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The forelimbs of hominoid primates (apes) are decidedly more
flexible than those of monkeys, especially at the shoulder,
elbow and wrist joints. It is tempting to link the greater
mobility of these joints to the functional demands of vertical
climbing and below-branch suspension, but field-based
kinematic studies have found few differences between
chimpanzees and monkeys when comparing forelimb
excursion angles during vertical ascent (upclimbing). There
is, however, a strong theoretical argument for focusing
instead on vertical descent (downclimbing), which motivated
us to quantify the effects of climbing directionality on the
forelimb kinematics of wild chimpanzees (Pan troglodytes)
and sooty mangabeys (Cercocebus atys). We found that the
shoulders and elbows of chimpanzees and sooty mangabeys
subtended larger joint angles during bouts of downclimbing,
and that the magnitude of this difference was greatest among
chimpanzees. Our results cast new light on the functional
importance of downclimbing, while also burnishing
functional hypotheses that emphasize the role of vertical
climbing during the evolution of apes, including the human
lineage.
1. Introduction
Vertical climbing—defined as the ascent or descent of substrates
angled greater than 45° to the horizontal plane [1]—is a
widespread behaviour across animal forms, including invertebrates
[2,3], squamates [4,5] and mammals [6–10]. Strongly associated
with arboreal life, vertical-climbing animals must resist downward
slips and the pull of gravity, as falling can result in serious injury,
death or predation [7]. It follows that natural selection has
favoured anatomical or behavioural traits to mitigate slippage,
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either by means of claws [6,7], surface adhesion [4] or friction [5]. But with few exceptions, primates are

devoid of claws or adhesive capabilities, relying instead on the normal forces generated by their limbs to
produce friction grips [6–8].

Vertical climbing is a conspicuous and essential behaviour of hominoid primates, including all
great apes [11–14] and some human populations [15,16]. The large body size of most apes, relative to
monkeys and other primates, is expected to substantially increase the energetic costs of vertical
climbing [17] and risk of falling [18], and it is long hypothesized that the morphologies of hominoid
shoulders and elbows evolved to mitigate these twin challenges [19–22]. The retention of these same
forelimb traits across early hominin taxa is another topic of enduring debate [23], in part because it
suggests that vertical climbing was an essential preadaptation for obligate bipedalism [24–30] (but
see [31]).

These discussions have focused almost exclusively on vertical ascent and the functional complexes
that reduce the downward torque of gravity by positioning the centre of mass closer to a given
support [6]. For instance, extreme dorsiflexion of the ankle—common during chimpanzee ascension
[32]—is predicted to improve pedal friction by forcing the forelimbs to subtend large angles,
enhancing stability during upward propulsion [6,7]. Captive apes affirm this expectation, exhibiting
high degrees of shoulder flexion and elbow extension when climbing flexible ropes [33], yet wild
chimpanzees rarely achieve the same joint angles when ascending trees, exhibiting monkey-like
forelimb kinematics instead [34,35]. Given these contradictory patterns, some scholars have shifted
their attention to postural behaviours, suggesting that the highly mobile forelimbs of apes evolved
primarily in response to below-branch, arm-hanging suspensory activities [36–38].

All but ignored in this debate is the challenge of reverse (caudal-first) descent (hereafter,
downclimbing). The reason is simple enough—gravitational forces are indifferent to the direction of
climbing—but even so, only downclimbing requires controlled braking to counteract gravitational, or
passive, acceleration; i.e. eccentric muscular contractions to control the reduction of potential energy
and corresponding increases in kinetic energy [39–42]. Studies of chameleons [43], tamarins [42] and
humans [44] have shown that steeper arboreal declines reduce vertical force production by the lower-
positioned limbs. Consequently, greater support and braking from the higher-positioned limbs may be
needed to control descent safely [43]. Downclimbing, then, is expected to increase external loading by
the forelimbs on the vertical substrate, which would: (i) generate braking impulse via increasing
friction; (ii) improve medio-lateral stability; and (iii) reduce downward toppling moments that
compromise safety [45–47].

To exert elevated forces on the vertical substrate, it follows that the shoulders and elbows of primates
will subtend larger joint angles during downclimbing [6,7], and that the magnitude of this difference will
be greatest at larger body sizes [46]. Thus, differences in forelimb mobility between monkeys and larger-
bodied apes are more likely to manifest themselves most strongly during downclimbing. Here, we test
this hypothesis by comparing the upper limb kinematics of wild chimpanzees and a species of
cercopithecid monkey during vertical climbing.
2. Material and methods
2.1. Study sites and subjects
We observed chimpanzees (Pan troglodytes schweinfurthii; Ngogo community) in Kibale National Park,
Uganda during two three-week periods in June 2006 and July–August 2007; and we observed sooty
mangabeys (Cercocebus atys) in the primary study grid of the Taï Monkey Project in Taï National Park,
Côte d’Ivoire for two two-month spans: August–September 2019 and January–March 2022. Defined as
a montane or lowland rainforest, respectively, the sites have similar densities of canopy-level trees
(540 and 507 ha−1, respectively) [48,49] and understory poles/saplings (4290 and 3687 ha−1,
respectively) [49,50].

Sooty mangabeys are exceptional among cercopithecid monkeys for exhibiting a suite of derived
skeletal traits associated with vertical climbing [51,52]. Accordingly, we sought to verify classic
monkey–ape morphometric differences in the glenohumeral and humeroulnar joints of our two study
species. We accessed osteological collections housed in the Museum of Comparative Zoology, Harvard
University and the Department of Anthropology, Ohio State University. We calculated size-
standardized measures of glenoid width and depth [53] and olecranon process length [19], following
standard procedures with linear caliper measurements.
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Figure 1. Bouts of vertical climbing in chimpanzees (a,b) and sooty mangabeys (c,d ). Maximum angles of shoulder flexion and
elbow extension were greater during downclimbs (b,d ) compared to upclimbs (a,c), and the magnitudes of these differences were
greatest among chimpanzees. Panels (a) and (b) taken by J.M.D and panels (c) and (d ) taken by L.D.F.
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2.2. Video capture and kinematic analysis
We filmed chimpanzees at 14 fps with a Canon GL2 hand-held digital video recorder, targeting adult
males, although juveniles and females were also filmed opportunistically. We filmed mangabeys at
30 fps using a tripod-mounted Canon EOS 7D video camera, targeting adults and subadults, although
some older juveniles were also recorded opportunistically. Filming distances varied between 5 and
10 m, but every bout of vertical climbing was recorded in lateral view and limited to the first 2–5 m of
ascent/descent to minimize angle-induced errors [15].

Following DeSilva [32], we isolated video stills of climbing bouts that depicted the shoulder joint in
lateral view at the points of maximum excursion, defined as the largest visible joint angles during
shoulder (glenohumeral) flexion and elbow (humeroulnar) extension. Following Levangie & Norkin [54],
we defined shoulder flexion as the anterior movement of the humerus in the sagittal plane around a
coronal axis passing through the centre of the humeral head, and elbow extension as the posterior
movement of the forearm in the sagittal plane around a coronal axis passing through the humeroulnar
joint. Shoulder flexion was measured relative to the bole of the tree, which was parallel to the
gravitational vector in most videos (figure 1; electronic supplementary material, figure S1). It is also the
most functionally relevant reference point for exploring species-level contrasts in shoulder morphology
and mobility [53]. Following similar reasoning [36], elbow extension was measured relative to the position
of the upper arm. We preferentially targeted the near side of the animal, using three points to define the
excursion angles of the shoulder and elbow joints (electronic supplementary material, figure S1). We
calculated excursion angles using the manual angle tools in Kinovea v0.8.15 or ImageJ v2.3.0 [55]. We
compared angles during vertical ascent and descent intraspecifically (one-tailed tests) and interspecifically
(two-tailed tests) using unpooled two-sample t-tests in JMP 16 (SAS Institute, Cary, NC, USA).

To assess intra- and inter-observer reliability, we examined a subset of 10 video stills using the
protocol of Guatelli-Steinberg et al. [56]. Briefly, L.D.F. and M.S.J. measured shoulder and elbow
excursion angles from each still, replicating the process three days later to produce a total of 40
measures. We calculated inter- and intra-observer error and used the irr package in R (version 4.2.3)
to calculate intraclass correlation coefficients (ICCs) [57]. ICCs can be used to evaluate intra- and
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Figure 2. The effect of vertical climbing direction on shoulder flexion and elbow extension in chimpanzees (a,b) and sooty
mangabeys (c,d). Chimpanzees (light blue) exhibited significantly higher degrees of average shoulder flexion (a) and elbow
extension (b) during vertical descent compared to vertical ascent. By contrast, shoulder flexion (c) and elbow extension (d ) in
sooty mangabeys (light orange) were invariant across climbing directions. Diamonds indicate means and vertical bars are ±1 s.d.
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inter-observer reliability, with values ranging from 0 (no reliability between observers) to 1 (perfect
reliability between observers). Average intra-observer measurement error for all joint angles was ±2%
(ICCs for both joints = 0.98 for L.D.F. and 0.99 for M.S.J.), whereas average inter-observer error was
±3% for shoulder flexion (ICC: 0.97 (95% CI: 0.89 < ICC < 0.992)) and ±2% for elbow extension (ICC
coefficient: 0.98 (95% CI: 0.935 < ICC < 0.995)). Overall, this level of agreement compares favourably to
previous kinematic studies of wild primates [32].

Given that substrate diameters could affect forelimb kinematics during climbing [35], we measured
the diameter at breast height (DBH; 1.5 m) of most trees associated with climbing bouts. We used the
overlapping package in R [58] to determine interspecific overlap in the DBH of trees climbed and used
regression to assess the potential effects of DBH on shoulder and elbow excursion.
3. Results
3.1. Intraspecific differences during climbing
Chimpanzee maximum shoulder flexion was 14° greater during bouts of downclimbing (mean:
140 ± 7° (s.e.); n = 23 bouts) than upclimbing (mean: 126 ± 4°; n = 39 bouts; figure 2a), and maximum
elbow extension was 34° greater during bouts of downclimbing (mean: 160 ± 3°; n = 23 bouts) than
upclimbing (mean: 126 ± 4°; n = 32 bouts; figure 2b). Among mangabeys, such differences were marginal:
maximum shoulder flexion was 4° greater during downclimbing (mean: 120 ± 3°; n = 63) than upclimbing
(mean: 116 ± 3°; n = 32; figure 2c), and maximum elbow extension was 3° greater during bouts of
downclimbing (mean: 128 ± 3°; n = 71 bouts) than upclimbing (mean: 125 ± 3°; n = 34 bouts; figure 2d).
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Figure 3. Forelimb vertical climbing kinematic (a,b) and morphological (c–e) contrasts between chimpanzees (light blue) and sooty
mangabeys (light orange). Chimpanzees exhibited significantly greater degrees of shoulder flexion (a) and elbow extension (b) than
sooty mangabeys during vertical descent, but not vertical ascent. Sooty mangabeys had relatively narrower (c) and craniocaudally
curved (d ) glenoid cavities, but larger olecranon processes than chimpanzees (e). Diamonds indicate means and vertical bars are ±1
s.d. See electronic supplementary material for definitions of size-standard measurements.
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3.2. Interspecific differences during climbing
To simplify interspecific comparisons, we compared joint angles during up- and downclimbing by
mangabeys and pooled the datasets based on their homogeneity (figure 2c,d). During ascent, the degree
of shoulder flexion and elbow extension was similar between the two species (figure 3a,b), but during
descent, the degree of shoulder flexion and elbow extension differed greatly, with chimpanzees expressing
mean joint angles that were 21° and 33° greater, respectively, than those of mangabeys (figure 3a,b).
3.3. Comparative morphometrics
Relative to mangabeys, we found that the glenoid cavities of chimpanzees are wider, uniformly
shallower, and more ovate (figure 3c,d), and that their olecranon processes are shorter (figure 3e),
which is consistent with expected ape–monkey differences in forelimb functional morphology.
3.4. Diameter at breast height and joint angles
The DBH of climbed trees differed between the two species—chimpanzees climbed wider trees
(mean DBH= 14 ± 8 cm; n = 166) than those used by mangabeys (mean DBH= 6 ± 3 cm; n = 259), but
observed DBHs overlapped by 24%. We found no statistical effect of DBH on shoulder flexion or
elbow extension among chimpanzees (electronic supplementary material, figure S2). Variation in DBH
explained approximately 10% of variation in mangabey shoulder flexion, but there was no statistical
relationship with elbow extension (electronic supplementary material, figure S2).



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230145
6
4. Discussion

We found that the maximum angles of shoulder flexion and elbow extension of chimpanzees and sooty
mangabeys were largest during downclimbing, and that the magnitude of these differences was greatest
among chimpanzees. The significance of our findings is twofold. First, our data corroborate conclusions
drawn from observational categorical data: chimpanzees and cercopithecid monkeys use their forelimbs
in kinematically similar ways during upclimbing [34–37]. Second, our findings extend classic [6,7] and
more recent [39–41] theoretical discussions of vertical climbing by casting new light on the functional
importance of downclimbing during ape evolution.

The evolutionary milestones of ape forelimb mobility are attested by several fossil taxa. For instance,
the early Miocene ape Morotopithecus (approx. 21 Ma) possessed an ape-like glenoid cavity, which is
interpreted as evidence of ‘forelimb suspensory and forelimb dominated climbing behaviours,
including vertical ascension’ (emphasis ours) [53]. The earliest evidence of olecranon reduction
emerged later in Danuvius (12 Ma) and Hispanopithecus (10 Ma), and is fully modern with the
appearance of Oreopithecus (7 Ma) [59,60]. Authors have interpreted this aspect of elbow morphology
as an ‘unmistakable hallmark of below-branch or suspensory behaviour’ [60]; or evidence of ‘eclectic
climbing and below-branch suspensory behaviours’ [59]. We do not dispute the essential role of these
positional behaviours, but we would argue that these same morphologies also speak loudly to the
critical importance of controlled downclimbing.

Improved downclimbing among Miocene apes can be viewed as a by-product, or ‘spandrel’ [61], of
selection favouring below-branch suspension in some large-bodied lineages [62]. But it also raises
the possibility of changing arboreal conditions, such as increasing canopy stratification or rugosity
[63–65], which would favour more frequent movement in the vertical dimension. Another possibility
pivots around increasing terrestrial behaviours. Indeed, there is evidence of Miocene apes exploiting
non-arboreal foods, such as fallen fruits [66] as well as aquatic plants and underground storage
organs [67]; and further, some habitat reconstructions would appear to favour frequent downclimbing
to traverse heterogeneous swamp-woodlands [68] or wooded grasslands [69]. Dual use of terrestrial
and arboreal milieus, mediated by frequent downclimbs, may also explain the retention of ancestral,
ape-like traits in the forelimbs of early fossil hominins such as Sahelanthropus [70], Ardipithecus [71]
and Australopithecus [72]. This perspective begins to reconcile competing hypotheses focused on either
postural or locomotor behaviours [36], as downclimbing is necessary to connect both.

Contrary to published predictions [34,35], we found mixed evidence for DBH-mediated effects on
joint angles during climbing, but these results are partially underpowered with only 12 DBH
associations for chimpanzees. Thus, our limited sample size was insufficient for testing the
hypothesized (positive) effect of larger DBH on chimpanzee elbow extension during vertical climbing.
Moving forward, it would be instructive to explore more systematically if and how substrate
properties (e.g. size, angle, surface texture) affect the forelimb kinematics of downclimbing. Another
limitation of our study concerns climbing speed, which we were unable to measure, and its potential
effects on the kinematics of downclimbing. Greater travel speed can affect forelimb protraction during
knuckle-based quadrupedalism [73], but there is little evidence of it affecting shoulder or elbow
excursions during upclimbing [33]. Still, passive acceleration due to gravity could make downclimbing
faster and inherently less stable [39], factors that could favour a braking impulse and greater forelimb
excursion angles. In such cases, the velocity of descent is expected to be lower than that of ascent, as
reported for some primates that descend trees headfirst [74]; but see [42].

Species inviting future comparative study include the larger-bodied forest papionins ofWest Africa.Wild
mandrills (Mandrillus sphinx), for example, attain masses up to 36 kg [75] and it is an open question whether
they descend trees in a monkey- or ape-like fashion. Investigating downclimbing in olive baboons
(Papio anubis) would also be informative, since they too can attain large masses (approx. 40 kg) while
upclimbing in a manner like chimpanzees [11]. Lastly, our functional predictions at the outset drew on
deductive logic, arguing that downclimbing increases energetic costs and the risk of falling, factors that
are expected to incur relatively high fitness costs [46]. This premise could be further tested among human
populations that regularly climb vertical surfaces [76], including large-diameter trees [77].
Ethics. Data collected for this study were observational and followed the American Society of Primatologists’ principles
for the ethical treatment of non-human primates, the guidelines of permit-granting bodies in Côte d’Ivoire and
Uganda and IACUC at Ohio State University (protocol 2008A0051-R4).
Data accessibility. Data are accessible in the Dryad Digital Repository: https://doi.org/10.5061/dryad.hqbzkh1m8 [78].

Supplementary figures are provided in the electronic supplementary material [79].
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