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ABSTRACT

To pave the road towards precision medicine in
cancer, patients with similar biology ought to be
grouped into same cancer subtypes. Utilizing high-
dimensional multiomics datasets, integrative ap-
proaches have been developed to uncover cancer
subtypes. Recently, Graph Neural Networks have
been discovered to learn node embeddings utilizing
node features and associations on graph-structured
data. Some integrative prediction tools have been
developed leveraging these advances on multiple
networks with some limitations. Addressing these
limitations, we developed SUPREME, a node clas-
sification framework, which integrates multiple data
modalities on graph-structured data. On breast can-
cer subtyping, unlike existing tools, SUPREME gen-
erates patient embeddings from multiple similar-
ity networks utilizing multiomics features and inte-
grates them with raw features to capture comple-
mentary signals. On breast cancer subtype predic-
tion tasks from three datasets, SUPREME outper-
formed other tools. SUPREME-inferred subtypes had
significant survival differences, mostly having more
significance than ground truth, and outperformed
nine other approaches. These results suggest that
with proper multiomics data utilization, SUPREME
could demystify undiscovered characteristics in can-
cer subtypes that cause significant survival differ-
ences and could improve ground truth label, which
depends mainly on one datatype. In addition, to show
model-agnostic property of SUPREME, we applied it
to two additional datasets and had a clear outperfor-
mance.

INTRODUCTION

Cancer is one of the deadliest diseases for which cancer-
causing agents such as oncogenes, mutations, and gene reg-

ulatory associations have not been fully demystified. Can-
cer patients show different characteristics in terms of the
progression of disease and response to treatment (1). Vari-
ous biological datasets from cancer tissues have been gen-
erated to better characterize cancer biology. For instance,
The Cancer Genome Atlas (TCGA) project generated over
2.5 petabytes of multiple omics (multiomics) data for thou-
sands of patients from 33 different cancer types (data are
available at https://portal.gdc.cancer.gov/). Specifically for
breast cancer, the Molecular Taxonomy of Breast Can-
cer International Consortium (METABRIC) has generated
four types of multiomics data for thousands of breast tumor
samples (2). Utilizing high-dimensional biological datasets
in public databases, computational approaches have been
developed to discover subtypes of various cancers (3-5).
Several of the cancer subtype prediction studies rely only
on one type of biological datatype (4,6,7). However, each of
these datatypes captures a different part of the underlying
biology, thus developing integrative computational meth-
ods has been an important research area in bioinformatics.

Breast cancer is currently the most commonly-diagnosed
cancer worldwide (8). Therapeutic groups in breast can-
cer (i.e., estrogen receptor-positive, progesterone receptor-
positive, human epidermal growth factor receptor 2
(HER2) amplified group, and triple-negative breast cancer)
mainly depend on three receptors. Even though these re-
ceptors are very impactful in determining the breast cancer
subtypes, they are not solely sufficient to classify a patient.
Some other studies showed that genomic and clinical fea-
tures such as race, age, and some mutations are also impor-
tant in breast cancer subtyping (9,10).

Genomic datatypes are found informative for differenti-
ating subgroups in breast cancer. In 2009, Parker et al. (11)
found a clear difference in the expression of 50 genes for
breast cancer and introduced breast cancer molecular sub-
types, called PAMS50 subtypes. In 2012, the TCGA group
published a study analyzing breast cancer subgroups and
their associations with single datatypes, obtaining subtype-
specific patterns in each datatype (12) and supporting
the importance of gene expression-based models such as
PAMS0 (11). Even though there are important signals from
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both clinical and genomic features to determine the subtype
of a patient, relying on a single data modality is not suffi-
cient to differentiate subtypes clearly. As we get more sam-
ples and datatypes to analyze, it is important to integrate all
the available datatypes properly with advanced approaches
to understand differences in the characteristics of cancer pa-
tients.

Recently several groups have developed unsupervised
computational tools to integrate multiple datatypes to dis-
cover cancer subtypes. For instance, iClusterPlus (13) uses a
joint latent variable model concatenating multiple datatypes
with dimension reduction to cluster cancer patients. Simi-
larity Network Fusion (SNF) (14) builds a patient similar-
ity network based on each datatype, obtains a fused patient
network by applying a nonlinear fusion step, and performs
the clustering on that final network. PINSPlus (15) assumes
that samples that are truly in the same subtype are clus-
tered together despite small changes in the data. PINSPlus
discovers the subtypes if the samples are highly connected
for different datatypes applying data perturbation. The au-
thors demonstrated that PINSPlus had robust results with
significant survival differences across different cancer types.
Those studies focus on unsupervised multiomics data inte-
gration without the utilization of found subtype labels such
as PAMS50 subtype labels. Furthermore, these tools utilize
patient similarity networks or features, but not both simul-
taneously, while there are recent improvements in graph rep-
resentation learning allowing the utilization of both at the
same time (16-18).

Graphs (networks) are suitable data structures to store
multiomics datasets, however, machine learning (ML)-
based approaches are challenging on graph data. Deep
learning-based architectures have been used extensively for
grid-like data (e.g., image), however, these methods are not
directly applicable to graph data. Graphs are unstructured
as each node has a varying number of neighbors and there
is no fixed ordering of nodes. To train ML models on graph
data, embedding (a fixed low-dimensional vector) is used
and some shallow embedding methods emerged by encod-
ing every node into embedding, representing the position
and the local relationships in the graph (19-21). However,
these shallow embedding methods are not scalable for large
graphs and cannot utilize the node features that we have
plenty of, thus, these methods have been replaced with
more advanced deep learning-based methods such as Graph
Neural Networks (GNNs) (16,17). The main difference in
GNN-based architectures is how the features are aggre-
gated from the local structure. Graph Convolutional Net-
work (GCN) is one of the most popular GNNSs that uses a
modified aggregation involving self edges with normaliza-
tion across neighbors (18). GNNs have recently been ap-
plied to biological problems such as cancer type/subtype
prediction and drug response prediction (18, 22-25).

Even though there are some studies applying convolu-
tion to graph-structured data for cancer subtyping, these
models are mostly applicable to a single network or had
some limitations for integrative approaches. In (26), cancer
type prediction of patients from 33 cancer and non-cancer
types (i.e., all normal samples from all 33 available can-
cer types) was performed using GCNs. The input network
was based on gene coexpression or protein-protein inter-

action, but the convolution was done on the gene expres-
sion dataset only, thus, missing the information of multi-
ple data modalities. Multiomics GCN (MOGONET) is a
supervised multiomics integration framework using GCNs
with a patient similarity network for mRNA expression,
DNA methylation, and microRNA expression separately
(27). MOGONET gets the label independently from three
different models, then uses them to get the final predic-
tion. However, it does not consider multiple features for net-
works. We call this kind of embedding datatype-specific pa-
tient embedding where the methodology generates datatype-
specific networks with datatype-specific node features and
considers only the prediction labels from separate GCN
models. However, these embeddings could be improved by
utilizing all the multiomics patient features on each local
network structure, making the embedding network-specific
patient embedding. Moreover, it is possible to utilize GCN
not only to get the prediction label but also to obtain the em-
beddings and integrate them. Going further, we can also in-
tegrate the patient features (called raw features) with embed-
dings to capture any diluted signals from features. To utilize
more from available knowledge, it is important to properly
integrate multiple network representations and multiomics
features simultaneously.

To address the aforementioned limitations, we developed
a computational tool named SUPREME integrating mul-
tiple types of datasets using GCNs. SUPREME gener-
ated similarity networks using features from multi-modal
datasets where node features include features from all data
modalities, assuming that nodes with a similar local neigh-
borhood are likely to belong to the same class. SUPREME
encodes the relations on a network from each datatype
and obtains network-specific node embeddings incorporat-
ing node features on each network. Then SUPREME in-
tegrates these embeddings providing extensive evaluations
of all combinations of node embeddings. For each com-
bination, SUPREME integrates the selected embeddings
with raw features to utilize all the knowledge at the same
time. SUPREME utilizes all available datatypes from pub-
lic datasets and can interpret each datatype’s effectiveness
in terms of features and networks. Being model-agnostic,
SUPREME could be easily adapted to any model, any pre-
diction task handling any number of datatypes, and could
be easily modified by changing the embedding integration
method, network generation strategy, and feature extrac-
tion approach.

In this study, SUPREME was applied to three differ-
ent prediction tasks from five different datasets. We applied
SUPREME to predict subtypes of breast cancer patients
using multiomics datasets (from TCGA and METABRIC
datasets separately and together). Our results on cancer
subtype prediction tasks showed that SUPREME outper-
formed other integrative supervised cancer (sub)type pre-
diction tools and baseline methods. SUPREME had im-
proved performance showing the importance of GCN-
based approaches, network-specific patient embeddings,
and raw feature integration. SUPREME was robust show-
ing high and consistent prediction performance. We ob-
served that the gene expression (EXP)-based features were
the most significant features, as expected for breast can-
cer. Importantly, SUPREME-inferred cancer subtypes had



consistently significant survival differences and were mostly
more significant than the survival differences between
ground truth subtypes, which were based on gene expres-
sion datatype. These results suggest that SUPREME can
differentiate the characteristics of cancer subtypes prop-
erly utilizing the multiple network relations and multiple
datatypes. To demonstrate the model-agnostic property of
our tool, we also applied SUPREME to ACM and IMDB
datasets and SUPREME outperformed other methods on
both datasets.

MATERIALS AND METHODS

SUPREME is a computational tool for node classifica-
tion tasks integrating multiple data modalities using GCNs.
Briefly, the first step is data preparation. In the second step,
SUPREME extracts features from each datatype. Using
those features, SUPREME generates individual similarity
networks per datatype where features from all datatypes are
used as node attributes. In the third step, using the obtained
networks and features, SUPREME generates the network-
specific node embeddings by running GCN on each net-
work. In the last step, SUPREME does prediction by in-
tegrating individual network-specific embeddings and raw
features. In the following part, we explain each step of
SUPREME in detail.

Data preparation

We applied SUPREME on three datasets for the breast
cancer subtype prediction task. We collected the data and
generated seven datatypes (i.e., clinical, copy number aber-
ration, coexpression, gene expression, DNA methylation,
microRNA expression, and mutation) across 1022 breast
tumor samples from TCGA (12), five datatypes (i.e., clin-
ical, copy number aberration, coexpression, gene expres-
sion, and mutation) across 1699 breast tumor samples from
METABRIC (2) and three datatypes (clinical, gene ex-
pression, and mutation) across a total of 2721 breast tu-
mor samples from the combined datasets of TCGA and
METABRIC. As ground truth for the prediction task, we
obtained the PAMS50 subtype labels, namely Basal-like,
HER2-Enriched, Luminal-A, Luminal-B, and Normal-
like (11). Data preprocessing details are in Supplementary
Methods 1.1.

We also collected ACM and IMDB datasets for two ad-
ditional tasks: movie genre prediction from IMDB dataset
(https://[www.imdb.com) and paper area prediction task
from ACM dataset (http://dl.acm.org). IMDB dataset has
a heterogeneous network with three node types (movie, ac-
tor, and director) along with two associations: movie-actor
and movie-director. The movies have three genre classes: ac-
tion, comedy, and drama. ACM dataset has also three node
types (paper, author, and subject) on a heterogeneous net-
work along with two associations: paper-author and paper-
subject. The papers have three classes: database, wireless
communication, and data mining.

The number of features and samples for each dataset are
shown in Table 1.
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Table 1. Number of features and samples for each dataset. Subtypes
are abbreviated as BL: basal-like, HER2: HER2-Enriched, LA: luminal-
A, LB: luminal-B, NL: normal-like

Number of
Dataset raw features Number of samples
TCGA 3088 1022 samples: 172 BL (17%), 78

HER?2 (8%), 538 LA (53%), 195 LB
(19%), 39 NL (4%)

1699 samples: 199 BL (12%), 220
HER?2 (13%), 679 LA (40%), 461 LB
(27%), 140 NL (8%)

METABRIC 1761

Combined 1229 2721 samples: 371 BL (14%), 298

(TCGA+ HER?2 (11%), 1217 LA (45%), 656 LB

METABRIC) (24%), 179 NL (7%)

IMDB 3066 4278 samples: 1135 (27%), 1584
(37%), 1559 (36%)

ACM 1870 3025 samples: 1061 (35%), 965 (32%),

999 (33%)

Feature extraction & network generation

Breast cancer subtyping. SUPREME incorporates seven
datatypes for TCGA data, five datatypes for METABRIC
data, and three datatypes for the combined data. We uti-
lized a Random Forest-based feature selection algorithm,
called Boruta (28), to extract features from high dimen-
sional datatypes. The selected features in the data prepro-
cessing step (i.e., multiomics features) were used to com-
pute the similarity between patients when generating the
patient similarity networks, as node features in the patient
similarity networks, and to integrate as raw features be-
fore the prediction task. To compute patient similarities in
datatype-specific patient similarity networks, we used Pear-
son correlation for gene expression, copy number aberra-
tion, DNA methylation, microRNA expression, and coex-
pression datatypes; the Gower metric (29) from the daisy
function of cluster R package (30) for clinical features; and
Jaccard distance for binary mutation features. After select-
ing the top edges, the edge weights were eliminated to gen-
erate an unweighted network. We used 2500 edges for the
datatypes of TCGA, 4500 for METABRIC and 7000 for the
combined data (having approximately 2.5 times the sample
size). Details of feature extraction and network generation
are in Supplementary Methods 1.2.

Movie genre prediction. We did not apply any feature se-
lection for the IMDB dataset and used node features pro-
cessed in (31). Using two associations (i.e., movie-actor and
movie-director) in the data, two movie similarity networks
were generated based on two meta-paths using (32): movie-
director-movie with 17 446 edges and movie-actor-movie
with 85 358 edges. Meta-path-based similarity networks
connect nodes based on a given association. For instance,
the meta-path movie-actor-movie defines similarity as the
existence of at least one common actor between two movies.

Paper area prediction. For the ACM dataset, we did not
apply any feature selection and used the node features pro-
cessed in (31). Utilizing two associations (i.e., paper-author
and paper-subject) in the data, two meta-paths were used to
generate two paper similarity networks using (33): paper-
author-paper with 29 281 edges and paper-subject-paper
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with 2 210 761 edges. The meta-path-based similarity defi-
nition is the same as in the IMDB dataset.

When there is a high number of raw features and many
networks to integrate, this might affect the prediction per-
formance, and model training could be time-consuming.
Thus, we added another optional feature selection step to
further reduce the number of raw features integrated with
the node embeddings for the prediction task. We enabled
this additional feature selection for TCGA data where we
had a high number of raw features and networks and ob-
served that it reduced running time without affecting the
prediction performance. We did not apply optional feature
selection for ACM and IMDB datasets since we have only
two networks. Similarly, we did not apply any reduction for
the number of edges for these datasets since we do not have
any quantitative similarities to prioritize the edges on meta-
path-based similarity networks.

Node embedding generation

After extracting features and generating networks, we ob-
tained network-specific node embeddings, which capture
the topology of the network as well as node features to be
utilized in a downstream ML task.

In this study, we used the GCN model of Kipf and
Welling (18) involving self edges in convolution and scal-
ing the sum of aggregated features across the neighbors.
GCN models learn the data by performing convolution on
networks, considering one-hop local neighbors with equal
contribution, and encoding the local topology of the net-
work. Stacked layers involve recursive neighborhood diffu-
sion considering more than a one-hop neighborhood.

Let’s call an undirected graph as G = (V, £€) where V is a
set of nnodes, i.e., V = {v1, vy, ..., v, }, and £ is a set of edges
between nodes where (v;, v;) € £ when v; € V, v; € V and
v; and v; have an association based on the graph G. Since
the graph G is undirected, (v;, v;) € £ <= (v;,v;) € £.

The input for a GCN model is a feature matrix X e R
where k is the feature size, and the adjacency matrix A €
R™ with added self edges defined as:

.o lif(v,,v_/)eé'orizj
Alt. J1= { 0 otherwise

The iteration process is defined as:
HHD = o (D72 AD S HONWO)
with H® = X where

Dli,i]= Y _ Ali. jl.
j=1

H" is the activation matrix in the /th layer, W is the train-
able weight matrix in the /th layer and o is the activation
function.

Considering breast cancer subtyping task using TCGA
data, SUPREME setup for the single model generation was
as follows: there were seven networks (i.e., patient similar-
ity networks), each obtained from a different datatype. All
networks had nodes as breast cancer patients and edges
based on the patient similarities from the corresponding

data. For instance, let us consider G as a gene expression-
derived patient similarity network. This network connects
patient nodes with a high correlation between their gene
expression profile. As node features, G has the combined
features, which were extracted from all the seven datatypes.
Features of v; are denoted as x; € R¥ where k is the total
feature size. So, the stacked feature matrix X' € R is:

X1

X2
X:

Xn

The local one-hop neighborhood of a node v; is N; =
{vj : (vi,v;) € €} that included the set of nodes having an
association with the node v;. Feature aggregation on the lo-
cal neighborhood of each node was done by multiplying X
by the nxn-sized scaled adjacency matrix A where

A =D i AD .

Using 2-layered GCN in SUPREME, we had the form of
the forward model giving the output Z where

Z = softmax (A’ ReLU (A'X W“)) W(z))

and W) e Rk )W) ¢ R were the trainable weights for
the first and second layers, respectively, where /# was the
hidden layer size and ¢ was the number of classes to pre-
dict (namely, Basal-like, Luminal-A, Luminal-B, HER2-
Enriched, and Normal-like, with ¢ = 5). The loss function
was calculated by cross-entropy error. Adam optimization
(34) was used as the state-of-the-art for stochastic gradient
descent algorithm and dropout was added for the first GCN
layer. Early stopping was used with the patience of 30 forced
to have at least 200 epochs.

We split the total samples into training, validation, and
test sets. This splitting was stratified, that is, keeping the
same ratio of the subtype labels in the original data for each
split. We kept the test set only for final evaluation of the
tool. Training and validation splits are randomly selected
for each run as stratified. For the breast cancer subtyping,
we split 20% of the total samples as a test set. The remaining
80% of the samples were used for training (60%) and valida-
tion (20%). For IMDB and ACM datasets, we used the same
data splits in (31). To tune the hyperparameters of the GCN
model (i.e., hidden layer size and learning rate), for each
run, SUPREME repeated an evaluation metric (i.e., macro-
averaged F1 (macro F1) score) 10 times for each hyperpa-
rameter combination (Supplemental File 2) and selected the
hyperparameter combination giving the best median macro
F1 score on the validation data to generate the final model.

Similarly applying the methodology for other datatypes,
we generated seven different GCN models on TCGA data.
Repeating the same procedure for other datasets, we ob-
tained five models on METABRIC data, three models on
the combined data, and two models on ACM and IMDB
data. These final models were used to extract network-
specific patient embeddings to use in the downstream pre-
diction task.



Training predictive models using node embedding combina-
tions

For each combination of node embeddings from d
datatypes, we concatenated them with the raw features and
trained prediction models (having 2¢ — 1 models). Specif-
ically, we had 127, 31, seven, three, and three SUPREME
models for TCGA, METABRIC, the combined data
(TCGA+METABRIC), ACM, and IMDB datasets, respec-
tively.

We tested SUPREME with several ML methods namely,
XGBoost, Support Vector Machine (SVM), Random For-
est (RF), and Multi-layer Perceptron (MLP). For all
datasets, we decided to use MLP as it gave consistently high
performance (Supplementary Table S1 and discussion sec-
tion for the details).

We did hyperparameter tuning for the prediction task,
similar to GCN hyperparameter tuning in the previous step.
We used the training and validation cohort to tune the hy-
perparameters (e.g., hidden layer size and learning rate) of
the final model, where training and validation splits were
randomly selected as stratified. We repeated the SUPREME
run 10 times for each hyperparameter combination and
used the hyperparameter combination giving the best me-
dian macro F1 score on the validation data. Using this hy-
perparameter combination, the final model was built and
evaluated 10 times on the test data, which was never seen
during training and hyperparameter tuning. The evalua-
tion metrics (macro F1, weighted-average F1 (weighted F1)
score, and accuracy) were obtained from the median of
these 10 runs.

RESULTS

We introduced a novel node classification framework, called
SUPREME, that utilizes graph convolutions on multiple
datatype-specific networks that are annotated with multi-
modal datatypes as node features. This framework is model-
agnostic and could be applied to any classification prob-
lem with properly processed datatypes and networks. In
this work, SUPREME was applied specifically to the breast
cancer subtype prediction problem by applying convolution
on patient similarity networks constructed based on multi-
ple biological datatypes from breast tumor samples (Fig-
ure 1). We also evaluated SUPREME on ACM and IMDB
datasets demonstrating the outperformance of SUPREME
in different domains.

SUPREME outperformed the cancer subtype prediction
tools and baseline methods

For the breast cancer subtyping task, we compared the per-
formance of SUPREME on three different datasets with
seven other cancer (sub)type prediction tools and base-
line methods, namely Deep cancer subtype classification
(DeepCC) (35), GCN-based classification (GCNC) (26),
MOGONET (27), MLP, RF, SVM, and XGBoost. For each
dataset combination, SUPREME builds a separate cancer
subtype prediction model. For ML-based baseline meth-
ods (i.e., MLP, RF, SVM, and XGBoost), we integrated
only the raw features from the selected combination and
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did the prediction with those features. MOGONET uti-
lizes GCN on multiomics data utilizing datatype-specific
embedding predictions. GCNC leverages GCN with gene
expression features on protein-protein interaction (PPI)-
or coexpression-based gene network, while DeepCC uti-
lizes only gene expression datatype with pathway activity
transformation through an MLP model. Therefore, we had
only two classification models for GCNC: GCNCpp; with
the PPI network and GCNC¢og with the coexpression net-
work, and one model for DeepCC. To see the impact of the
integration of raw features into the embeddings, we also
trained models without integrating raw features with pa-
tient embeddings, called SUPREME-. We ran SUPREME,
SUPREME-, and the other tools for all the combinations of
available datatypes. Even though MOGONET is applicable
to any number of datatypes, we could not run the tool for
the models with more than five datatypes (waiting time was
more than two days per combination), thus we had only 31
different models for TCGA data, while we had all models
for METABRIC and the combined data.

SUPREME and SUPREME- outperformed all other
multiomics integration methods for three datasets in terms
of macro F1, accuracy, and weighted F1 (Figure 2, Sup-
plementary Figures S3 and S4). SUPREME significantly
outperformed MLP, which utilizes raw features only in
all datasets, showing the importance of GCN utilization.
We observed that SUPREME significantly outperformed
SUPREME- for all three datasets.

We ran the tools that utilize only gene expression
datatype and evaluated their performance (Supplementary
Table S2). For TCGA data, SUPREME achieved signifi-
cantly higher performance than DeepCC and GCNC mod-
els, while performance on METABRIC and the combined
data was comparable or superior (Figures 2 and S3).

In addition, we checked the subtype-specific F1 scores,
and had consistent and higher performance across all sub-
types, mostly having significant differences (Supplementary
Figure S5). Specifically, on TCGA data, we had signifi-
cantly better performance than all other tools for all sub-
types in terms of subtype-specific F1 scores. Particularly,
SUPREME had a significantly higher subtype-specific F1
score than all other tools on the Normal-like subtype for
all three datasets. Considering that the Normal-like subtype
had the smallest sample size in all three datasets (4% of the
samples from TCGA, 8% from METABRIC, and 7% from
the combined data), achieving this performance increase in-
dicates SUPREME’s robustness even for minority classes.

SUPREME had consistently high performance even with sin-
gle models

To see SUPREME’s performance with a single datatype,
we investigated models generated with only one datatype,
called single model. We compared SUPREME with an
MLP-based model trained using a single datatype to show
the impact of our GCN-based approach. To show the im-
pact of different approaches with one datatype, we com-
pared our single models against MOGONET and our EXP-
based model with DeepCC and GCNC models. We con-
ducted these experiments for all three datasets.
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Figure 1. SUPREME pipeline for breast cancer subtype prediction. SUPREME extracts feature from available datatypes and generates patient similarity
networks where nodes are annotated with features from all datatypes. Utilizing graph convolutions on each patient similarity network, patient embeddings
are generated. To provide extensive evaluations of subtype prediction, a machine learning model is trained for each combination of patient embeddings
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Figure 2. Classification results. Violin plot of macro F1 scores obtained from 127 different models including all different combinations of datatypes as
compared to the cancer subtype prediction tools and baseline supervised methods on TCGA data. DeepCC and GCNC violin plots show the distribution
of macro F1 scores of ten runs of a single model as they can only utilize gene expression datatype. The significance level was measured with respect to
SUPREME (Wilcoxon rank-sum test p-value to compare the distribution of violin plots representing the significance < 0.001 by ***_ else if < 0.01 by **,
and else if < 0.05 by *). [MLP: Multi-layer Perceptron, RF: Random Forest, SUPREME-: SUPREME without raw feature integration, SVM: Support

Vector Machine]

Based on the single model results, SUPREME outper-
formed MOGONET for all single models from all three
datasets (Table 2, Supplementary Tables S3-S5). Also,
SUPREME outperformed MLP (six out of seven models
for TCGA data, three out of five for METABRIC data,
and two out of three models for the combined data), or had
comparable performance, while MLP had extremely poor
performance on some datatypes, showing the importance
of GCN-based approach.

There was no clear winner for the comparison of the
SUPREME EXP-based model with DeepCC and GCNC
models. In terms of macro F1 score, SUPREME outper-
formed both methods on TCGA data and GCNC (1 draw, 1

win) on the combined data. (Table 2, Supplementary Tables
S3-S5). This could be because DeepCC and GCNC utilize
pathway activation, PPI network, or coexpression network
in addition to gene expression datatype. Nonetheless, by uti-
lizing more datatypes SUPREME outperformed or was on
par with both tools for all datasets (Figure 2, Supplemen-
tary Figures S3 and S4).

EXP-based models had the highest macro F1 score for all
three datasets for all methods (Table 2, Supplementary Tab-
less S3, S4, and S5). The only exception is that SUPREME-
MET-based model had slightly higher performance than
SUPREME- EXP-based model on TCGA data. High per-
formance of EXP-based models is not surprising as the
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Table 2. Single model results on TCGA data. Macro F1 scores for each model with a single dataype. See Figure 1 for the abbreviations of the
datatypes. [MLP: multi-layer perceptron]

Method CLI CNA COE EXP MET MIR MUT
SUPREME 0.68 £ 0.04 0.80 £ 0.03 0.76 £ 0.04 0.84 £ 0.02 0.79 £+ 0.03 0.73 £0.02 0.75 £ 0.03
SUPREME- 0.72 £ 0.02 0.77 £ 0.02 0.77 £+ 0.04 0.77 £ 0.05 0.79 £ 0.04 0.70 £ 0.02 0.74 £ 0.04
MLP 0.46 £ 0.07 0.53 £0.04 0.59 £ 0.02 0.82 £0.03 0.69 £+ 0.04 0.74 £ 0.04 0.28 £0.06
MOGONET 0.41 £0.01 0.52 £ 0.01 0.57 £0.01 0.75 £ 0.01 0.61 £0.03 0.71 £0.03 0.34 £0.01

breast cancer subtype labels are based on gene expression
data. We observed that SUPREME usually outperformed
SUPREME- on single models, which indicates that utiliz-
ing raw features usually improves the model performance.
On the other hand, there were few cases where adding raw
features dropped the performance (e.g., CLI-based mod-
els on TCGA data). By examining SUPREME- and MLP
model performances, we compared the predictive power of
patient embeddings with raw features. We observed that pa-
tient embedding features were more useful than raw features
with few exceptions, such as microRNA expression- (MIR)
and EXP-based models on TCGA data, copy number aber-
ration (CNA)-based on METABRIC data, and CLI-based
model on the combined data. Specifically on TCGA, we
see that CLI-based embedding was more informative than
CLI-based features. For CNA- and mutation (MUT)-based
models, embeddings were more useful than raw features, but
we observed that integrating raw features to embeddings
further improved the performance. Similarly, although for
the EXP-based model on TCGA data, embeddings were less
informative than raw features, integrating them improved
the performance.

SUPREME had significant survival differences between pre-
dicted subtypes consistently

To measure the ability of the supervised methods to differ-
entiate samples based on survival, we predicted the sub-
type labels for each data modality combination and per-
formed the survival analysis. In addition to the supervised
methods, we also included the state-of-the-art unsuper-
vised tools that are specifically applied to cancer subtyping
(i.e., iClusterPlus (13), SNF (14), and PINSPlus (15)) and
an algorithmically-relevant clustering method (i.e. affinity
propagation (AP) clustering). AP clustering is relevant be-
cause it uses a message-passing strategy to find the cluster
representatives and the best representative for each node.
We obtained five clusters from the unsupervised methods
to match the number of PAMS50 subtypes and checked the
survival differences for these obtained clusters. This analysis
was only applied to the results on TCGA data where patient
survival data were available. To check the statistical signif-
icance of survival differences between subtypes, we applied
the log-rank test to compute p-values. Details of survival
analysis are in Supplementary Methods 1.3.

The results showed that SUPREME’s predicted subtypes
consistently had significant differences in survival rates and
significantly outperformed all other nine methods in terms
of the P-value (Figure 3). SUPREME had 0.0035 as the
lowest P-value (when integrating CNA-, COE-, MET- and
MUT-based patient embeddings) and 0.0131 as the median
P-value (Supplementary Figure S6A for the Kaplan—Meier

plot). Similarly for SUPREME-, we had 0.0018 as the low-
est P-value (when integrating CNA- and COE-based pa-
tient embeddings), and 0.0147 as the median P-value. Inter-
estingly, SUPREME had a more significant survival differ-
ence than the survival difference between ground truth (i.e.,
PAMS50) labels (Supplementary Figure S6B for the Kaplan—
Meier plot for PAMS0 subtypes).

Specifically, 106 out of 127 SUPREME models had a
lower P-value than the p-value for ground truth. For 57%
of those models, we had CNA-based embedding selected. It
is followed by 52% from COE-, CLI- and MET-based em-
beddings. This might suggest that those embeddings could
contribute more to differentiating survival differences be-
tween subtypes.

AP, iClusterPlus, MOGONET, and SNF methods had a
wide range of P-values, while SUPREME, MLP, SVM, and
XGBoost had mostly significant P-values (<0.05) with a
median lower than the significance level of the ground truth.
SUPREME was better than SUPREME-, but the difference
was not significant.

Using support from the predicted subtypes by each model
in SUPREME, we computed an ensembled consensus sub-
type based on majority voting for each patient (Supplemen-
tal File 3) and checked the survival difference between these
consensus subtypes. Once again, we observed a significant
(P-value = 0.01) survival difference between consensus sub-
types (Supplementary Figure S6C). We also observed that
882 out of 1022 patients had the same subtype prediction
across all 127 models showing the robustness of SUPREME
predictions.

Feature/omics importance analysis

In this section, we investigated the importance of each
network-specific embedding and datatype-specific features.

Impact of network-specific patient embeddings. We inves-
tigated the contribution of each patient embedding on the
model performance by comparing the models built using
a patient embedding from datatype X and without using
that embedding. Among all 2¢ — 1 models, 29! models
had the patient embedding obtained from a datatype X,
called withX,. The remaining 2¢~! — 1 models did not have
the patient embedding obtained from X, called noX,,. For
each datatype X, we compared noX, models against withX,
models, showing the importance of X-specific patient em-
bedding. We did this analysis on SUPREME- (i.e., without
integrating the raw features) to ensure that differences were
due to the patient embeddings only.

The results on TCGA data showed that the performance
of models increased or stayed the same with the inclusion
of patient embeddings from all datatypes except for gene ex-
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Figure 3. Survival analysis results violin plot of the log-rank P-value obtained from survival analysis for the SUPREME models as compared to the cancer
subtype prediction/clustering tools and baseline methods. Significance level was measured with respect to SUPREME (Wilcoxon rank-sum test P-value to
compare the distribution of violin plots representing the significance <0.001 by ***, else if <0.01 by **, and else if <0.05 by *). The continuous line shows
the significance level of 0.05 and the dashed line shows the ground truth’s significance level. The below figure focuses on the significant survival P-values
(<0.05) [AP: affinity propagation, MLP: multi-layer perceptron, RF: random forest, SNF: similarity network fusion, SUPREME: SUPREME without

raw feature integration, SVM: support vector machine].

pression (Figure 4). The inclusion of EXP-based embedding
showed a significant decrease in the model performance.
The exclusion of CLI- and CNA-based patient embeddings
had a significant drop in the model performance. Those
findings agree with single model results.

For METABRIC data, the inclusion of COE- and EXP-
based embeddings increased the performance, while the
other embeddings did not affect the performance much
(Supplementary Figure S7A). For the combined data,
MUT- and EXP-based embeddings showed higher perfor-
mance when included, whereas the inclusion of CLI-based
embedding did not affect the performance much (Supple-
mentary Figure S7B).

In addition, we analyzed SUPREME results for TCGA
data in terms of the best- and worst-performing models.
Specifically, we had 31 top models with a macro F1 score
1s >0.88, and 30 bottom models with a macro F1 score is
<0.83. We counted how many times each datatype occurred
in the top and bottom models. CNA- and CLI-based em-
beddings were used for 28 and 19 out of 31 top models, re-
spectively. The least occurred embedding was EXP-based
with only six models out of 31. For the bottom models,
we had 25 models from EXP-based embedding, while we

had the least occurred embedding from CNA-based embed-
ding with only five models. This analysis showed that CNA-
based embedding was the most selected to have higher per-
formance, while EXP-based embedding was rarely selected,
supporting our findings in this section and in single model
analysis.

Impact of features from each datatype.  To see the impact of
the features from each datatype, we ran SUPREME exclud-
ing the features from every single datatype separately. For
each datatype Y, we excluded Y-specific node features from
patient similarity networks and also did not integrate them
with node embeddings during subtype prediction, called
noY r. Considering that Y-specific patient similarity net-
work was generated based on Y-specific features, we com-
pared only the combinations without Y (27~! — 1 models)
to ensure the differences were due to the Y-specific fea-
tures. We compared noY ; models against the correspond-
ing SUPREME models (called withY ), to show the im-
portance of Y-specific features.

When we excluded features from any datatype, we ob-
served a lower or comparable performance (Figures 5 and
Supplementary Figure S8). The performance drop was sig-



NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 9

1.001
0.957
o 0.901
)
5 0.851
©
= 0.801
0.757
0.701

"‘ |

o A o
. O\’“\ O\N\ \0 \;‘?“ \\?«\ C;OQ’ O-Q,o K\ng 4[? o @‘(/ '&0. S ®Q~0 é\\ N é\\)
& © <\° & 00 & 00 & & & &

T

O

Figure 4. Analysis of network-specific patient embeddings. Violin plot of macro F1 scores of SUPREME- performance for the models integrated with a
specific patient embedding from each datatype (withX,, models, where X is the datatype whose embedding is included) versus excluding that embedding
(noX,, models) on TCGA data. Significance level was measured between with and no cases of the same datatype (Wilcoxon rank-sum test p-value to compare
the distribution of violin plots representing the significance <0.001 by ***, else if <0.01 by **, and else if <0.05 by *). See Figure 1 for the abbreviations
of datatypes. [SUPREME-: SUPREME without raw feature integration]

11 -

pE————
P

1 . 0 e ’L'
E e
5 0.9 T
(. 90 ©e TVae® =T
208 Y < % %
0.7 ,
e 5 b S R @ e RS
AN M L3 P o X K 5 ?, 1 N\ & \Q\\ N & K
\N\'{(\O “00 \s\\“@\ 900\\\ o © C'o \\“(’j‘ o0 \;i&“@ (\0\\& RO N 0\\!\ \*K"“h 0@\)

Figure 5. Analysis of features from each datatype. Violin plot of macro F1 scores for the models excluding the features from each datatype (n0Y y models,
where Y is the datatype whose features are completely excluded) versus corresponding SUPREME models (withY ; models) on TCGA data. Significance
level was measured between with and no cases of the same datatype (Wilcoxon rank-sum test p-value to compare the distribution of violin plots representing

the significance <0.001 by ***, else if <0.01 by **, and else if <0.05 by *). See Figure 1 for the abbreviations of datatypes.

nificant for all the datatypes on TCGA, and gene expression
and copy number aberration datatypes on METABRIC
(Supplementary Figure S8A). The drop with the exclusion
of the gene expression features was more drastic and it
was consistent for all three datasets (Supplementary Fig-
ure S8B), supporting the importance of gene expression fea-
tures for breast cancer (in agreement with findings in single
model analysis).

Ablation studies

We compared our tool with its variations when some steps
were skipped to assess their importance (Table 3). A com-
parison of SUPREME with SUPREME- showed the im-
portance of raw feature integration. Also, to show the im-
portance of GCN-based approaches, we trained the same
ML algorithm (MLP in our case) using only the raw fea-
tures and compared it with the SUPREME, which was
based on the same raw features and additional patient em-
beddings.

To show the impact of each datatype separately, we
demonstrated the performance of SUPREME models
based on a single data type. We also compared SUPREME

Table 3. Ablation studies

Comparison/Section Measures impact of

SUPREME vs. SUPREME-
SUPREME vs. MLP
Single model section

Raw feature integration
GCN utilization
The used method with only one

datatype
SUPREME vs. MLP in single GCN utilization with only one
model section datatype

This section Node features

with other methods that can work with a single data modal-
ity only. To show the importance of embeddings at a
single datatype level, we compared SUPREME with the
MLP model trained on the features from the correspond-
ing datatype.

In addition to these studies, here, we also checked the
overall impact of node features on the prediction tasks. To
do that, instead of node features, we generated one-hot en-
coded features and evaluated SUPREME on TCGA data.
We had macro F1 score as 0.75 4 0.01, weighted F1 score as
0.83 +0.01, and accuracy as 0.84 4+ 0.01. These results sug-
gest that node features were important, dropping the evalu-
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Table 4. Macro F1 scores for IMDB and ACM datasets. [Macro F1:
Macro-averaged F1 scores, GCN,: Result with xth network]. *Three re-
sults: First row with the first network, second row with the second network,
and third row integrating the first and second networks. The first networks
are based on movie-director-movie and paper-subject-paper meta-paths;
and the second networks are based on movie-actor-movie and paper-
author-paper meta-paths in IMDB and ACM datasets, respectively

Method IMDB ACM
MLP 0.53 + 0.01 0.90 + 0.01
SVM 0.55 + 0.00 0.89 =+ 0.00
RF 0.48 + 0.00 0.89 + 0.00
GCN; 0.56 + 0.00 0.70 =+ 0.00
GCN, 0.51 + 0.00 0.91 + 0.00
0.58 + 0.01 0.91 +0.01
SUPREME" 0.55 4 0.02 0.92 4 0.01
0.61 =+ 0.02 0.94 + 0.00

ation performance drastically. This was expected as biolog-
ical features are highly effective in determining the subtypes
of breast cancer.

SUPREME was model-agnostic outperforming other ap-
proaches in different domains

To show the model-agnostic feature, we evaluated
SUPREME on different domains. For that purpose,
we generated two meta-path-based networks from the
heterogeneous network of ACM and IMDB data. Since we
had only two networks for these datasets, we shared the re-
sults for individual networks and the integrated one. Based
on all six evaluation metrics, SUPREME outperformed
other baseline methods on both datasets (Table 4 and
Supplementary Table S6). As compared to MLP, we had
increased performance showing the importance of graph
utilization. Single models from GCN and SUPREME were
not as good as the integrated one, showing the importance
of SUPREME’s integrative nature.

According to these results, the first network of IMDB
data (the network based on movie-director-movie meta-
path) and the second network of ACM data (the network
based on paper-author-paper meta-path) were more infor-
mative. This is not surprising that movie-director-movie
association was more important than movie-actor-movie
on movie genre prediction task on IMDB data. This was
consistent based on the GCN runs and single models of
SUPREME runs. Even though there is not a big difference
on individual networks of ACM data for SUPREME, we
see a big difference on GCN runs, showing the importance
of our methodology utilizing embedding along with node
features.

DISCUSSION

In this study, we introduced SUPREME, a novel integrative
approach utilizing GCNs on multiple similarity networks
where nodes are attributed with multi-modal node features.
We applied SUPREME to three different prediction tasks
from five different datasets. We observed that SUPREME
outperformed other methods on ACM and IMDB data
based on six evaluation metrics (Table 4 and Supplemen-
tary Table S6). On breast cancer subtyping, we compared

SUPREME with seven cancer (sub)type prediction tools
and baseline methods and observed that SUPREME sub-
stantially outperformed or was on par with them based
on macro F1 score, accuracy, and weighted F1 score (Fig-
ures 2, Supplementary Figures S3 and S4, and Supple-
mentary Table S2). To demonstrate the consistency of the
performance for individual SUPREME models, we shared
the distribution of standard deviation of SUPREME mod-
els (Supplementary Figures S9, S10, and S11). We dif-
ferentiated Normal-like subtype, which has the smallest
sample size for three datasets, significantly better than all
other tools on all three datasets showing SUPREME’s ro-
bustness even for minority classes (Supplementary Fig-
ure S5). We made SUPREME a publicly available tool
at https://github.com/bozdaglab/SUPREME (under Cre-
ative Commons Attribution Non Commercial 4.0 Interna-
tional Public License) for researchers, biologists, and clini-
cians to utilize.

We applied survival analysis to see the power of the meth-
ods to differentiate subtypes having significant survival dif-
ferences. Using TCGA data, we compared our tool with
nine popular integrative cancer subtype differentiating tools
and baseline methods and SUPREME had consistently
significant survival differences between predicted subtypes
outperforming the other tools (Figure 3).

Based on the majority of predictions, we determined
ensemble subtype labels, most of which had high sup-
port from individual models (Supplemental File 3). We
observed that survival difference between these ensemble
subtypes was more significant than survival difference be-
tween gene expression-based ground truth (i.e., PAMS50)
subtypes (Supplementary Figure S6). These results sug-
gest that some survival-related characteristics cannot be ex-
plained by gene expression data alone. SUPREME was able
to extract these survival-related characteristics utilizing ad-
ditional data modalities. SUPREME’s ensemble label pre-
dictions that were different from ground truth with high
support could be further examined by biologists and clin-
icians.

To show the effect of main steps of SUPREME, we
performed an ablation study. In addition, we analyzed
datatype-specific embeddings and datatype-specific fea-
tures. We found that gene expression features were highly
important for single models and overall, as expected for
breast cancer. Findings about the important embeddings
of datasets were supported by SUPREME- single models,
where models were fed by only one embedding. We ob-
served that patient embeddings were mostly more informa-
tive than raw features. Integrating raw features with patient
embeddings usually improved the model performance (Fig-
ures 2 and Supplementary Figure S3) except for raw features
from few datatypes in single datatype-based models (Table
2, Supplementary Tables S3, S4, and S5).

To compare the performance when we do not utilize the
local neighborhood, we ran SUPREME- on TCGA data
with the EXP-based single model when we do not have any
neighbors than the patient itself. In that model, we had
a macro F1 score of 0.85 £ 0.02 for SUPREME-, which
was much higher than the original EXP-based model of
SUPREME-. This model was even better than the EXP-
based single model of SUPREME. This might suggest



that EXP-based patient features themselves could perform
better than neighborhood-convolved features because the
ground truth utilizes patient features themselves to decide
the subtype labels. Similarly, because of that, we might see
a performance improvement when we add EXP-based raw
features.

SUPREME provides four options of ML algorithms to
integrate embeddings and raw features, namely MLP, RF,
SVM, and XGBoost. We ran SUPREME with all these
choices and compared performances (Supplemental File 1,
Supplementary Figures S1 and S2, and Supplementary Ta-
ble S1). RF and XGBoost had a low performance for some
models. Overall, SVM had a good performance on every
three datasets, however, it did not converge for some mod-
els. For this study, we chose MLP due to its high and con-
sistent prediction performance for all three datasets and its
low running time.

In our experiments, we observed a high number of
edges in MUT-based patient similarity networks as there
were many patient pairs with the same similarity. Fur-
thermore, the MUT-based models on TCGA data had
high predictive performance, whereas these models had
low predictive performance on METABRIC and the com-
bined datasets. These discrepancies were mainly due to
the sparse nature of the binary mutation features. For
the special datatypes with binary-like sparse values like
mutation, patient similarity networks and extracted fea-
tures could be generated in a more sophisticated way
such as based on the functional effect of these mutations
(36-39).

SUPREME is extendable to any number of datatypes
to integrate. For cases where many datasets are integrated,
to avoid potential overfitting, SUPREME provides an op-
tional feature selection step for raw features before train-
ing the final prediction model. Users could skip raw fea-
ture integration altogether when network-specific patient
embeddings provide sufficient discriminatory power. Users
could run SUPREME on their training/validation data by
enabling/disabling these features to optimize their mod-
els. In addition, users could perform ablation studies on
SUPREME to determine the most effective data modali-
ties and their combinations. Depending on these results, for
the final prediction, users could rely on the most effective
model or an ensemble model utilizing the most promising
features and networks.

As a future direction, SUPREME could utilize atten-
tion mechanisms (40-42), which allows getting weighted
contributions from different datatypes, and also weighted
neighborhoods from networks. In addition to multiomics
datatypes, there are some regulatory relations such as com-
peting endogenous RNA (ceRNA) regulation, which has
been recently discovered with important insights into can-
cer (43). In our recent work, we inferred ceRNA interac-
tions in breast cancer (44). To adopt this kind of regulatory
relations, SUPREME could be improved to utilize patient
similarity networks based on gene regulatory interactions
and more complex patient relations. By improving the ex-
isting methodologies with recent advances in the literature,
we can obtain more clear cancer subtype groups to pave the
way for precision medicine.
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