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Objective: Misinterpretation of EEGs harms patients, yet few resources exist to help trainees practice
interpreting EEGs. We therefore sought to evaluate a novel educational tool to teach trainees how to
identify interictal epileptiform discharges (IEDs) on EEG.
Methods: We created a public EEG test within the iOS app DiagnosUs using a pool of 13,262 candidate
IEDs. Users were shown a candidate IED on EEG and asked to rate it as epileptiform (IED) or not (non-
IED). They were given immediate feedback based on a gold standard. Learning was analyzed using a para-
metric model. We additionally analyzed IED features that best correlated with expert ratings.
Results: Our analysis included 901 participants. Users achieved a mean improvement of 13% over 1,000
questions and an ending accuracy of 81%. Users and experts appeared to rely on a similar set of IED mor-
phologic features when analyzing candidate IEDs. We additionally identified particular types of candidate
EEGs that remained challenging for most users even after substantial practice.
Conclusions: Users improved in their ability to properly classify candidate IEDs through repeated expo-
sure and immediate feedback.
Significance: This app-based learning activity has great potential to be an effective supplemental tool to
teach neurology trainees how to accurately identify IEDs on EEG.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction an antiseizure medication rely on EEG results (Krumholz et al.,
A large portion of EEG studies in the U.S. are read by general
neurologists without post-residency/fellowship training in neuro-
physiology or epilepsy. Given the well-known challenges of distin-
guishing benign from pathological EEG features, coupled with
worldwide deficiencies in neurology residency EEG education
(Lourenço et al., 2021; Nascimento and Gavvala, 2021), EEG misin-
terpretation is not uncommon in real-world practice. Inaccurate
EEG reads may result in serious consequences to patients, espe-
cially in scenarios where a diagnosis of epilepsy and initiation of
2015). Consequently, misinterpretation of EEG due to under-
calling (failure to recognize IEDs when present) or over-calling
(mistakenly reporting benign transients as IEDs) can lead to misdi-
agnosis and harm to patients. Improving EEG education is thus a
necessary step to improving epilepsy patient care.

In this study, we sought to (i) investigate learnability of epilep-
tiform discharge identification through repeated exposure to read-
ing potential IEDs with immediate feedback from a smartphone-
based application in the form of a competition and (ii) compare
features of candidate IEDs involved in decision-making used by
experts and non-experts in the classification of candidate IEDs.
Our goal was to create a novel EEG teaching tool that is educa-
tional, easy to use, and entertaining. This EEG tool was used by a
total of 2,270 participants, most of whom increased their accuracy
significantly over a relatively short period of time, many reaching
near-expert levels of performance.
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2. Methods

2.1. Study design

Gold standard. In previous work, we collected 13,262 candidate
IEDs and recruited eight physician experts to annotate each candi-
date (Jing et al., 2020). We refer readers to this reference for a
detailed discussion on how the 13,262 candidate IEDs were col-
lected. Each expert had at least 1 year of fellowship training in clin-
ical neurophysiology (experience in reading EEGs of 4–16 years,
median of 9.5 years). Experts independently reviewed each candi-
date IED in a customized graphical user interface which allowed
experts to change EEG montage, gain, and filters, and were asked
to classify each candidate IED as epileptiform (an IED) or not
(Jing et al., 2020). For the present study, we considered a candidate
IED ‘‘positive” if at least 3 of the 8 original experts classified it as an
IED. Nevertheless, we emphasize that this cutoff is somewhat arbi-
trary. In acknowledgement of this, we also evaluated performance
on various categories of candidate IEDs, based on the degree of
agreement among the original 8 experts: clear IEDs (6–8 of 8
votes), clear non-IEDs (0–2 of 8 votes), or unclear IEDs (3–5 of 8).
We used the 13,262 IED candidates and expert votes as the gold
standard for this public competition.

IED Scoring Contest. Participants/users were shown randomly
selected images from our 13,262 candidate IEDs. Each image
showed a 10-second EEG epoch with a vertical red rectangle high-
lighting the candidate IED (Fig. 1). Epochs were shown as static
images, in bipolar montage. Users were asked to vote yes (IED)
or no (non-IED) for as many candidate waveforms as they were
willing to evaluate. After rating each candidate IED, users were
given instant feedback based on the expert consensus gold stan-
dard. Prior to starting to play, users were required to complete a
short training with a tutorial on epileptiform discharges and 25
practice questions. Notably, answers to the practice questions were
not included in users’ performance. During the competition, time-
limited contests were intermittently launched to maintain user
interest. There were two types of contests. The first awarded users
with best accuracies, whereas the second rewarded users who cor-
rectly answered the maximum number of consecutive questions.
Both contests included a publicly visible leaderboard (in the app),
and prizes ranged from $0.5 to $75. The competition was free of
charge and open to anyone who had access to an iOS-compatible
device (iPhone/iPad) to run the application.

Contest Participants. We instituted an iOS app (DiagnosUs,
https://www.DiagnosUs.com) competition in collaboration with
Centaur Labs (Boston, MA, www.centaurlabs.com). The competi-
tion was available to all users of the app including physicians,
advanced practice providers, medical students, and others.
Fig. 1. Application-based EEG competition. Legend. Representative screenshot of
EEG competition on DiagnosUs app.
2.2. Standard protocol approvals, registrations, and patient consents

Preparation of the data and public sharing of the deidentified
images of candidate IEDs on the app was conducted under an IRB
approved protocol. The study data was deidentified and obtained
from users who volunteered to participate in a public EEG test
within the iOS app DiagnoUs. Use of the app did not require users
to provide written informed consent.
2.3. Statistical analysis

Our statistical analysis had three aims: (1) learning rate analy-
sis: characterize the rate of improvement in users’ ability to accu-
rately classify candidate IEDs; (2) feature analysis: determine
which EEG waveform features correlate with user voting behavior;
and (3) expert vs crowd disagreement analysis: qualitatively ana-
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lyze candidate IED features in cases where competition partici-
pants strongly disagreed with the gold standard. The latter aimed
to gain insights into how we might design future contests to opti-
mize learning for difficult cases.

Learning rate analysis. We estimated the learning rate of each
user by fitting their binary response (voting) data (correct = 1,
incorrect = 0) using the following equation:

p nð Þ ¼ a
n
N

� �b

https://www.DiagnosUs.com
http://www.centaurlabs.com/


J.D. Barfuss, Fábio A. Nascimento, E. Duhaime et al. Clinical Neurophysiology Practice 8 (2023) 177–186
In this model, p(n) is the probability of a correct response as a
function of the number n of questions answered; N represents a
‘‘large” number at which learning is assumed to saturate (we set
N = 5,000; the large majority of participants completed <1,000
questions); b is the learning rate (on a logarithmic scale: log

(p) � b � log(n) + const); a=Nb is the participants’ initial accuracy;
and a is the asymptotic accuracy (after answering N questions).
This simple model empirically provides a good fit to most partici-
pants’ sequential binary response data, and describes a learning
process in which learning initially proceeds rapidly then continues
much more slowly. We limited analysis to users who answered at
least 100 questions, which appeared to satisfactorily fit the learn-
ing model in most cases. The model’s two parameters a and b for
each participant were found by maximum likelihood estimation,

i.e., by maximizing L a; bð Þ ¼ PN
n¼1 logp nð Þ.

We used this model to analyze how accuracy, false and true
positive rates evolved with practice. We limited analysis of false
positive rates to ‘‘clear” non-IEDs (cases with 0–2 of 8 votes in
the gold standard); and analysis of sensitivity to clear IEDs (cases
with 6–8 of 8 votes in the gold standard). We grouped users into
quantiles (75–95%, 50–75%, 25–50%, 5–25%, 0–5%) based on their
model-projected accuracy after 1,000 questions to visually com-
pare performance for clear non-IEDs, clear IEDs, overall, and with
reference to expert levels of performance. Additionally, users were
stratified by profession (neurologist, neurologist-epileptologist, or
non-neurologist/non-epileptologist) and whether they reported
reading EEGs regularly.

As a benchmark we calculated accuracies and true and false
positive rates for both the original 8 ‘‘gold standard” experts, and
for 9 experts who were not part of the gold standard (the ‘‘addi-
tional 9”, A9; experience in reading EEGs of 0.6 to 35 years, median
of 6 years). These 9 experts were physicians/neurologists who
were either undergoing or had undergone clinical neurophysiology
fellowship training. We used an approach similar to the one used
by participants in the present study, except that the A9 experts
evaluated spikes in a web application rather than on a phone or
tablet and were able to switch montages and adjust the gain and
sensitivity of the EEG. We resampled questions answered by the
A9 experts to match the proportions of clear IEDs, clear non-
IEDs, and unclear IEDs seen by participants in the current study.
The mean accuracy curve of the A9 started at 81% and ended at
90% accuracy. This was used to establish the expert level for our
study: 90%. Notably, data from all 9 experts (A9) were used to
determine the expert level even though these experts’ experience
in EEG reading varied widely. This is justified because our estimate
of expert level performance did not change significantly (range of
90 to 92.5%) in sensitivity analysis where we calculated multiple
expert levels by varying cutoffs of experience in EEG reading to
be considered an expert (Supplemental Fig. 2). We excluded the
original 8 experts from the definition of the expert level because
their responses were used to create the gold standard.

To explore how the ‘wisdom of the crowd’ compared with
experts, we pooled votes across participants to generate a crowd-
sourced label for each candidate IED. To generate the crowd’s vote,
we weighted each participant’s vote by their overall accuracy on all
questions answered, and added up all weighted votes to obtain a
score for each option (IED or non-IED). The crowdsourced vote for
that sample was then assigned as the option with the highest score.

Feature analysis. We investigated which features of IED mor-
phology correlated with participant voting behavior. For this anal-
ysis we considered a broad set of 23 waveform features used to
characterize IEDs, described in prior literature (Jing et al., 2020).
These features are divided into 5 general categories including (1)
voltage amplitudes, (2) durations, (3) slopes, (4) areas, and (5)
across-channel correlation (Fig. 2).
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To understand which features users implicitly relied on to
decide whether a waveform was epileptiform, we ranked features
according to how strongly their values correlated with participant
agreement about whether candidate IEDs were epileptiform. For
this analysis we used user responses after the 200th evaluated can-
didate IED because, empirically, this appeared to be a point beyond
which most users had substantially improved beyond their initial
starting point (thus likely that by this point most participants had
stabilized in their learning of IED features). We created 9 bins for
candidate IEDs based on the percent of users who classified them
as IEDs: (0–11.2%, 11.2–22.3%, . . . 88.9–100%); these bins were cho-
sen to roughly correspond to the 9 different possible levels of agree-
ment among the original 8 experts (0/8, 1/8, . . ., 8/8). We calculated
a correlation coefficient for each of the 23 features using themedian
feature value of the candidate IEDs in each of the 9 bins. We then
compared the correlation between feature values and agreement
among participants with the same correlation between feature val-
ues and agreement among the original 8 experts.

Expert vs. crowd disagreement analysis. Three of the authors (BW,
JJ, FN; experience in reading EEG of 1 to 10 years) performed a
qualitative visual analysis of the candidate IEDs in which the
majority of participants (‘‘the crowd”) disagreed with experts
(hereon referred to as the ‘‘outliers”) in order to understand the
causes underlying this disagreement. Major disagreement was
defined when a potential IED fit two requirements. First, in situa-
tions where (i) experts rated candidate IEDs as IED (4–8/8 votes)
while most users did not do so (less than the minimum line on
the box and whisker plot: 1.5 time the interquartile range below
the 25th percentile), or (ii) experts rated candidate IEDs as non-
IED (0–2/8 votes) while most users rated them as IED (more than
the maximum line on the box and whisker plot: 1.5 times the
interquartile range above the 75th percentile). Second, in order
to limit the otherwise large amount of outliers of IEDs with 7–
8/8 expert votes, in situations where experts rated candidate IEDs
as IED (7–8/8 votes) while <50% of users did so. During this quali-
tative analysis, we visualized the outliers in a graphical user inter-
face with the ability to change between montages but no ability to
adjust filters or gain to appreciate subtle features that might not
have been apparent in the static images used in the app-based
learning tool. We evaluated each of the outliers to qualitatively
identify features that might explain why these examples were dif-
ficult for the crowd to classify correctly. Based on this qualitative
analysis we categorized all outliers into 2 groups and 6 subgroups.
We describe the features of each subgroup below.
3. Results

A total of 2,270 people participated in our EEG teaching tool.
They collectively answered 1,101,811 questions between July
2019 and April 2021. A single user answered enough questions in
the 13,262-EEG dataset to have seen the same candidate IED more
than once. Nine hundred and one (40%) participants answered at
least 100 questions and were included in the analysis. The remain-
ing participants were excluded. Of the 901 participants, 136 (15%)
were healthcare professionals, 384 (43%) were healthcare students,
322 (36%) were in professions outside of healthcare, and the
remaining 59 (7%) did not disclose their backgrounds (full break-
down Supplemental Table 1). Further, 118 (13%) of all participants
reported reading EEG regularly while 742 (82%) reported not doing
so.

Learning rate analysis of responses from the 901 analyzed par-
ticipants showed that, on average and in the course of answering
1,000 questions, participants improved by 13% (95% CI [0.13,
0.14], p < 0.001, Supplemental Table 2) and achieved a mean end-
ing accuracy of 81%. By comparison, the A9 showed a mean



Fig. 2. Twenty-three morphological features of interictal epileptiform discharges. Legend. Vp0 = voltage at peak, Vp1 = difference in voltage between peak and onset,
Vp2 = difference in voltage between peak and trough, Vt0 = voltage at trough, Vt1 = difference in voltage between trough and onset, Vs0 = voltage at slow wave peak,
Vs1 = difference between slow wave peak and onset, Vs2 = difference in voltage between slow wave peak and trough, Spr = rising slope of peak, Spf = falling slope of peak,
Ssr = rising slope of slow wave, Ssf = falling slope of slow wave, D = duration of IED, Dp = duration of peak, Dpr = duration of rising half of the peak, Dpf = duration of the falling
half of the peak, Ds = duration of the slow wave, Dsr = duration of the rising half of the slow wave, Dsf = duration of the falling half of the slow wave, A = area under the IED,
Ap = Area under the peak, As = area under the slow wave, MaxCorr = correlation between EEG channels (not shown in figure).
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improvement of 9% and a mean ending accuracy of 90%. Based on
crowdsourcing, we found a weighted accuracy of the crowd to be
84% (Fig. 3A).

Subgroup analysis showed that participants who were non-neu
rologists/non-epileptologists (91%) improved by 14% with a mean
ending accuracy of 81%. Participants who were neurologists not
epileptologists (n = 14/901) improved by 13% with a mean ending
accuracy of 79% whereas epileptologists (n = 32/901) improved by
12% with a mean ending accuracy of 78% (Fig. 3B). Break down by
all healthcare backgrounds can be found in Supplemental Fig. 1.
Participants who reported reading EEGs regularly improved by
12% whereas those who reported not reading EEGs regularly
improved by 14%; both groups ended at an accuracy of 81%.
(Fig. 3C).

When questions were grouped according to clarity, we found
that users achieved better performance on easier questions both
at baseline and throughout training. For the easiest group of non-
IEDs, (0/8 votes; Fig. 4A), the false positive rate started at 34%
and ended at 18% while learning for the slightly more unclear
non-IEDs (1/8, and 2/8 votes; Fig. 4B-C) started with a false posi-
tive rate of 57% (for both 1/8 and 2/8 cases) and ended at 35%
(1/8) and 38% (2/8), respectively. The clear IED groups (Fig. 4D-F)
showed similar trends for sensitivity. The easiest IEDs group (8/8
votes; Fig. 4D) started at a sensitivity of 82% and ended at 92%,
the group of IEDs that received 7/8 expert votes (Fig. 4E) moved
from 75% to 89%, and the hardest group of clear IEDs (Fig. 4F)
moved from 71% to 86%. The results from Figs. 3 and 4 are summa-
rized in Table 1.

We then investigated the extent to which a small (n = 23) set of
well-defined morphological features can account for participant
voting behavior. We found that voting behavior for both contest
participants and experts were strongly correlated (correla-
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tion > 0.9) with values of a core set of 17 of the 23 features (Fig. 5-
A-B).

While agreement between the percentages of participants and
experts voting ‘‘yes” for a given candidate IED was generally
strong, as shown by the trend of median values in the box plots
of Fig. 6, prominent outliers are also evident. These outliers are
examples on which the majority of participants strongly disagree
with the majority of experts. We found 203 such examples among
‘‘clear” IEDs, and 39 such examples among ‘‘clear” non-IEDs. We
reasoned that either these cases were misclassified by experts
but correctly identified by the ‘‘wisdom of the crowd”, or that
experts possess knowledge of ‘‘corner cases” that participants were
unable to master during the contest. To distinguish these two pos-
sibilities, we performed two analyses.

First, we compared the feature values of these outlier wave-
forms (Fig. 5C). As shown, the median feature values are quite sim-
ilar for IED and non-IED outlier cases, suggesting that experts rely
for these cases on features outside of the features that characterize
more typical cases.

Next, three of the authors (JJ, FN, MBW) performed direct visual
analysis of all outliers. Examples of outliers are shown in the Sup-
plemental Material. Qualitatively, we grouped outliers based on
the special features that may have made them difficult for novices
into 2 groups (A and B) and 6 subgroups. Group A included all can-
didate IEDs rated as non-IEDs by experts but rated as IEDs by users.
Group A group was divided into 3 subgroups: (1) no IED inside the
indicated red rectangle but IEDs in the vicinity (n = 10), (2) artifacts
such as eye blinks, lateral rectus spikes, and myogenic artifact
(n = 16), and (3) background activity and sleep structures such as
sleep spindles, sharply contoured background activity, and high
amplitude slowing (n = 13). Group B consisted of candidates that
were classified as IEDs by experts but non-IEDs by users. Group



Fig. 3. Users’ overall learning curves. Legend. Predicted learning curves representing the accuracy improvement for each user as estimated by the equation a(n/N)b

(a = accuracy at question 5000, N = 5000, b = learning rate, n = question number). (A) User’s learning curves were grouped into 5 quantiles based on predicted accuracy at
1000 questions. Orange (75% � 95%), purple (50% � 75%), green (25% � 50%), blue (5% � 25%), red (0% � 5%). The black line shows the mean accuracy value at each question
number. The predicted mean accuracy of users at the start and at 1000 questions is shown by the red dashed line at 68% and 81%. The accuracies of the 8 experts predicted by
SpikeNet are each graphed by a triangle marker on the right side of the plot (44%, 78%, 79%, 89%, 91%, 91%, 91%, 91%). The results of the additional 9 experts are shown by the
blue dashed line starting at 81% and ending at 90%. The results of the crowd sourcing are shown by the black dashed line at 84%. (B) Users were grouped by profession. non-
epileptologists neurologists (blue), epileptologists (green), and non-neurologist/non-epileptologist (red). (C) Users were grouped by whether they regularly read EEGs (green)
or not (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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B subgroups included (1) IEDs whose amplitude was low (errors
likely associated with users’ inability to change EEG sensitivity in
the learning app) (n = 44), (2) IEDs that do not stand out and/or
have no well-formed after-going slow wave (n = 53), and (3) IEDs
with atypical morphology such as triphasic waves, symmetric
up- and down-going slopes, sharply contoured instead of clearly
spiky, and sharply contoured slowing (n = 106). We also found that
in more than half of the candidate IEDs in group B (n = 122/203)
there was pronounced periodicity. We hypothesize that this char-
acteristic helped experts classify these waveforms as IEDs despite
the lack of typical features in individual IEDs making up the peri-
odic sequence.

4. Discussion

Our competition-based mobile learning application engaged
more than 900 participants from around the globe in learning
how to recognize IEDs in EEGs. There was no significant difference
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in user performance upon stratification by profession/level of
training (Fig. 3B/Supplemental Fig. S1). This observation may be
explained by (i) the relatively lower number of participants who
were neurologists or epileptologists and (ii) the overall limited
exposure to EEG among students and providers not in the field of
neurology, clinical neurophysiology, or epilepsy.

Overall, users who participated improved their accuracy by an
average by of 13% (95% CI [0.13, 0.14], p < 0.001, Supplemental
Table S2) and achieved a mean ending accuracy of 81%. Although
only 10% (n = 89) of users reached expert level (considered to be
90% based on nine experts’ data), our results suggest that rating
candidate IEDs in a serial fashion along with instant feedback rep-
resents a useful and efficient EEG educational method. Notably, the
comparable improvement in performance among experts and
those with none-to-minimal prior EEG knowledge may suggest
that actually finding sharp transients of interest on EEG (in com-
parison to rating these sharp transients) is the critical skill to read-
ing EEGs in practice.



Fig. 4. Users’ learning curves stratified by question level of clarity. Legend. ‘‘E-IRA” = Expert Interrater Reliability. Candidate IED images were grouped by agreeance of experts
to show the learning curve of users for candidate IEDs of different clarities using the same equation used in Fig. 1 (a(n/N)b). Colors assigned to users in Fig. 1 based on quantile
stayed the same across all plots in Fig. 2. [A, B, C] Show false positive rating assigned by crowd vs the number of questions answered for spikes that received 8/8, 7/8, and 6/8
votes by experts to be non-spikes (clear non-IEDs). [D, E, F] Show sensitivity of ratings assigned by crowd vs the number of question answered for spikes that received 8/8, 7/8,
and 6/8 votes by experts to be spikes (clear IEDs).

Table 1
User’s learning rates.

Question Difficulty Increase in Accuracy

Quantile
at Final
Performance

a
Values

b
Values

0
votes
a
Values

1
vote
a
Value

2
votes
a
Value

6
votes
a
Value

7
votes
a
value

8
votes
a
value

0
votes
b
Values

1
vote
b
Value

2
votes
b
Value

6
votes
b
Value

7
votes
b
value

8
votes
b
value

qn
1–
50

qn
50–
200

qn
200–
500

qn
500–
1000

All 0.85 0.02 0.87 0.71 0.68 0.96 0.93 0.91 0.02 0.03 0.03 0.02 0.02 0.02 6.61 2.47 1.67 1.29
0–5 0.71 0.01 0.89 0.84 0.80 0.86 0.81 0.71 0.03 0.03 0.04 0.01 0.03 0.01 3.59 1.32 0.89 0.68
5–25 0.81 0.02 0.91 0.76 0.72 0.95 0.87 0.81 0.03 0.04 0.03 0.02 0.03 0.02 5.98 2.25 1.52 1.17
25–50 0.88 0.03 0.87 0.75 0.71 0.96 0.92 0.88 0.02 0.03 0.03 0.02 0.02 0.03 8.51 3.26 2.23 1.73
50–75 0.93 0.03 0.75 0.62 0.57 0.97 0.95 0.93 0.02 0.02 0.02 0.02 0.03 0.03 8.83 3.39 2.32 1.80
75–95 0.96 0.02 0.66 0.45 0.35 0.96 0.96 0.96 0.02 0.04 0.05 0.01 0.02 0.02 5.40 2.00 1.34 1.03

Legend: Users’ learning was modeled using the equation a(n/N)b (a = accuracy at question 5000, N = 5000, b = learning rate, n = question number). The table shows the values
for a, b, and incremental accuracy increases for all users stratified in 5 quintile groups (75% � 95%, 50% � 75%, 25% � 50%, 5% � 25%, 0% � 5%) and depending on questions’
level of clarity.
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Experts and participants seem to use a similar strategy to rate
candidate IEDs in terms of analyzing these waveforms’ morpho-
logic features (Fig. 5). While experts and participants are less likely
to rely on the duration of the spike and the cross-channel correla-
tion of IEDs, both appear to rely on the area of the peak, duration,
voltage, area of the slowwave, and total area of the spike. Nonethe-
less, we identified a set of candidate IEDs (the outliers) in which
experts and participants strongly disagreed upon rating as IED or
non-IED. For these examples, the morphologic features of the
182
waveforms that we analyzed appear similar for IEDs and non-
IEDs; presumably, experts rely on additional features of the back-
ground which non-expert participants did not learn. To identify
possible explanations for these outliers, three of the authors (JJ,
FN, MBW) performed direct visual analysis of the outlier candidate
IEDs. Below we offer qualitative observations from this analysis.
Outliers included artifacts (e.g., eye blinks and lateral rectus
spikes), background activity especially with a sharp contour, sleep
structures, and high amplitude slowing (group A) as well as IEDs



Fig. 5. Correlation of candidate interictal epileptiform discharges features and votes by users and experts. Legend. (A) Candidate IEDs were grouped in 9 bins based on
number of expert votes. The z normalized median feature value of each bin was plotted by color for all 23 features. (B) The candidate IEDs were regrouped into 9 new bins
based on user votes. Matching what was done in plot A, the z normalized median feature value of each bin was plotted by color for all 23 features. (C) The outlier candidate
IEDs taken from Fig. 4 were reclassified as IEDs and non-IEDs. The z normalized median feature values were plotted by color for all 23 features of the IEDs and non-IEDs.
Feature values in all 3 maps were z normalized using the medians and iqrs for each feature taken from the entire sample of candidate IEDs.
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with an atypical morphology (e.g., triphasic waves, symmetric
epileptiform discharges, and discharges of different configuration
such as sharp morphology), with a low amplitude, without an after
going slow wave, and those that do not stand out from the back-
ground (group B). Importantly, more than half of outliers in group
B had a characteristic feature: periodicity.

Understanding the outliers may allow us to optimize future EEG
educational materials as well as EEG tests. Based on this data, we
advocate that teaching and testing EEG content should include a
wide range of artifacts, sharply contoured background activity,
sleep structures, discharges with different configurations (e.g.,
triphasic waves, symmetric discharges, and sharp discharges), dis-
charges without after going slow waves, and discharges that do not
prominently stand out from the background. Additionally, our data
suggests that periodicity significantly helps experts, classify these
candidate IEDs as epileptiform, but that novices did not learn this
feature. The concept of periodicity and its association with an
epileptiform activity should be transmitted to novices in future
versions of the learning application.

Interestingly for 23% (n = 56) of the outlier waveforms, the three
authors agreed with the verdict arising from the crowd instead of
183
the verdict of the original 8 gold standard experts. We believe that
these examples likely arose from rare instances (0.4% of all cases)
where the majority of experts mis-rated candidate IEDs due to
noise inherent in the task (e.g. attributable to fatigue, or keyboard
error, as some errors are likely unavoidable even by experts when
annotating > 13 K events). In contrast, the crowd – given its larger
size, and despite being ‘‘noisier” – would rate these waveforms cor-
rectly. These observations may suggest that crowdsourcing may
sometimes be an option for obtaining an accurate gold standard
in rating IEDs on EEG, or for flagging instances of ‘‘label noise” (ex-
pert error) within an expert-labeled gold standard.

Through crowdsourcing, we obtained answers for each candi-
date IED with an accuracy of 84%. Notably, this figure lies between
the mean start (81%) and end (90%) accuracy of the A9 experts used
in this study, suggesting that combining votes from a large
(N = 901) crowd of participants of mixed experience was nearly
as accurate as a relatively small (N = 9) group of experts.

Investigating optimized methods to teach EEG is crucial
because accurate EEG interpretation plays a major role in the care
of patients with seizures and epilepsy. In select circumstances,
having an EEG with IEDs after a single unprovoked seizure war-



Fig. 6. Level of agreement between users and experts. Legend. User and expert
rating were compared for each candidate IED by creating a boxplot with experts
rating as the y axis and user ratings as the � axis. Users and experts ratings tend to
align for candidate IEDs with better expert consensus. Outliers, candidate IEDs that
users and experts strongly disagreed on, are marked in red. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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rants the diagnosis of epilepsy and antiseizure treatment initiation
(Fisher et al., 2014). Despite its importance in epilepsy care, EEG
misinterpretation and resultant epilepsy misdiagnosis is still com-
mon in current American practice (Benbadis et al., 2004). This
observation has been linked with the fact that a large portion of
EEGs in the U.S. are read by neurologists without fellowship train-
ing in clinical neurophysiology (Benbadis, 2010), most of whom
receive suboptimal EEG education during residency training
(Nascimento et al., 2020). Corroborating evidence was presented
in a study where academic neurologists and neurologists with clin-
ical neurophysiology or epilepsy certification performed signifi-
cantly better at IED identification than private practice
neurologists and those without these board certifications
(Halford et al., 2018).

In this context, attention has been shifted towards scrutinizing
neurology residency EEG education. A recent survey of in-
residency EEG education in the U.S. focused on residency program
directors showed that there is an overall lack of consistency in EEG
teaching and evaluation (Nascimento and Gavvala, 2021). Barriers
have been reported to be associated with minimal time devoted to
EEG during training (mean of 1.7 months) and insufficient EEGs
reviewed per resident as a result (40 or fewer studies in two-
thirds of participating programs) (Nascimento and Gavvala,
2021). We believe that novel EEG education methods such as the
app-based competition approach reported herein may address
both above-mentioned barriers. Our app-based training has the
advantage that it condenses a high number of EEG samples with
candidate IEDs and delivers focused, on-demand teaching on
how to identify epileptiform discharges to trainees in a relatively
short period of time. Based on our data, users on average com-
pleted 100 questions in less than 6 min. An additional barrier
reported by program directors is that most residency programs
in the U.S. do not utilize objective measures to assess EEG mile-
stones, including the ones proposed by the ACGME (Kash et al.,
2009; Nascimento and Gavvala, 2021), and lack clearly established
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requirements for successful completion of an EEG rotation. Our
app-based training may also address these issues since it can be
used as an evaluation tool if its instant feedback function is deac-
tivated. Programs may consider making it a pre-requirement for
completing an EEG rotation to achieve a certain minimum level
of accuracy on our application.

In addition to the high number of candidate IEDs presented to
participants in a relatively short period of time, we believe that
its instant feedback function is this method’s main educational
driving force. As noted by a recently proposed multi-theories
learning model (Taylor and Hamdy, 2013), the feedback phase of
learning is crucial to effective learning. It should be noted, how-
ever, that participants with prior consolidated EEG knowledge
may benefit more from such a feedback-based learning tool. These
learners, in comparison to those without any prior EEG knowledge,
would improve their skills based upon receiving instant feedback
and being able to consolidate their knowledge. Notably, we are
unable to compare the effectiveness of our method with other
teaching platforms due to the lack of other EEG educational inter-
ventions focused on IED identification and based on immediate
feedback. Nonetheless, teaching a small group of neurology trai-
nees how to rate candidate IEDs using the operational criteria to
define IEDs proposed by the International Federation of Clinical
Neurophysiology (Kane et al., 2017) resulted in statistically signif-
icant improvement in accuracy from 64% to 81% (Kural et al., 2022).
We believe that our app-based tool would benefit from being used
alongside a preceding strong educational session delivering the
basics of IED identification (Kural et al., 2020). The combination
of an educational session and our app-based practice would likely
benefit all participants irrespective of their prior knowledge given
that this approach would address all learning stages: dissonance,
refinement, organization, feedback, and consolidation (Kural
et al., 2020).

Our study has important limitations. First, whereas the original
8 experts who set the gold standard could modify montages, adjust
sensitivity, and analyze the data on a computer screen, in the
learning app users could not modify the images, and viewed data
on a phone screen, which is generally smaller. The inability to
manipulate EEG settings/filters/montages and decreased screen
size might have negatively influenced users’ performance. Second,
we defined ‘‘positive” examples for feedback purposes as those
that received 3 or more of the original 8 experts’ votes. This thresh-
old was a determined by consensus among the authors considering
the inherent tradeoff between sensitivity and false positive rates
associated with varying thresholds. Nevertheless, our results
demonstrate the effectiveness of the phone-app approach to learn-
ing, a result that does not depend critically on the choice of thresh-
old. Third, participants were not required to use the app in a
uniform way; users could complete questions all at once or over
multiple sessions. Multiple sessions may result in higher long-
term retention of knowledge (Nascimento et al., 2022). Addition-
ally, our study did not assess medium-to-long-term knowledge
retention in rating candidate IEDs. Fourth, our subgroup analysis
– based on users’ background information including profession
and regularity of EEG reading in practice – was limited because
there were few users who were classified as neurologists or epilep-
tologists in comparison to non-neurologists/non-epileptologists.
Similarly, there were relatively few users who reported reading
EEG regularly in comparison to those who reported not doing so.
The sample sizes possibly explains the inability of our study to
detect potential differences in performance and levels of improve-
ment among non-epileptologists neurologists vs. epileptologists.
There is a possibility that our app-based training benefits some
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users more than others based upon their background EEG knowl-
edge; however, this study was not able to address this particular
question.

In addition to these limitations, we have identified areas in
which this learning model may be improved. One item is that
the ability to find sharp transients of interest on EEG was not
taught or assessed in our educational tool. Another limitation
derives from the fact that all but one of the original 8 experts
and 4 of the additional 9 (A9) experts either trained or currently
practice at the same institution (Massachusetts General Hospital).
This may represent a bias where these experts may share same
reasoning upon rating candidate IEDs on EEG. Moreover, our
study was not designed to measure potential improved clinical
outcomes derived from users’ improvement in EEG performance.
Further, our study primarily addressed recognition of IEDs in
the outpatient setting. Future work and other teaching tools are
needed to help trainees become proficient at recognizing epilep-
tiform patterns in the intensive care unit and emergency settings.
In addition, a high performance in our app-based teaching
resource does not necessarily reflect competency in reading EEG
in clinical practice. In the latter, for example, readers would need
to be proficient in finding sharp transients of interest in EEG –
such skill, as discussed above, was not taught or assess in our
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educational tool. Lastly, our expert consensus-based gold stan-
dard was grounded in expert experience rather than an externally
validated and objective source such as defining IEDs as those
sharp transients seen in patients with video-EEG-confirmed epi-
lepsy. Notably, each of these two gold standards holds advantages
and disadvantages hence they should ideally complement each
other15.

In summary, our app-based training created massive engage-
ment around the world, and improved participants’ accuracy in
identifying interictal epileptiform discharges. Given the high den-
sity of candidate IEDs included in the training, coupled with the
app’s inherent flexibility in allowing users to practice in their
own environment and on their own time, this educational method
may be especially valuable for neurology trainees as well as health-
care providers with minimal-to-none prior EEG knowledge. We
believe that the educational impact of this training can be further
increased by adding formal focused didactics before users engage
in rating candidate IEDs. Further educational studies should
include other types of EEG content (e.g., other findings such as
slowing as well as ICU EEG), analyze users’ performance depending
on their prior level of EEG knowledge, and assess the feasibility of
implementing app-based EEG teaching in residency and fellowship
training.
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