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Abstract 

Objective  Intra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantol‑
ogy, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high 
accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, 
and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using 
deep learning.

Material and methods  As a reference, 1750 OS were manually segmented and labeled. A deep-learning approach 
based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search 
algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set con‑
sisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree 
of similarity between the annotated ground truth and the model predictions.

Results  The model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels 
of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agree‑
ments between the automatically and manually segmented teeth components. Minor flaws were mostly seen 
at the edges.

Conclusion  The proposed method forms a promising foundation for time-effective and observer-independent teeth 
segmentation and labeling on intra-oral scans.

Clinical significance  Deep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, 
implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.
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Introduction
In recent years, the development of digital dentistry 
has revolutionized the dental field [1]. 3D virtual treat-
ment planning and subsequent computer-aided design/
computer-aided manufacturing of occlusal splints, 
surgical guides, and prothesis are increasingly being 
implemented in the clinical workflow [2–4]. One com-
monly used imaging technique within the scope of vir-
tual treatment planning is the intra-oral scan, which 
provides a 3D mesh of the dentition [1].

These 3D meshes (OS) are widely used in orthodon-
tics, prosthetics, implantology, and orthognathic sur-
gery to plan patient-specific treatments, which require 
teeth segmentations with high accuracy and resolution 
[3]. Teeth segmentations aim to separate and classify 
the 3D mesh of the dental arch into different teeth fol-
lowing the FDI standard so that each individual tooth 
position can be rearranged and realigned accordingly. 
Manual teeth segmentation, the gold standard up 
until now, is time-consuming, tedious, and observer-
dependent [5]. To be able to implement digital models 
as a clinical standard, fully-automated segmentation of 
teeth with high accuracy is required [6]. This remains 
challenging due to the positional variations, shape 
alterations, size abnormalities, and differences in the 
number of teeth between individuals [6].

Recently, artificial intelligence (AI) and more specifi-
cally deep learning (e.g. convolutional neural network 
(CNN)) has shown superior segmentation performance 
compared to geometry-based approaches, mainly due 
to task-oriented extraction and fusion of local details 
and semantic information [7].

In dentistry, CNNs have been successfully applied to 
detect carious lesions [8], periodontal lesions [9], cysts 
[10], and tumors [11] and even surpassed the detection 
performance of experienced clinicians in certain condi-
tions [12]. Further deep learning based applications are 
the difficulty assessment of endodontic treatment [13], 
prediction of extraction difficulty for mandibular third 
molars [14], skeletal classification [15], soft tissue pre-
diction [16], and root morphology evaluation [17].

The capability of CNNs to automatically segment 
teeth on OS(s) were explored in different studies [6, 
18–23]. However, these CNNs are black boxes and 
lack interpretability [24]. Clinicians and patients dem-
onstrate reticence in confiding and adopting AI sys-
tems, which are not transparent, understandable, and 
explainable [25, 26]. For this reason, this study aimed 
to develop an explainable detection, segmentation, and 
FDI labeling system using deep learning as a funda-
mental basis for improved and more automated treat-
ment planning in dentistry.

Material and methods
Data
In the present study 1750 3D scans (875 maxilla, 875 
mandible) from 875 patients were randomly collected 
from different clinics in the Netherlands. The accu-
mulated 3D scans (intra-oral scan and gypsum casts 
scan) were acquired with 3Shape Trios Move, 3Shape 
D500 (3shape, Copenhagen, Denmark), DW 3Series + , 
DW 7Series, DW 3Series, and DW 5Series (Dental 
Wings, Montreal, Canada). This study was conducted 
in accordance with the code of ethics of the World 
Medical Association (Declaration of Helsinki) and the 
ICH-GCP. The Institutional Review Board, Commissie 
Mensgebonden Onderzoek Radboudumc, Nijmegen, 
The Netherlands approved the study and granted the 
approval that informed consent was not required as all 
image data were anonymized and de-identified before 
analysis (decision no. 2021–13253).

Data annotation
The OS were mesh-wise annotated (teeth and gingiva) 
by different clinicians independently and in duplicate 
using the brush mode in Meshmixer (Autodesk, San 
Rafael, United States). Each triangle surface could only 
belong to one of the two classes. All segmented and 
labeled OS were subsequently reviewed and revised 
by two different clinicians (MH, DM). Each of the cli-
nicians and reviewers was instructed and calibrated 
in the segmentation task using a standardized proto-
col before the annotation and reviewing process. The 
definitive dataset was constructed from all annotated 
meshes.

The training boxes were calculated based on the 
mesh-wise annotation. For each tooth in the OS, the 
training box is determined by computing the minimum 
3D bounding box around the tooth’s points.

The model
The OS detection, segmentation, and labeling process 
included three parts: the detection module, the seg-
mentation module, and the labeling algorithm (Fig. 1).

The detection module
The detection module was comprised of two different 
CNNs: 1). PointCNN [27] and 2). 3D-Unet [28].

PointCNN is an architecture tailored for point cloud 
processing tasks, operating on unordered point sets. 
This architecture incorporates a learnable permutation 
invariant operation that efficiently gathers and aggre-
gates local features from neighboring points, facili-
tating effective feature learning while preserving the 
inherent structure of the point cloud. The 3D-Unet is 



Page 3 of 9Vinayahalingam et al. BMC Oral Health          (2023) 23:643 	

a modified version of the U-net architecture. It consists 
of an encoder, which down-samples the input volume 
to capture hierarchical features, skip connections to 
preserve spatial information, and a decoder, which up-
samples the feature.

An OS was uniformly downsampled to 30,000 vertices. 
The PointCNN acted as an initial feature extractor on 
the downsampled OS. The PointCNN encodes an OS to 
a point cloud where each vertex is represented with 256 
features. This downsampled point cloud is transformed 
to a Cartesian grid by max pooling the features of all 
points in one grid cell. The distributed surface points on 
the entire grid domain were fed forward to the 3D-Unet. 
In this stage, the model estimated the bounding box 
dimensions and its central position. The final aggregated 
bounding box proposals were used as inputs for the seg-
mentation task [21].

The segmentation module
The points pertaining to a detected tooth were extracted 
from the OS by expanding the tooth’s bounding box and 
uniformly sampling 8192 points within the expanded vol-
ume. A PointCNN was used in the segmentation mod-
ule. Each point located inside the 3D bounding box was 
binary classified as a tooth or gingiva.

The labeling algorithm
The N  detected teeth from the model were assigned to 
C = 32 FDI numbers. This was carried out by filling in an 
assignment matrix E ∈ {0, 1}N×C from a mathematical 
perspective. The solution space was immense; hence, effi-
cient heuristics were required to reduce the space effec-
tively. For this reason, a penalty function f (E) and an 
associated exploration strategy space � were formulated. 
The resulting assignment E = argmin

E∈�
f (E) would be the 

one assignment that minimized the penalty.
The post-processing was carried out in multi-

ple stages, each refining upon the previous assign-
ment, exploring the assignments that were similar to 
the existing one. Prior to post-processing, the center 
of mass (COM) of each detection n , COMn , was cal-
culated by extracting the center of the associated 
segmentation mask. The mean of all COMs was rep-
resented by COM⊙ , the axial component of which, 
COMz

⊙ , roughly acted as a watershed between two half 
jaws. The COMs are used extensively in subsequent 
penalty calculations.

As a first stage, E was greedily assigned to minimize 
E1 = arg min

E∈�Greedy

f1(E),

f1(E) = f11(E)+ �12f 12(E)+ �13f13(E)

Fig. 1  The workflow of detection, segmentation and labeling process
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 where f11 wished to have all FDI numbers assigned to 
an unique object, f12 aimed to have detections assigned 
to the right jaw, and f13 reduced the count of unassigned 
detections to a minimum. � ’s were weights, and were set 
at �12 = 0.1 and �13 = 0.01 . For the second stage, a per-
mutated space of E1 was explored where the assigned 
detections remained assigned in each jaw while having 
a possible permutation of FDI numbers (i.e., cenc stays 
constant ∀n ). This step encourages the FDI numbers to 
become sorted.
E2 = arg min

E∈�Permutation(E1)
f2(E) is minimized, where

In the formula, COMx ( x went from left to right for the 
patient) was enforced to grow monotonically while the 
FDI number increased. ⊕ denotes exclusive or.

Finally, the sorted relationship in E2 was retained, but 
allowed insertion/removal of blank assignments and 
minimize E3 = arg min

E∈�Sorted(E2)
f3(E) , where

The purpose of the penalty was to minimize the dif-
ference between the distance of a pair of teeth and their 
corresponding predetermined distance parameter. The 
distance, Dc1c2 was a prior matrix based on the training 
dataset that represented the mean of distances (in mil-
limeters) across the whole set.

The resulting assignment after three stages of refine-
ment, E3 , would then be used for subsequent analysis.

Model training
The annotated 3D meshes were randomly split into three 
sets of OS(s), 1224 for training (612 patients), 176 for val-
idation (88 patients), and 350 for testing (175 patients). 
The validation set was used to evaluate the model con-
vergence during training, while the hold-out test set was 
used to evaluate the model performance after training. 
Data augmentation techniques such as shuffle points, 

=
∑

c
max

(

∑

n
enc − 1, 0

)

+�12

∑

n

(

∑

c∈ Upper Jaw
enc · 1

[

COMz
n < COMz
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]
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∑
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)
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)
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∑
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∑
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(∣

∣COMn1 − COMn2

∣

∣− Dc1c2

)

.

feature normalization, flips, and rotations around the 
z-axis were employed on the training set.

The detection module was trained over 180 epochs 
with a learning rate decay of 0.8 while the segmenta-
tion module was trained for 50 epochs with a learning 
rate decay of 1. The applied batch size was one for the 
detection module with 30,000 vertices and batch size 
three for the segmentation module with 8192 vertices. 
Weight decay of 0.0001 and early stopping were applied 
for both modules. Both modules used the Adam opti-
mizer at a learning rate of 0.001. No momentum or gradi-
ent clipping were applied. The binary cross-entropy loss 
function was applied for the segmentation module. The 

detection module used a multi-task loss function consist-
ing of binary cross-entropy loss and IoU loss. The model 
was implemented in TensorFlow 1.8 and trained on an 
NVIDIA ® V100 Tensor Core GPU 16G.

Statistical analysis
The model predictions on the test set were compared to 
the expert annotations. Object detection, instance seg-
mentation and FDI labeling metrics were reported as 
follows for the test set: accuracy =  TP+TN

TP+TN+FP+FN  , preci-
sion =  TP

TP+FP , recall = TP
TP+FN  and intersection over union 

(IoU) =  TP
TP+FP+FN  . TP, TN, FP and FN denote true posi-

tives, true negatives, false positives and false negatives, 
respectively [5].

Results
The model achieved high detection accuracies on the test 
set (350 OS(s)) with a precision of 0.994, recall of 0.988, 
and average bounding box IoU of 0.806 (Table  1). The 
bounding box IoU for individual teeth ranged from 0.718 
to 0.873. The detection model had, in total, 54 missed 
detections and 29 false-positive detections.

Considering a successful detection, the model achieved 
teeth segmentations with an average IoU score of 0.915 
(Table  2). The segmentation IoU, recall, precision and 
accuracy for individual teeth ranged from 0.792 to 
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0.948, 0.847 to 0.993, 0.880 to 0.966, and 0.989 to 0.998, 
respectively.

The optical inspection (Figs. 2 and 3) showed excellent 
position agreements between the automatically and man-
ually segmented teeth components. Minor flaws were 
mainly seen cervically, and the lowest segmentation and 
detection accuracies were seen for the third molars.

The FDI labels of the teeth were predicted with an 
accuracy of 0.894 (Table 3). The accuracy range for indi-
vidual teeth was between 0.6 and 1. Figure  4 illustrates 
the confusion matrices for the upper and lower jaw.

Discussion
The field of AI in dentistry is rapidly advancing and 
holds great potential for significant contributions to 
dental practices in the near future [26–29]. Chen et al. 
categorized AI systems into three types: pre-appoint-
ment, inter-appointment, and post-appointment 
systems (30). These systems can aid in patient manage-
ment by analyzing their needs and risks before appoint-
ments, assisting in diagnosis, treatment planning, and 
outcome prediction during appointments, and sup-
porting labor work such as prosthodontics design and 

Table 1  Precision, recall, and Intersection over Union (IoU) of the 
detections

Tooth Precision Recall IoUBoundingBox

11 1.000 1.000 0.848

12 1.000 0.994 0.806

13 0.988 0.942 0.831

14 0.983 1.000 0.847

15 0.942 1.000 0.819

16 0.994 1.000 0.863

17 0.969 0.976 0.810

18 0.263 0.833 0.801

21 1.000 1.000 0.836

22 1.000 1.000 0.778

23 0.959 0.959 0.810

24 0.989 1.000 0.843

25 0.926 0.994 0.821

26 0.983 0.994 0.873

27 0.969 0.992 0.821

28 1.000 1.000 0.718

31 1.000 1.000 0.742

32 1.000 1.000 0.796

33 0.988 0.988 0.796

34 0.965 1.000 0.814

35 0.868 0.986 0.800

36 0.994 1.000 0.818

37 0.943 0.935 0.765

38 0.429 0.500 0.824

41 0.994 0.988 0.727

42 0.994 1.000 0.764

43 0.976 0.982 0.754

44 0.988 0.994 0.801

45 0.900 0.994 0.812

46 0.994 0.994 0.814

47 0.943 0.951 0.767

48 0.750 1.000 0.743

Table 2  Accuracy, precision, recall, and Intersection over Union 
(IoU) of the OS segmentations

Tooth Accuracy Precision Recall IoUMask

11 0.997 0.935 0.990 0.926

12 0.998 0.923 0.992 0.916

13 0.998 0.931 0.991 0.923

14 0.997 0.935 0.993 0.929

15 0.998 0.941 0.992 0.933

16 0.997 0.961 0.987 0.948

17 0.996 0.946 0.959 0.909

18 0.998 0.966 0.971 0.939

21 0.997 0.931 0.988 0.921

22 0,997 0.916 0.993 0.910

23 0.997 0.911 0.993 0.905

24 0.997 0.937 0.992 0.929

25 0.997 0.937 0.992 0.929

26 0.997 0.955 0.989 0.945

27 0.995 0.940 0.935 0.881

28 0.997 0.880 0.983 0.867

31 0.996 0.899 0.989 0.890

32 0.997 0.919 0.990 0.909

33 0.997 0.927 0.991 0.919

34 0.997 0.932 0.993 0.926

35 0,997 0.937 0.992 0.931

36 0.994 0.959 0,965 0.926

37 0.990 0.941 0.887 0.839

38 0.998 0.955 0.992 0.948

41 0.997 0.906 0.989 0.896

42 0.997 0.918 0.989 0.908

43 0.996 0.915 0.991 0.907

44 0.997 0.933 0.992 0.926

45 0.997 0.940 0.991 0.932

46 0.994 0.958 0.974 0.933

47 0.989 0.935 0.876 0.824

48 0.990 0.934 0.847 0.792
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Fig. 2  Overview of mandible teeth segmentations; left: manual segmentation; middle: automatic segmentation; right: overlay; one of the two 
detection errors is illustrated

Fig. 3  Overview of maxillary teeth segmentations; left: manual segmentation; middle: automatic segmentation; right: overlay
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treatment evaluation after appointments [18]. Particu-
larly, 3D treatment planning can be time-consuming 
and laborious, but with the help of automated assis-
tance, it can become more time-efficient, leading to 
a more cost-effective 3D treatment planning process 
[6]. In this study, the researchers evaluated the per-
formance of a deep learning model for automating 3D 
teeth detection, segmentation, and FDI labeling on 3D 
meshes.

In dentistry, different studies have applied deep learn-
ing models for segmentation on 3D meshes [6, 20–23]. 
Lian et  al. introduced a mesh-based graph neural net-
work for teeth segmentation with an F1-score of 0.981 
[23]. Zhao et  al. used a graph attentional convolution 
network with a local spatial augmentation module for 
segmentation and achieved a mean IoU of 0.871 [22]. 

Zanjani et  al. proposed a volumetric anchor-based 
region proposal network for teeth point cloud detec-
tion and segmentation with a mean IoU of 0.98 [21]. 
Cui et  al. applied a two-stage network architecture 
for tooth centroid extraction using a distance-aware 
voting scheme and segmentation with an F1-score of 
0.942 [20]. Similarly, Hao et  al. proposed a two-mod-
ule approach. The segmentation module generated a 
fine-grained segmentation, whereas the canary module 
autocorrected the segmentation based on confidence 
evaluation. Hao et al. reported a mean IoU of 0.936 and 
0.942 for mandible and maxillary teeth, respectively [6].

The number of studies reporting the classification and 
semantic labeling accuracies of each tooth is yet limited 
[18, 19]. Tian et al. employed a 3D CNN using a sparse 
voxel octree for teeth classification with an accuracy of 
0.881 [18]. Ma et al. proposed a deep learning network to 
predict the semantic label of each 3D tooth model based 
on spatial relationship features. The proposed SRF-Net 
achieved a classification accuracy of 0.9386 [19].

It is important to recognize that the performance of 
deep learning models relies heavily on factors such as the 
dataset, hyperparameters, and architecture involved [8]. 
One key obstacle to reproducing and validating previous 
results is the restricted accessibility of the datasets used, 
stemming from privacy concerns. Furthermore, the con-
siderable variation in training and test sets sizes across 
different studies makes it difficult to draw direct compar-
isons. The lack of clarity regarding data representative-
ness further compounds the issue.

Moreover, attempting to reproduce complex compu-
tational pipelines based solely on textual descriptions 
without access to the source code becomes a subjective 
and challenging task (31). The inadequate description of 
training pipelines, essential hyperparameters, and cur-
rent software dependencies undermines the transpar-
ency and reproducibility of earlier findings. Given these 
limitations, it’s essential to approach any direct compari-
son of previous segmentation and labeling results with 
caution [5].

Even though previous studies achieved remarkable 
results, the models are regarded as black boxes lacking 
explicit declarative knowledge representation. Generat-
ing the underlying explanatory structures is essential in 
the medical domain to provide clinicians with a trans-
parent, understandable, and explainable system [29]. The 
current study made the results re-traceable on demand 
using a hierarchical three-step plug-and-play pipeline. 
This pipeline allows clinicians to verify the immediate 
results of each module before proceeding further. In case 
the detection module fails to detect a tooth, the clinician 
can correct the mistake immediately and proceed to the 
subsequent module. This stop-and-go approach ensures 

Table 3  Accuracy of the FDI numeration

Tooth Accuracy

11 0.944

12 0.943

13 0.944

14 0.947

15 0.945

16 0.902

17 0.797

18 0,800

21 0.938

22 0.938

23 0.944

24 0.913

25 0.926

26 0.871

27 0.873

28 0.600

31 0.850

32 0.879

33 0.892

34 0.898

35 0.931

36 0.849

37 0.843

38 1.000

41 0.847

42 0.884

43 0.916

44 0.918

45 0.941

46 0.905

47 0.914

48 0.667
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an efficient workflow while maintaining high precision 
and explainability. Another advantage of this plug-and-
play pipeline is the interchangeability of the different 
modules. The detection and segmentation modules can 
be exchanged with alternative model architectures with-
out much difficulties.

The segmentation IoU scores ranged between 0.792 
and 0.948. Furthermore, each tooth was classified and 
labeled with an accuracy between 0.6 and 1. The low-
est segmentation and labeling accuracies were seen for 
third molars. Hierarchical concatenation of different 
deep learning models and post-processing heuristics 
have the disadvantage that the errors in the different 
modules are cumulative. In other words, inaccuracies 
in the detection module will affect the segmentation 
module and the FDI labeling algorithm. However, this 
shortcoming can be neglected if the pipeline is interac-
tively used with the clinicians.

Although our proposed model has achieved clinically 
applicable results, it has some limitations. Wisdom 
teeth, supernumerary teeth, or crowded teeth impede 
the segmentation and labeling accuracies. Most failure 
cases are related to rare or complicated dental mor-
phologies [6, 7, 18–20]. Without real-world integration, 
deep learning models are bound to the limits of the 
training set and validation set. Furthermore, extensive 
model comparisons are required to choose the optimal 
model architectures for the respective modules (e.g., 
Point-RCNN for the detection module). Future stud-
ies should focus on further automation of 3D treat-
ment planning steps, such as automated crown design 

and automated alignment of intra-oral scans and cone-
beam computed tomography.

The proposed model is currently clinically used for 
orthodontic treatment planning. The constant error 
reductions and adaptions to real-world cases will fur-
ther enhance the current model. The successful imple-
mentation of this approach in daily clinical practice will 
also further reduce the risks of limited robustness, gen-
eralizability, and reproducibility.

Conclusion
In conclusion, our proposed method achieved accurate 
teeth segmentations with a mean IoU score of 0.915. 
The FDI labels of the teeth were predicted with a mean 
accuracy of 0.894. This forms a promising foundation 
for time-effective and observer-independent teeth seg-
mentation and labeling on intra-oral scans.

Acknowledgements
None.

Authors’ contributions
Shankeeth Vinayahalingam: Conceptualization, Method, Investigation, Formal 
Analysis, Software, Funding acquisition, Writing – original draft. Steven 
Kempers: Validation, Visualization, Data curation, Writing – review &; editing. 
Julian Schoep: Software, Method, Formal Analysis, Writing – review &; editing. 
Tzu-Ming Harry Hsu: Software, Method, Formal Analysis, Writing – review 
&; editing. David Anssari Moin: Investigation, Validation, Resources, Project 
administration, Funding acquisition, Supervision, Writing – review &; editing. 
Bram van Ginneken: Investigation, Validation, Supervision, Writing – review &; 
editing. Tabea Flügge: Investigation, Validation, Supervision, Writing – review 
&; editing. Marcel Hanisch: Investigation, Validation, Supervision, Writing 
– review &; editing. Tong Xi: Investigation, Validation, Supervision, Writing – 
review &; editing.
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