients increases
during transplant and that subjects with increased intestinal
permeability are more likely to have dysbiosis. We also wanted to
investigate zonulin genotypes as a potential risk factor for out-
comes after HSCT and to compare L:R ratios with LBP, IAP,
claudin, occludin, REG3α, and ST2 to understand how altered gut
permeability correlates with existing markers of adverse outcomes.

Methods

Lactulose/rhamnose assay

Patients scheduled to undergo allogeneic HSCT at Cincinnati
Children’s Hospital Medical Center (CCHMC) were recruited
between August 2019 and November 2021. Patients were
excluded if they were unable to take anything via mouth or naso-
gastric, gastric or jejunal tube. Participants were separately
enrolled on a biobank repository study, from which blood and stool
samples were obtained. LR solution consisted of 10 mL water,
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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Figure 1. Study background and schema. (A) Rationale of saccharide ratios to measure intestinal permeability. (B) Urine lactulose:rhamnose (L:R) ratios of healthy control

children after administration of lactulose/rhamnose solution. Horizontal line represents median. An abnormal L:R ratio is >1. (C) Study schema and timeline.
1.0 g lactulose, and 0.2 g L-rhamnose (TCI America). Participants
gave 1 urine sample before LR ingestion and were nil per os for a
minimum of 1 hour before ingestion of the LR solution until the urine
sample after LR ingestion was obtained. The test was administered
at evaluation before transplantation, day +7 (±7 days) and day +30
(±7 days) (Figure 1B). Urine samples were collected between
30 minutes and 2 hours after ingestion of LR solution. The L:R ratio
was calculated by dividing urinary lactulose with rhamnose levels,
which were determined using high-performance liquid chromatog-
raphy mass spectrometry at the Mayo Clinic Immunochemical Core
Lab. Twenty additional healthy children were recruited as control
participants for evaluation of L:R assay performance at our institu-
tion. Demographic and transplant data were collected prospectively,
and outcomes were followed until day +180. All HSCT recipients
were prospectively monitored for transplant-associated thrombotic
microangiopathy (TA-TMA) according to our standard risk stratifi-
cation classification, and participants without high-risk features did
not receive targeted TA-TMA therapy.61

Microbiome data analysis

Shotgun metagenome sequencing methods may be found in
supplemental Materials and Methods.62-64 Species that accounted
for <0.01% of the study-wide microbial population were excluded.
Three samples with 250 000 reads aligned at the species level
were likewise excluded. Principal component analysis was
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
performed on a Bray-Curtis distance matrix calculated from
normalized species abundance data using the ade4, Vegan and
FactoExtra packages in R.

ELISA

Plasma levels of ST2 and REG3α (R&D Systems), claudin1 and
occludin (MyBioSource), LBP (Abcam), and IAP (MyBioSource) at
the same timepoints as the L:R assays were measured using
enzyme-linked immunosorbent assay (ELISA).

In a distinct cohort of 43 recipients after HSCT retrospectively
identified to have developed BSIs or mucosal barrier injury–related
laboratory-confirmed bloodstream infections (MBI-LCBI), plasma
LBP levels were measured via ELISA and ferritin levels were
measured via chemiluminescence (Siemens Atellica) from samples
serially collected and stored in our transplant biorepository at
baseline before start of transplant conditioning, 14 and 7 days
before the infection, on the day of infection, and 7 days after.

Mice

C57BL/6 (JAX stock #380051) congenic mice were purchased
from the Jackson laboratory. C57BL/6 congenic mice (12-week-
old) were used as recipients for HSCT experiments and were
lethally irradiated (11.75Gy delivered in split doses 3 hours apart)
and retro-orbitally injected with 300 000 whole bone marrow cells
GUT PERMEABILITY LINKS INFLAMMATION AND DYSBIOSIS 5139



from C57BLl/6 wild-type donors. Fourteen days after trans-
plantation, mice were killed. Control C57BL/6 mice who were
neither exposed to radiation nor transplanted were killed at
14 weeks, and organs from both groups were harvested for
immunohistochemistry (supplemental Materials and Methods).

Zonulin genotyping

To test if zonulin genotypes influenced intestinal permeability and
whether we needed to incorporate testing in our prospective
cohort, we obtained available samples taken before transplantation
from 116 consecutive patients who underwent allogeneic HSCT
from our biorepository. These patients were distinct from our pro-
spective cohort of patients. For more details refer to the
supplemental Materials and Methods.65

Statistics

Primary outcomes included changes in peritransplant intestinal
permeability, correlation of L:R values with LBP and known bio-
markers REG3α and ST2, and correlation of L:R values with
changes in microbiome. Secondary outcomes included correlation
of L:R values with D+100 incidence of AGVHD, BSI, TA-TMA, and
correlation of L:R with other markers of interest. The Mann-Whitney
U test was used to calculate the differences between medians.
Fisher exact test was used to compare rates of adverse outcomes.
For immunohistochemistry analysis, differences between means
were compared using 2-tailed unpaired t-test. Statistical significance
of differences in overall microbiome composition were determined
using multiresponse permutations procedures, a form of PERMA-
NOVA.66 Fold-change and log2 fold-change were calculated with
the gtools package in R. Stool samples at all time points between
patients with normal and abnormal intestinal permeability were
grouped for comparison. Difference in species abundance between
individuals with normal vs elevated L:R were identified with shrinkage
linear discriminant analysis.67 Significance of the association was
tested using Wilcoxon rank sum. Examination of clinical covariates
with microbial abundance was performed using zero inflated nega-
tive binomial generalized linear mixed models (ZINB-GLMM68) using
the “glmer” command from the lme4 package in R and performed
nonparametric tests (Mann-Whitney U test or Kruskal-Wallis test),
followed by Bonferroni correction for multiple testing. Each microbial
species was subjected to ZINB-GLMM with L:R ratio (as continuous
variable), underlying diagnosis, conditioning regimen intensity, anti-
biotic exposure, BSI, GVHD, and TMA as fixed variables and subject
as random variable. Estimates are reported for each species and
fixed variable. P-values were subjected to false-discovery rate
correction for multiple testing.

Study approval

Human studies research was approved by CCHMC institutional
review board. All participants provided written informed consent,
and pediatric participants aged ≥11 provided assent. All animal
experiments were approved by the CCHMC Institutional Animal
Care and Use Committee.

Results

Intestinal permeability in healthy children

We sought to confirm the threshold of a L:R ratio ≥1 for abnormal
intestinal permeability established by Faubion et al42 and determine
5140 WANG et al
the baseline environmental contamination of lactulose and
L-rhamnose in 20 healthy pediatric participants (Figure 1B-C;
supplemental Figure 1A). In our study, urine samples after LR
ingestion collected from patients with urine levels before LR
ingestion of lactulose >5 μg/mL and rhamnose >10 μg/mL were
considered unevaluable, and an L:R ratio ≥1 was considered
abnormal.

Participant demographics and outcomes

Eighty patients who received allogeneic HSCT were enrolled pro-
spectively on the permeability study (Table 1). The median age of
participants was 9.4 years (range 0.5-37.9). Eleven young adults
(13.8%) aged >18 participated. No participants experienced
adverse gastrointestinal effects after ingesting LR. All but 1 pro-
vided a urine specimen after LR ingestion before initiation of the
preparative regimen. Fifty-six participants (70%) provided urine
specimens at all 3 timepoints, including 43 who also provided stool
samples. No bladder catheterizations were performed to obtain
samples. Sixteen participants (20.0%) developed acute GVHD by
day +100. Skin GVHD was most common (81.3% of participants
with GVHD). Only 6 participants (31.6%) had GI-GVHD. BSI
occurred in 21 participants by day +30 (26.3%). Fourteen partic-
ipants (17.5%) developed MBI-LCBI. Thirty-two participants
(40.0%) met criteria for moderate or high-risk TA-TMA.

L:R ratios in allogeneic HSCT recipients

Intestinal permeability as measured using the L:R ratio followed a
consistent trajectory in most allogeneic HSCT recipients. Perme-
ability at baseline showed a median L:R ratio of 0.19 (range 0.00-
8.90), which increased to 0.86 (range 0.00-9.00) at day +7, but
returned to median levels of 0.40 (range 0.02-6.00) at day +30,
which did not differ statistically from baseline (Figure 2A).

Eight participants (10.0%) had high baseline intestinal permeability.
Baseline L:R ratios neither varied with underlying diagnoses
(Figure 2B), nor did they vary significantly with age (supplemental
Figure 1C) or sex (P = .67). There were no differences in the
trajectory of L:R ratios between patients who received myeloa-
blative or reduced intensity conditioning (RIC) (P = .39, Figure 2C-D),
total body irradiation (supplemental Figure 1D), or who had baseline
elevated L:R ratio (supplemental Figure 1E).

Intestinal permeability and HSCT outcomes

L:R ratios at any of the 3 timepoints did not predict development of
TA-TMA, BSI, GVHD, or GI-GVHD by day +100 (Figure 3A-D).
Patients who developed a BSI within 7 days of day +7 L:R mea-
surement appeared to have higher day +7 L:R ratio (P = .0513,
supplemental Figure 1F-G). In contrast to the standard trajectory of
L:R ratios through HSCT, 12 participants had an elevated L:R ratio
at day +30 compared with baseline, of whom 8 had adverse clinical
outcomes by day+100, including severe adenovirus colitis, Clos-
tridium difficile colitis, Enterococcus bloodstream infection, GI-
GVHD, and TA-TMA (P = .51).

Microbiome alterations

Consistent with previous studies, the microbial composition of
baseline stool samples was significantly different from day +7 and
day +30 (P = .001; Figure 4A). Similarly, the Shannon Diversity
Index of baseline stool samples was significantly higher than
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17



Table 1. Demographic and HSCT data of study participants

Characteristic Number (n = 80)

Median age (range), y 9.4 (0.5-37.9)

Female 28

Underlying diagnosis

Malignancy 32

Primary immune deficiency 17

Hemoglobinopathy 4

Metabolic disorder 4

Bone marrow failure 22

Platelet function disorder 1

Conditioning regimen

Myeloablative 57

Reduced intensity 23

HLA match

5/10 3

6/10 2

7/10 1

8/10 5

9/10 13

10/10 56

Donor relation

Related 18

Unrelated 62

Stem cell source

Bone marrow 42

Peripheral blood stem cells 33

Umbilical cord blood 5

Acute GVHD prophylaxis

CNI + MMF 20

CNI + MMF + abatacept 27

T-cell depletion* 25

CNI + methotrexate + abatacept 2

CNI + MMF + posttransplant cyclophosphamide 2

CNI + methylprednisolone 3

Sirolimus + abatacept 1

Clinical outcomes

Acute GVHD 16

Skin GVHD 13

GI GVHD 6

BSI by day +30 21

Mucosal barrier injury–related BSI by day +30 14

Moderate/high-risk TA-TMA 32

CNI, calcineurin inhibitor; MMF, mycophenolate mofetil.
*In vitro T-cell depletion included either CD34+ selection or T -cell receptor alpha/beta/

CD19+ depletion.
day +7 or day +30 (P = .0008; Figure 4B). At individual timepoints,
the fecal microbiome of participants with elevated L:R ratios was
distinct from patients with normal L:R ratios. Participants with
increased day +7 L:R ratios had significantly lower Shannon
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
Diversity Index scores than those with normal day +7 L:R ratios
(P = .044; Figure 4C). Similarly, participants with increased
day +30 L:R ratios had significantly lower Shannon Diversity Index
scores than those with normal day +30 L:R ratios (P = .047;
Figure 4D). The downward trajectory of intestinal microbiome
diversity through transplant in participants with abnormal L:R ratios
at day +30 was also different from the stable plateau in alpha
diversity in participants with normal L:R ratios at day +30
(Figure 4E-F). Across all samples and timepoints, L:R values had a
significantly negative association with Shannon Diversity Index
scores (P = .035; Figure 4G).

Analyses of stool species abundance also reported correlations
with intestinal permeability. Comparison of species abundance
revealed a number of species that were significantly differentially
abundant between individuals with normal and elevated L:R as
assessed by shrinkage linear discriminant analysis and Wilcoxon
rank sum test, respectively (supplemental Figure 1A-B). Species
associated with normal L:R ratios at D+7 and D+30 predominated,
including normally commensal gut inhabitants (supplemental
Figure 1A-B), whereas participants with abnormally elevated L:R
ratios had significantly lower abundance of presumed beneficial
organisms, such as Bacteroides ovatus (Figure 5A) and Bifido-
bacterium pseudolongum species (Figure 5B). To assess the
association between L:R ratio and microbiome composition in the
context of other important clinical variables, we used generalized
linear mixed modeling as described previously in “Statistics.” This
analysis identified many species that were differentially abundant at
day +7 (920 of 1635 total species) or day +30 (919 species)
relative to other timepoints (Figure 5C; supplemental Table 1).
Elevation of L:R at day +7 was associated with differential abun-
dance of 143 species whereas elevation of L:R ratio at day +30
was associated with differential abundance of 25 species. Several
Prevotella species, which are oral and intestinal microbiome
inhabitants, were associated with increased intestinal permeability.
Lower abundance of Lactobacillus, Ruminococcus, Clostridium,
and Blautia species were also associated with high intestinal
permeability at day +7 (supplemental Tables 2 and 3). Elevated L:R
ratio at baseline was only correlated with 3 species.

LBP, tight junction proteins, and other biomarkers in

allogeneic HSCT recipients

Plasma levels of intestinal epithelial tight junction proteins claudin1
and occludin and other associated markers including Reg3α, ST2,
LBP, and IAP were quantified in our cohort using ELISA to further
investigate mechanisms of altered permeability. The trajectories of
plasma Reg3α and ST2 mirrored those of measured intestinal
permeability (Figure 6A-B), with significant increase from baseline
at day +7 and overall return to near-baseline by day +30. Similarly,
LBP increased significantly from baseline to day +7, which
resolved by day +30 (Figure 6C). Notably, there was a significant
correlation (r2 = 0.208; P = .0014) between day +7 L:R ratio and
LBP values (Figure 6D). Claudin1 levels increased from baseline to
day +7, although there were no differences in occludin levels
(Figure 6E-F). Plasma IAP, another previously reported marker of
intestinal permeability, decreased from baseline to day +30
(Figure 6G). In a separate cohort of patients with BSIs and MBI-
LCBIs, ferritin (a nonspecific acute-phase reactant) and LBP
levels at day-14 and day-7 before the day of BSI were higher than
those at baseline. However, the overall trajectories were not similar,
GUT PERMEABILITY LINKS INFLAMMATION AND DYSBIOSIS 5141
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Figure 2. Intestinal permeability measured by urine L:R

ratio. (A) Longitudinal intestinal permeability of 80 allogeneic

BMT recipients. (B) Baseline L:R ratio by diagnosis group.

Trajectory of L:R ratio in patients who received a (C)
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conditioning regimen. There were no significant differences

between the L:R ratios of (C) and (D) at any of the timepoints.

BMF, bone marrow failure; BMT, bone marrow transplant;

Malig, malignancy; PID, primary immune deficiency.
suggesting that LBP was more than a nonspecific acute-phase
reactant (supplemental Figure 2C-D), although there was a
modest correlation between individual values of LBP and ferritin
(P = .026; supplemental Figure 2E).

After the change seen in plasma claudin levels, duodenal claudin
expression was compared in mice who underwent lethal irradiation
and allogeneic HSCT with age-matched controls with no trans-
plant. Transplanted mice had significantly lower expression of
claudin in the duodenum (Figure 6H-J). There were no differences
in occludin expression between transplanted and nontransplanted
mice (data not shown).

Zonulin genotypes

Zonulin genotypes were studied as a potential genetic modifier
of risk for adverse outcomes after HSCT. The distribution of
5142 WANG et al
genotypes of zonulin in 116 consecutive HSCT recipients was
consistent with population data, with 24 (20%) genotype HP1-1,
46 (40%) 1 to 2, and 46 (40%) 2 to 2. No associations were
found between zonulin genotypes and the development of GVHD,
GI-GIVHD, BSI, or mortality (not shown).

Discussion

To our knowledge, our study is the first directly measuring intestinal
permeability in pediatric and young adult patients receiving HSCT.
More than two-thirds of participants tolerated the LR solution and
provided timed urine samples at all timepoints. The modified pro-
tocol requires ingestion of less lactulose, rhamnose, and water than
previous methods, is easy to administer, cheap (<$90/sample),
and well tolerated by participants as young as 6 months old, even
during the peritransplant period. This method is feasible for use in
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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any participants with limited oral tolerance, paving the way for
future studies of intestinal permeability in all HSCT recipients.

We observed a consistent pattern of intestinal permeability
changes during transplant. Earlier work used urine samples
collected between 5 and 24 hours and oral lactulose-rhamnose,
lactulose-mannitol, or 51Cr-EDTA, comprised mostly autologous
HSCT recipients and reported a similar peak of intestinal perme-
ability from 1 to 2 weeks after conditioning, followed by a return to
normal within 3 to 4 weeks.20-22 Mechanistically, the increase in
plasma claudin1 and decrease in duodenal claudin after transplant
confirms the dysregulation of tight junctions after HSCT. The
5144 WANG et al
uniform return of the L:R ratio to baseline by day +30 after HSCT
likely reflects age and regenerative capacity of the gut despite
stressors.

The loss of diversity during HSCT is well-studied,1,3,4,5,6,7,69,70,71

but an inverse correlation between intestinal permeability and
microbiome composition has only been previously demonstrated in
1 cohort of patients with type 1 diabetes.38 This correlation has not
previously been reported in allogeneic HSCT recipients. Notably,
the effect size analyses show that most species associated with
permeability are higher in samples from participants with normal
permeability and generally comprise commensal anaerobic
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
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organisms, including Bacteroides ovatus and Bifidobacterium
pseudolongum, suggesting that the intestinal microbial balance
has been shifted to favor dysbiosis in the elevated permeability
samples. Moreover, ZINB-GLMM analysis of the microbiome in
participants with high L:R at day +7 revealed the reduced abun-
dance of recognized beneficial organisms such as Lactobacillus,
Clostridium, and Blautia, as well as increased abundance of Pre-
votella species. Although most patients return to normal perme-
ability, participants with abnormally elevated permeability at
day +30 have further losses of microbial diversity from day +7,
identifying a small group of participants who are at risk for adverse
outcomes and deserve additional study. If the loss of gut barrier
function is the initiating event, early interventions such as oral IAP
supplement,48 vitamin D,72-74 vitamin A,75,76 or zonulin inhibi-
tors77,78 before, or at the initiation of conditioning chemotherapy
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
could be pursued. In contrast, if altered intestinal permeability only
propagates pathologic processes set into motion by separate
mechanisms,79,80 this would inform a targeted intervention
toward the initiating event, supplemented by permeability-directed
interventions.

Ten percent of the participants in our study before transplant and
13 of 35 participants (37%) in the study by Keefe et al, had
elevated baseline intestinal permeability levels.21 The 5-hour urine
collection from the participants of Keefe study may have captured
lower colonic sites of permeability not measured using our 2-hour
protocol. Baseline intestinal permeability in our participants did not
vary with age or underlying diagnosis. Antibiotic treatments before
HSCT could differentially affect intestinal permeability at baseline.
We were however unable to comment on the impact of antibiotics
GUT PERMEABILITY LINKS INFLAMMATION AND DYSBIOSIS 5145
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on intestinal permeability before HSCT, because 90% of our
patients had antibiotic exposures before HSCT and believe that
future studies with comparable numbers of patients with and
without antibiotic exposures before HSCT may be able to study
differences in intestinal permeability reliably.

The trajectory of intestinal permeability was also independent of
conditioning intensity. Data from study by Johansson et al sug-
gested that the gut barrier is preserved during allogeneic HSCT
using RIC regimens, with no detectable changes in intestinal
permeability throughout transplant.23 However, their cohort
5146 WANG et al
included only patients with leukemia or renal carcinoma, and the
RIC regimens used were different from our institutional practice,
which may be reasons for the difference.

We observed a similar trajectory of L:R ratios and Reg3 α, ST2,
claudin1, and LBP after HSCT. As LBP has been previously
described as an acute-phase reactant,81 we investigated its rela-
tionship to ferritin, another well-described acute-phase reactant,
and found a correlation between individual values but distinct tra-
jectories. Based on this, we postulate that LBP and L:R values,
although affected by general inflammation, reflect specific changes
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17



in the gut epithelium, corroborating animal studies.82-85 In
conjunction with our findings of dysbiosis, we propose that HSCT
results in altered gut microbial composition and increased perme-
ability, which together allow leakage of microbial products into the
blood, triggering systemic response and LBP elevation. Plasma
REG3α correlates inversely with intestinal Paneth cell numbers and
REG3α expression levels.86 Our data suggest a similar relationship
for the tight junction protein claudin1, because our mice after
transplant had significantly lower duodenal expression than con-
trols, whereas human participants after transplant had higher
plasma levels from baseline. Unlike claudin1, plasma occludin
levels did not vary significantly at our timepoints, corroborating our
immunohistochemistry findings in mice and suggesting that
occludin expression and regulation are independent of claudin.
Plasma IAP also consistently decreased after transplant, not
following L:R values. At least 2 possible theories may explain these
differences: (1) IAP expression may be more influenced by enteral
nutritional intake than direct cytotoxicity from chemotherapy and
radiation,87 and enteral intake at days +7 and +30 is typically
reduced from baseline, or (2) ability of IAP to detoxify LPS88 and
the peak in LBP at day +7 may enhance IAP depletion.

We had expected to observe a correlation between intestinal
permeability and adverse transplant outcomes, such as GVHD and
BSI similar to previously published work.20 Our sample timepoints
were predetermined and not time-of-events, and only 4 patients
developed GVHD, including 1 with GI-GVHD, within the timeframe
of permeability measurements (up to day +37). Johansson et al
also reported a brief difference in intestinal permeability at day +4
between patients who went onto develop grades 2 to 4 GVHD,
which was not present at day-1 or day +7.89 We were unable to
capture differences of such short duration and recognize that
intensifying tracking after HSCT could have identified relationships
between alterations in intestinal permeability and acute GVHD.
Moreover, only 16 participants developed acute GVHD, including 6
patients with GI-GVHD, by day +100. This may be related to our early
adoption of abatacept as standard of care because of its success in
preventing acute GVHD in HSCT recipients90,91 or the lower inci-
dence of acute GVHD in pediatric HSCT recipients. An adult cohort,
with possibly higher rates of GVHD and BSIs,92 may have different
results. We also did not see associations between zonulin genotypes
and these outcomes, which may be because of low incidence of
these events or could suggest a zonulin-independent regulatory
mechanism of intestinal permeability after HSCT.

A limitation of our study was the variability of timing of the test at
day+7 (±7 days) which was proposed because of inability of
patients to undergo this test during mucositis during the initial
phase of this study. We felt it was important to introduce this
variability to obtain crucial data which has otherwise been signifi-
cantly lacking in pediatric patients who received HSCT. In this pilot
study, our primary aim was to describe longitudinal changes in
12 SEPTEMBER 2023 • VOLUME 7, NUMBER 17
intestinal permeability. We did not have prior data to help guide
what sample sizes would be needed to observe meaningful
changes in intestinal permeability based on outcomes, but we
believe that future studies will be helpfully guided by these data to
have sample size estimates. We have missing data and dropouts
similar to most human studies, and these patients were excluded
from our analyses. Our results demonstrate that changes in intes-
tinal permeability during HSCT can be easily quantified, even in
infants. Our data suggest that patients with abnormally high
intestinal permeability also have dysbiosis and a systemic inflam-
matory response, thereby identifying a population of patients who
could benefit from early interventions such as prebiotics, to restore
intestinal microbiome health in the future. Future studies would
ideally schedule more frequent L:R and microbiome sampling, as
we are unable to discern the temporal relationship between
permeability and dysbiosis, which would inform the development
and timing of potential interventions to decrease systemic inflam-
mation and improve outcomes after HSCT. Future murine models
could be developed to correlate small and large intestinal perme-
ability after HSCT.
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