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Abstract
Objective. Accurate modeling of transcranial magnetic stimulation (TMS) coils with the magnetic
core is largely an open problem since commercial (quasi) magnetostatic solvers do not output
specific field characteristics (e.g. induced electric field) and have difficulties when incorporating
realistic head models. Many open-source TMS softwares do not include magnetic cores into
consideration. This present study reports an algorithm for modeling TMS coils with a (nonlinear)
magnetic core and validates the algorithm through comparison with finite-element method
simulations and experiments. Approach. The algorithm uses the boundary element fast multipole
method applied to all facets of a tetrahedral core mesh for a single-state solution and the successive
substitution method for nonlinear convergence of the subsequent core states. The algorithm also
outputs coil inductances, with or without magnetic cores. The coil–core combination is solved only
once i.e. before incorporating the head model. The resulting primary TMS electric field is
proportional to the total vector potential in the quasistatic approximation; it therefore also
employs the precomputed core magnetization.Main results. The solver demonstrates excellent
convergence for typical TMS field strengths and for analytical B–H approximations of
experimental magnetization curves such as Froelich’s equation or an arctangent equation. Typical
execution times are 1–3min on a common multicore workstation. For a simple test case of a
cylindrical core within a one-turn coil, our solver computed the small-signal inductance nearly
identical to that from ANSYS Maxwell. For a multiturn rodent TMS coil with a core, the modeled
inductance matched the experimental measured value to within 5%. Significance. Incorporating
magnetic core in TMS coil design has advantages of field shaping and energy efficiency. Our
software package can facilitate model-informed design of more efficiency TMS systems and guide
selection of core material. These models can also inform dosing with existing clinical TMS systems
that use magnetic cores.

1. Introduction

It has long been known that soft magnetizable mater-
ials [1] can be used as a core of transcranial magnetic

stimulation (TMS) coils [2, 3], (see also review [4]).
A magnetic core may focus or redirect both the coil
magnetic and electric fields to a region of interest
and thus can increase the energy efficiency of TMS
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considerably. The use of a magnetic core can poten-
tially offer an efficient way to produce stimulation
fields using a smaller device that requires less energy
and produces less heating [5].

Since the TMS magnetic field strengths typically
reach 1.5 Tesla (T) or higher, it is desirable to use
materials that saturate at or above 1.5 T. One suitable
material, for example, is vanadiumpermendur. Other
suitable materials include the metallic glasses (i.e.
Metglas), permalloy, supermalloy, powdered iron,
and silicon irons or silicon steels, in particular, 3%
grain oriented steel (magnesil). Ferrite could also be
used, although it is not preferred, due to the fact that it
saturates at 0.5 T [2, 3]. Newmagnetic materials suit-
able for high-frequency, high-power applications in
modern switching power electronics (transformers,
pulse power cores, high-frequency inductors) are act-
ively being developed [6–9]. These materials might
potentially become very suitable candidates for mod-
ern and future medical TMS applications.

Despite their desirable properties, TMS magnetic
cores are not widely used at present. Neuronetics,
Inc. of PA, USA is the only company that has been
widely (and successfully) employing the magnetic
(iron) core technology for TMS applications [5]. The
modern research on TMS coils with the magnetic
cores is also rather sparse [4, 10–16]. There seem to
be several potential questions pertinent to the subject
matter. First, the time constant of a simple RL circuit
modeling a coil is L/Rwhere L is coil’s inductance and
R is coil’s resistance. Adding the magnetic core might
significantly increase the inductance hereby increas-
ing the duration of the TMS pulse and decreasing
the induced electric field following the Faraday’s law
of induction. It is however unclear whether or not
the inductance really changes that much, for all pos-
sible geometries and especially in saturation. There
are some optimistic examples in the literature [10].
Numerical modeling could help us to investigate this
problem.

Second, there is doubt that the addition of fer-
romagnetic cores is practical as they might enter
magnetic saturation in the field range needed for
TMS [17]. As long as the material is (nearly)
saturated, its major advantage—the much higher
permeability—may largely be lost. It is however
unclear whether or not the remaining permeability
increase might still be sufficiently high, especially for
the newmagnetic materials. Numerical modeling can
help us answer this question.

Third, Koponen and colleague noted that
although ‘an iron core can increase the energy
efficiency of a TMS coil considerably; however,
this increase comes at a cost of increased bulki-
ness…’ [18]. This is indeed true, but it is not entirely
clear how bulky should the core really be in differ-
ent situations. Numerical modeling could again help

us to quantify the necessary core volume in every
specific case.

The magnetic core modeling is a complicated
non-linear problem. The finite element method
(FEM) and the finite difference method are the
major tools of modeling TMS coils with magnetic
cores [10–13]. FEM has been extensively developed
and used inmore general power-electronics problems
with the magnetic cores including quite sophisticated
hysteresis and anisotropic models [19–25].

An industry-leading commercial FEM software
package, ANSYS Maxwell, could be employed to
model the coil with the core in the magnetostatic
approximation including arbitrary anhysteretic B–H
curves, non-zero coercivity, self- and mutual induct-
ances, etc. Though the ANSYS Maxwell Eddy current
solver could output the induced electric field directly,
the corresponding solution appears highly oscillat-
ory and, in the authors’ own experience, might be
less accurate. A very relevant demonstration is given
in [11]—see figure 7, and especially figures 8 and 11
of this reference. Furthermore, both these software
packages tend to slow down when a realistic high-
resolution head model is included into considera-
tion. On the other hand, the excellent open-source
TMS software SimNIBS [26–28], can incorporate
anatomically-accurate head models, but it cannot yet
model coil inductance or a coil with a magnetic core.
Therefore, there is a need for a tool that could model
the coil, the core, and the head in one package and
be appropriate for solving the specific TMS tasks and
testing different existing and prospective cores.

In this study, we aim to develop and dissemin-
ate such a tool. We expand the previously developed
boundary element fast multipole method (BEM-
FMM) engine [29, 30] to a rapid modeling of TMS
coils with a linear and nonlinear core. Note that the
accurate modeling of the linear core problems via
the BEM-FMM appears mostly straightforward and
is fast. It is accomplished using the duality between
magnetostatic, electrostatic, and DC BEM conduc-
tion analyses [31] since the conduction BEM-FMM
solver is already available [30, 32, 33].

For the nonlinear (and/or anisotropic) analysis,
we have to introduce a volumetric tetrahedral mesh
in addition to the standard BEM triangular sur-
face mesh. Then, the problem is how to expand the
standard fast linear-core BEM formulation [34–36]
to the nonlinear case. One possible solution is based
on the introduction of volume magnetic charges
and using the method of double integral equation
(surface+volume) [37]. However, it might be too
complicated. In this study, we suggest using a differ-
ent simpler method that still utilizes only one integ-
ral equation of the standard BEM. At the same time,
it applies this equation to all faces of the underlying
tetrahedral mesh of the core, including not only the

2



J. Neural Eng. 20 (2023) 016028 S N Makaroff et al

boundary faces but also all inner faces. In otherwords,
we assume a constant permeability within each tetra-
hedron and impress the surface charge density at each
outer and inner face to satisfy the boundary condition
of the continuous normal component of themagnetic
flux density.

In the following sections, we will first present the
methods for modeling TMS coils with and without
magnetic core, numerical implementation of the
solver, and material models for magnetic cores. Next,
we will compare solutions generated by our software
with those from a commercial FEM solver. We will
further validate our software by comparing themodel
to experimental measurements of a constructed TMS
coil, as well as to analytic solution (the latter is presen-
ted in the supplementary material).

2. Methods

2.1. Solving the primary field of TMS coil without
magnetic core
The primary field of a TMSmetal coil and the primary
coil current are assumed to be unaffected by the mag-
netic core. The primary field of a TMS coil will be
denoted by superscript p. The static coil is charac-
terized by a conduction current density j(r) (Am−2)
everywhere within metal conductors. The magnetic
vector potential generated by coil currents flowing
within all metal windings with volume V is found
from Ampère’s law

Ap(r) =
µ0

4π

ˆ
V

j(r ′)

|r− r ′|
dr ′, (1a)

where µ0 is magnetic permeability of vacuum (air).
In the quasistatic approximation, the separation of
variables applies. It yields j(r, t) = I(t)j(r), where
I(t) is the temporal waveform of a TMS pulse gen-
erator and j(r) is the static current distribution
map. The induced primary electric field, Ep(r, t) =
−∂Ap(r, t)/∂t, therefore becomes

Ep(r, t) =−∂I(t)

∂t
Ap(r), (1b)

at any time moment. Similarly, the static part (this
term will be omitted in what follows) of the mag-
netic flux density is found fromBiot–Savart law in the
form:

Bp(r) =∇×Ap(r)

=
µ0

4π

ˆ
V
∇× j(r ′)

|r− r ′|
dr ′

=
µ0

4π

ˆ
V

j(r ′)× (r− r ′)
|r− r ′|3

dr ′, (1c)

and the magnetic field intensity in free space is finally
given by

Hp(r) =
1

µ0
Bp(r). (1d)

2.2. Solving secondary field with magnetic core
The magnetic core is characterized by its relative per-
meability, µr, which may be field independent (a lin-
ear core) or change with the field intensity (a nonlin-
ear core). In the presence of the magnetic field of the
coil—the primary field given by equations (1)—the
core material becomes magnetized; that is the micro-
scopic dipoles acquire a net alignment along cer-
tain direction(s). Their net effect results in a second-
ary magnetic vector potentialAs, secondary magnetic
flux Bs, and the secondary magnetic field Hs—the
response of the magnetic materials. The total poten-
tial, flux, and the field become the sum of both the
primary and the secondary fields. The magnetic vec-
tor potential of a singlemagnetic dipole withmoment
m(r ′) located at r ′, is given by

As(r) =
µ0

4π

m(r ′)× (r− r ′)
|r− r ′|3

. (2a)

In the magnetized object, each volume element dr ′

carries a dipole moment m=M(r ′)dr ′. Here, M is
magnetization or dipole moment per unit volume.
It is expressed through the magnetic field within the
magnetized object in the form

M(r) = (µr− 1)H(r),

H=
1

µ0
B−M,

∇·B= 0, (2b)

where µr is the relative permeability of the core.
Therefore, the secondary magnetic vector potential
generated by the magnetized core with the volumeW
becomes (see, for example, [34])

As(r) =
µ0

4π

ˆ
W

M(r ′)× (r− r ′)
|r− r ′|3

dr ′, (2c)

anywhere in space. Once H(r) is known, As(r) can
be found from equations (2b) and (2c). However,
H(r) =Hp(r)+Hs(r) is now the total field. The sec-
ondary field Hs present in this expression is not
known. So is the secondary flux Bs = µHs. The goal
of the numerical modeling is to solve for them.

2.2.1. Solving linear core
In the magnetoquasistatic approximation, the dis-
placement current is negligible. Thus, the approxim-
ate form of Ampère’s law is the continuity condition
of the current density, j. Anywhere within the coil
current-free region, j= 0. Therefore, Ampère’s law
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for the secondary field yields ∇×Hs(r) = 0. There-
fore, the secondary field can be written in the form of
a gradient of a certain function—the (full or reduced)
magnetic scalar potential with the units of ampere
(A) [34, 36]. Bypassing operations with the poten-
tial, one could choose a representation in the form
ofmagnetic charges—the surface charge density ρs(r)
with the units of weber per square meter (Tesla). The
conceptual magnetic charges are a useful abstraction
that aid in the solutions of (nonlinear) magnetostat-
ics [34, 38]. Namely, the magnetic material can be
removed and replaced, in the evaluation of the sec-
ondary fieldHs(r) and other secondary quantities, by
the surface bound charges so that one has [34]

Hs(r) =− 1

4πµ0
∇
ˆ
S

ρs(r ′)

|r− r ′|
dr ′. (3a)

Equation (3a) is identical with the correspond-
ing electrostatic charge representation (after replacing
permeability by permittivity and H by E) or with the
DC current representation (after replacing permeab-
ility by conductivity and H by E). Other definitions
of magnetic charges are possible, to within a constant
factor µ0 [34]. It can be shown [34] that ρs = µ0n ·M
where n is the outer normal to the core surface S.
Otherwise, the divergence of magnetization is equal
to zero.

Equation (3a) is augmented with the boundary
condition on surface S with the local normal vector
n(r) and with µ, µ0 being the permeabilities inside
and outside with regard to the direction of its outer
normal vector, respectively,

µn(r) ·Hin(r) = µ0n(r) ·Hout(r), r ∈ S (3b)

where Hin/out is the total magnetic field just
inside/outside the permeability interface. After sub-
stitution of equation (3a) into equation (3b) and
using the principal value of the singular surface integ-
ral [39], an integral equation for ρs—the Fredholm
equation of the second kind referred to in [34] as a
Phillips-type equation—is obtained in the form:

ρs(r)

2
−Kn(r)

ˆ
S

1

4π

r− r ′

|r− r ′|3
ρs(r

′)dr ′

= Kn(r) ·Bp(r), r ∈ S (3c)

where the magnetic permeability contrast K= (µ−
µ0)/(µ+µ0) is uniquely defined at the material
interface.

Equation (3c) coincides with the correspond-
ing result for quasi-static conduction problems
in TMS, transcranial electrical stimulation (TES),
and electro-/magneto-encephalography (EEG/MEG)
modeling [30, 32, 33] when the substitution stated
above is made. It is solved exactly in the same way,
using the generalized minimum residual method

(GMRES [40, 41]) for the iterative solution and the
fast multipole accelerator [42, 43], for computing the
matrix vector product. The GMRES convergence is
excellent [30, 32, 33]. For large µ≫ µ0, the subtrac-
tion approach is used to correct a numerical error
inside the core [31, 44]. After ρs(r) is found, Hs(r) is
computed from equation (3a), andAs(r) is computed
from equation (2c). Thus, our method is as follows:

(a) Given the known Bp of the coil in free space
and the known µ of the core, solve the integral
equation (3c) for the density of effective surface
magnetic charge ρs(r) residing on the core sur-
face, via the FMM.

(b) Find the secondary field of the core,Hs(r), from
equation (3a). Then, find the total fieldH(r) and
magnetizationM(r) from equation (2b).

(c) Substitute M(r) in equation (2c) and find the
secondary magnetic vector potential As(r).

(d) Finally, add As(r) to the potential of the coil in
free space, Ap(r), and obtain the total magnetic
vector potential, A(r), of the coil with the core.

2.2.2. Solving nonlinear core
When the core permeability becomes field-
dependent, volume magnetic charges can be intro-
duced along with the surface charges [34]. One
more integral equation thus has to be added to
equation (3c) and the coupled equations have to be
solved simultaneously. This approach was in par-
ticular described and tested in an excellent study
from [37]. However, it might be too complicated. In
this study, we suggest using a different method that
still utilizes only one integral equation (3c). At the
same time, it expands it to all faces of an underlying
tetrahedral mesh of the core, including not only the
boundary faces as in equation (3c) but also all inner
faces. Our method is as follows:

(a) A normal vector n(r) is introduced for any inner
face based on two adjacent tetrahedra. It is dir-
ected from a tetrahedron ‘plus’ to a tetrahedron
‘minus’. Their initial choice is arbitrary. The ini-
tial local permeabilityµ(|Hp|) is assigned to each
tetrahedron at the first step sinceHp is known as
the coil field in free space.

(b) Secondary magnetic field Hs(r) is assumed to
be constant within every small tetrahedron. It
is computed using equation (3a) given initially
or previously known charge density ρs(r) on all
faces. At the first and only at the first step, ρs(r) =
0 and, therefore,Hs(r) = 0.

(c) Local permeability µ(|H|) is then computed for
every tetrahedron given H=Hp+Hs and the
known B-H curve.

(d) Resulting differential contrast K= (µ+ −
µ−)/(µ+ +µ−) is next computed for every
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face, either inner or on the boundary. In the
last case, there is only one adjacent tetrahedron
and µ− = µ0.

(e) Integral equation (3c) is finally solved next via
the FMM with this particular set of contrasts K.
This gives us the new magnetic charge densities
ρs(r) for every facet.

(f) The process repeats itself starting with step #2.
(g) The process stops when variations in the local

permeability, µ(|H|), and in the field within the
core become small enough, i.e. the solution con-
verges.

This successive substitution method converges
fairly well (see section 3.2 for performance). At the
same time, it requires accurate values of the neigh-
bor potential integrals present in equations (3(a) and
(c)). These values are precomputed as described in the
prior studies [30, 32, 33].

When dealing with stronger nonlinearities
(steeper B–H curves and/or complicated core geo-
metry), smoothing of the local permeability for every
tetrahedron at step #3 above might be done in the
form

µr(r0)→ αµr(r0)+
1

4
(1−α)

4∑
i=1

µr(ri), α⩽ 1

(3d)

where the summation is performed over four neigh-
bor tetrahedra. For boundary tetrahedra, the summa-
tion is running over a smaller number of neighbors
(three or two or one).

2.3. Solving the total field of the coil–core
combination
It is important to emphasize that the coil–core com-
bination is solved only once and up front, i.e. before
using the head model. Two parameters required are
the strength of the terminal coil current, I0, and the
current change rate, dI/dt. The second parameter is
purely linear; it could be altered post factum and at
any step of the solution when desired.

The solution for the coil with the core is further
utilized in the main TMS field computations. The
coil–core configuration can be moved or rotated as
required, without the need of recalculating the core
magnetization. The coil+core solver’s output is as
follows:

(a) Local permeability µ(|H(r)|) and the total field
H(r) within the core. These two are used to
calculate the major parameter of interest—
magnetization M(r) within the core from
equation (2b)—as well as the inductance change.

(b) To alter inductance, we compute the extra energy
added by the core and given by [45, 46]

U s =
1

2

ˆ
V
M(r) ·Bp(r)dr. (4a)

The corresponding inductance correction Ls =
2Us/I20 is added to equation (5b) so that the total
inductance with the core now becomes

L= Lp+ Ls = 2
Up

I20
+ 2

Us

I20
. (4b)

(c) The secondary vector potential As(r) any-
where in space is found from equation (2c)
since the core magnetization is already known.
Equation (1b) is thus modified by

E= Ep+Es =−dI

dt
[Ap(r)+As(r)] (4c)

for the combined induced electric field E. We
prefer to store M(r) and then compute E from
equation (4c) for any coil–head geometry as
required. Following the establishedTMS compu-
tations terminology, this will be the primary or
incident electric field of the coil with the mag-
netic core.

(d) If necessary, the secondary fieldHs(r) outside the
core is found from equation (3c) extended to the
nonlinear core as described above. We prefer to
store magnetic charges within the core and then
computeH=Hp+Hs for any head geometry as
required.

2.4. Calculation of coil inductance without the core
Themagnetic energy of the primary coil field without
the core is given by

Up =
1

2

ˆ
V
j(r) ·Ap(r)dr. (5a)

The inductance of the primary coil, Lp, is found dir-
ectly from the energy relation, Up = LpI20/2, where I0
is the total terminal coil current.When the coils is dis-
cretized into N short straight line segments each car-
rying current im and located at rm, the coil inductance
without the core is given by the Neumann formula
(see, for example, [47–49])

Lp = 2
Up

I20
=

µ0

4π

N∑
m=1

∣∣∣∣∣imsm ·
N∑

n=1

insn
|rm − rn|

∣∣∣∣∣ , (5b)

where sm and sn are the lengths of the segments; m
and n are the outer and inner summation indexes,
respectively. The inner sum in equation (5b) is com-
puted via the FMM [42, 43], as a potential of a single
layer repeated three times. Those computations are
done in parallel. After that, the outer sum is found
directly. Them= n terms are set to zero, which is jus-
tified when the number of subdivisions, N, is large.
We found that for precise inductance calculations via
the Neumann formula, the ratio of average segment
length to average segment spacing should be no less
than 1–3.

5
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Figure 1. Three anhysteretic curves µr(|H|) used in this study. 1 (red): a generic curve given by equation (6a) with a1 = 5/πT,
a2 = 5× 10−4 mA−1. 2 (green): approximation of the M3 silicon steel datasheet of Arnold Magnetic Technologies™ at 2 kHz
using equation (6b) with a1 = 40mH−1, a2 = 0.50 T−1. 3 (blue): Approximation of the METGLAS® 2605-SA1 foil core
datasheet described by equation (6b) with a1 = 80mH−1, a2 = 0.82 T−1.

2.5. Magnetic material models
Here, we consider an isotropic material with relat-
ive permeability µr. Its most basic characteristic is the
anhysteretic magnetization B–H curve, µr = µr(|H|),
B= µ0µr(|H|)H [17]—the key element of modeling
magnetic hysteresis loops. It is fitted using the out-
ermost B–H hysteresis loop. The anhysteretic curve
strongly depends on the frequency of the sinusoidal
(or pulsed) core test system (see, for example, [8]).
The rest of the core properties might be accounted for
as the hysteresis loss, classical eddy current loss, and
anomalous loss [50].

Although it is possible to introduce hysteresis
models of ferromagnetic materials into the numer-
ical analysis, it is still relevant to use the single-
valued B–H curve in such an analysis [39]. For
the magnetically soft materials used in the TMS
design, the hysteresis loops are relatively narrow,
that is, the coersive force is smaller compared to
‘hard’ ferromagnetic material (see [39] for more in
depth discussion). Therefore, the single-valued B–H
curve adequately characterizes suchmaterials inmany
applications [39]. In such a case, the losses are usually
estimated using analytical formulae, while the non-
linear problem is solved using the Newton–Raphson
or successive substitution method [39, 51–53].

In this study, only the single anhysteretic curve
will be modeled. The core loss could be included into
consideration post factum. Along with more sophist-
icated fittingmodels [39, 54], two popular models for
the anhysteretic curve are the inverse-tangent model:

µ0µr(|H|) =
a1 tan−1(a2|H|)

|H|
+µ0, (6a)

and the Froelich’s equation

µ0µr(|H|) =
1

a1+ a2|H|
+µ0. (6b)

Here, we adopt the forms of these constitutive
relations as presented in [55], along with the limiting
saturation value of µ0 on the right-hand sides of both
equations. The presence of this µ0 term is sometimes
neglected, but it is physically justified and is critical
for the accurate numerical analysis at the high flux
densities. In equation (6a), constant a1 has the units
of T, while in equation (6b) constant a1 has the units
of mH−1. In equation (6a), constant a2 has the units
of mA−1, while in equation (6b) constant a2 has the
units of 1/T.

We will test three magnetic materials with gradu-
ally decreasing saturation fields shown in figure 1.

(a) The first curve in figure 1 corresponds to some
generic nonlinearmaterial with a high saturation
field above 2 T as well as with a modestly varying
permeability and a relatively small magnitude of
µ0dµr/d|H|. It is described by equation (6a)with
a1 = 5/πT, a2 = 5× 10−4mA−1.

(b) The second curve in figure 1 is an approxim-
ate curve fitting for a 2-mil M3 silicon steel
core datasheet of Arnold Magnetic Technologies
at 2 kHz [56]. This laminated core saturates at
approximately 1.7 T. To obtain the single valued
anhysteretic B–H curve, we use locus points of 6
symmetric hysteresis cycles. They are tabulated
in the datasheet as the (Hmax,Bmax) pairs. The
pair (0,0) is added at the origin of theB–H plane.
The entire curve is described by equation (6a)
with a1 = 1.5T, a2 = 1× 10−2mA−1 or by
equation (6b) with a1 = 40mH−1, a2 =
0.50 T−1 although some discrepancy appears
between either analytical approximation and
experiment below 300Am−1. Namely, the curve
supplied by the manufacturer exhibits a peak
around 60Am−1. Unfortunately, most of the
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simple approximations, including the inverse
tangent or Froelich’s equation, lack to accurately
model this peak. Inmany cases, this is not a prob-
lem if we are interested in modeling for higher
magnetic flux densities [57], which is exactly the
TMS case.

(c) The third curve in figure 1 is an accurate curve
fitting data for aMETGLAS® 2605-SA1 amorph-
ous foil core datasheet [8]. This laminated core
saturates at approximately 1.2T.High-frequency
losses of this material are low [8]. The B–H
curve is now given by equation (6b) with a1 =
80mH−1, a2 = 0.82 T−1.

All three material curves described above
are characterized by quite different values
of the maximum permeability variation rate,
max(|µ0dµr/d|H||). This rate is important for sta-
bility considerations of the nonlinear numerical
solution. It is known that at very high permeability
variation rates, the nonlinear iterative solutions may
easily diverge. For the first material, the maximum
of the permeability variation rate is 0.11µHA−1, for
the second one it is 304µHA−1, and it is equal to
126µHA−1 for the third material.

3. Results

3.1. Wire and core models in the software package
3.1.1. Wire model
Computation of integrals (1) for any metal coil
is straightforward. It is performed as described in
[29] and supplement of [30] using the fast multi-
pole method [42, 43]. All volumetric conductors are
replaced by a computational wire grid consisting of
a large number of straight, short, infinitely-thin fil-
aments of electric current or segments. The num-
ber of these elementary filaments may easily exceed
100 000–1000 000 depending on the required solu-
tion accuracy. Then, all integrals (1) are discretized
on filaments and are computed numerically using the
fast multipole method or FMM [42, 43].

This approach is rather fast and flexible (typical
run times are less than 1 s). It allows us to model a
uniform current flow (the Litz wire), the skin layer
effect in a solid copper conductor (current distribu-
tion close to the surface) as well as a twisted Litz wire
which is encountered in some applications as shown
in figure 2.

3.1.2. Core model
Any custom core CAD file in ∗.stl format can be
imported into the present software using MAT-
LAB’s native STL converters. At the same time, an
internal tetrahedral mesh generator is made available
for simple (deformed or not) shapes such as cylin-
der (figure 3(a)), rectangular cuboid (figure 3(b)),

C-shapes (figures 3(c) and (d)) and their combina-
tions (see figure 3(e)), with an arbitrary volumetric
(tetrahedral) and surface mesh resolution.

A number of validation examples have been
constructed and tested which compare the present
method and its accuracy for linear and nonlinear
cores. Those include comparisons with the analytical
formulae (linear inductance) [45, 48, 58], with a high-
end commercial FEM magnetostatic solver ANSYS
Maxwell, a part of ANSYS® Electronics Desktop
2021/R2 (nonlinear/linear fields, saturation/linear
inductance), and with realistic TMS coil experiments
(linear inductance).

All examples are contained in the ready-to-use
downloadable software package as separate pro-
jects. Concurrent ANSYS projects are also included.
Below, we present the most interesting (and challen-
ging) examples in our opinion. Other examples are
described in the supplementary material. Section S2
in the supplementary material presents a suc-
cinct software description along with the running
sequences. We use the accessible self-containedMAT-
LAB platform under Windows.

3.2. Comparison with ANSYSMaxwell FEM for
three different materials (saturated core)
The problem geometry is shown in figure 4(a).
A simple solid cylindrical core is symmetrically
located within a one-turn coil. The core mesh
has ∼80 000 tetrahedra, the coil wire grid has
∼50 000 elementary current segments. Specific
dimensions along with the total applied current and
the observation line for H are shown in figure 4(a).
The coil conductor is assumed to be non-magnetic
and with a uniform electric current distribution
across its cross-section (Litz wire). The homogen-
eous core is assumed to be non-conducting.

Three core materials #1, 2 and 3 from section 2.5
(shown in figure 1) with the gradually decreasing sat-
uration of themagnetic fluxwithin the core have been
used. To assure the non-linear region of operation
and core saturation in every case, the coil current is
chosen as I0 = 20 kA.

Two convergence measures of the non-linear suc-
cessive substitution solution are the relative deviation
in themagnetic charge density, e1, for all faces and the
relative deviation in the permeabilities at tetrahedra
centers for all tetrahedra, e2, i.e.

e1 = ∥ρns − ρn−1
s ∥/∥ρns ∥, (7a)

e2 = ∥µn
r −µn−1

r ∥/∥µn
r ∥, (7b)

at every nonlinear iteration step n. Here, ∥ · ∥ is
the Euclidean norm of the spatial distribution.
Equation (7) is the relative deviation of the spatial
field calculated as the norm over all surfaces or the
norm over all volumetric elements.
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Figure 2. One turn of a helical spiral coil made of Litz wire. (a) Underlying computational wire grid with 9200 current filaments.
(b) Rendered outward appearance of (a) in computer software. (c) The same but for a twisted Litz wire. Notice the twisting in the
wire grid that is absent in (a); the twisting increases inductance. (d) Rendered outward appearance of (c) in the software; the
surface rendering is less smooth compared to (b).

Figure 3. Internal tetrahedral mesh generator for simple core shapes and their combinations. Cylinder (a), rectangular cuboid (b),
various C-shapes (c), (d) and their combinations (e) are made available.

In all three cases, a good monotonic convergence
has been observed. For material #1, we reach the fol-
lowing values: e1 = 10−3, e2 = 5× 10−3 after 20 iter-
ations. For material #2, we reach e1 = 10−5, e2 = 5×
10−3 after 20 iterations, too. Formaterial #3, we reach
e1 = 10−3, e2 = 6× 10−3 after 25 iterations. The res-
ulting magnetic fields along the core centerline are
shown in figures 4(b)–(d) by blue curves. The corres-
ponding ANSYS FEM solutions (with ∼2.2M tetra-
hedra) are given by black curves. For comparison pur-
poses, the linear-core solutions with µr0 = µr(|H| →
0) = 634 (material #1), µr0 = 19900 (material #2,
Froelich’s model), and µr0 = 9950 (material #3) are
given by thin red curves. The ANSYS Maxwell FEM
solutions execute in about 1.5–2 h using a 2.8GHz
multicore workstation (Windows platform) while the
BEM-FMM solutions execute in 2–3min on the same
workstation.

Table 1 compares static inductance values
obtained using both the numerical methods for the
small-signal inductance values for the linear core and
the inductance values for the saturated core at the
given coil current of 20 kA.We emphasize that for the
present (loose) coil winding the coil–core inductance
is not very significantly affected by the magnetic core,
either saturated or not. This fact was also noticed
previously [10]. This is in stark contrast to the tight
windings around the core considered, for instance, in
the next example.

3.3. Comparison with measurements for a rat coil
with and without magnetic core
3.3.1. Coil construction
Figure 5 shows the geometry and major dimensions
for a family of experimental focal TMS rat coils that
were constructed. The coil windings, which are based
on a plastic template with a 15◦ skew angle shown in
figure 5(a), consist of two (or more) helical spirals of
a variable pitch shown in figure 5(b). For the partic-
ular design considered, every spiral has 20 turns and
is made of a custom Litz wire. The total coil length of
the coil is 110mm.

The single-wire radius in the Litz bundle is
0.15mm (29 gauge with insulation), the number of
single wires in the Litz bundle is 100. According to the
packing tables [59], the optimal dimensionless radius
of the circles in the container circle is 0.0902 in this
case given that the latter has the radius of one. This
yields the optimal radius of the bundle being equal to
1.663mm. This is the best possible estimate; a more
realistic estimate for the bundle radius used here is
approximately 2mm. This gives us the bundle dia-
meter of the coil conductor of approximately 4mm.
Additionally, Litz wire twisting was estimated and
then used in the model construction below.

A rectangular laminated magnetic core is tightly
inserted in the rectangular opening of the template
shown in figure 5(a). The core consists of multiple 2-
mil sheets of M3 grain oriented silicon steel (Arnold
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Figure 4. (a) Problem geometry and specific dimensions. (b)–(d) Magnetic field distributions along the core centerline for three
different materials defined in figure 1. Blue curves: BEM-FMM results; black curves: ANSYS Maxwell results; thin red curves: the
linear-core constant-permittivity solution.

Table 1. Small-signal inductances and static inductances, for three saturated cores. Note a weak dependence of the overall inductance on
the magnetic core for the loose core-coil configuration in figure 4(a).

Linear core Nonlinear core Average core µr

Inductance, nH I0 = 1mA I0 = 20 kA I0 = 20 kA

BEM-FMMmaterial 1 115 107 75
BEM-FMMmaterial 2 116 103 29
BEM-FMMmaterial 3 116 96 10
ANSYS material 1 116 107 NA
ANSYS material 2 116 103 NA
ANSYS material 3 116 96 NA

9
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Figure 5. (a) Coil winding template. (b) Geometry dimensions for both windings. (c) Coil prototype before epoxy filling.

Figure 6. Computational model of the TMS rat coil. (a) The long square-bar magnetic core of M3 silicon steel. (b) Skewed inner
helical spiral with the radius of 9mm and a variable pitch. (c) Similar outer spiral with the radius of 16mm. (d) A complete
20+20+6 coil assembly (the 20+20 assembly looks similar). Litz wires have been numerically ‘twisted’ as shown in figure 2.

Magnetic Technologies, Rochester, NY, USA), which
is material #2 of the previous example.

3.3.2. Modeling
The computational model consists of several com-
ponents shown in figure 6: (a) the long rectangular
core of M3 silicon steel, (b) the skewed inner helical
spiral with the radius of 9mm and a variable pitch,
(c) the similar outer spiral with the radius of 16mm
rotated by 180◦ and, (d) an optional 6-turn third hel-
ical spiral used to boost the injected electric field.

The underlying computational mesh includes
approximately 200 000 elementary current seg-
ments modeling metal windings and approximately

25 000 tetrahedramodeling themagnetic core. Small-
signal (linear-core) simulations including inductance
and H- as well as E-field calculations run in approx-
imately 1–2 s on a 2.8GHz computer. For the latter
case, the magnetization in the entire core volume is
computed as described above.

3.3.3. Small-signal coil inductances
Table 2 summarizes the small-signal inductances of
the two coils (20+20 and 20+20+6 turns), which
were measured using an LCR meter (model: Keysight
U1732C) at 1 kHz. The small-signal relative mag-
netic permeability of the core was assumed to be
approximately 19 900 following the Froelich’s curve
from figure 1 for the M3 silicon steel (material #2).
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Table 2. Comparison between measured and modeled inductances for two different experimental rat TMS coils with and without the
magnetic core. M3 Silicon steel (material #2) was modeled.

Coil A: 2 layers of windings Coil B: 3 layers of windings

20+20 turns 20+20+6 turns

Inductance, µH No core With core No core With core
Measured 7.0 40.0 8.5 50.0
Modeled 7.0 37.0 8.4 47.8

Table 3. Static inductance and relative permeability as function of
coil current. M3 Silicon steel (material #2) was modeled for the
20+20+6 experimental rat coil.

Coil current, A 100 1000 3000
Modeled inductance, µH 27.9 10.3 9.0
Average core µr 99.5 7.6 2.9

The agreement between experiment and modeling is
within 10% for all reported values. Small variations
in the coils’ assembly have been tested and nearly
identical inductance values were obtained.

3.3.4. Static inductance as a function of increasing coil
current
The initial (small-signal) static inductance of the coil
with the core decreases when the current increases
to typical TMS levels and the core saturates. This
important tendency is illustrated in table 3 for the
experimental TMS rat coil with 20+20+6 turns and
with the squareM3magnetic core from figure 6. Real-
istic TMS coil current strengths were considered.

4. Discussion

4.1. Method convergence
It is known that the nonlinear FEM solvers for
the magnetic cores do not necessarily converge. For
example, the COMSOL application notes specifically
discuss the cases where the convergence is absent [60].
The present method will also not converge for an
arbitrary B–H curve. The critical parameter intro-
duced in section 2.5 is the permeability variation rate,
|(dµ/d|H|)|, of a magnetic material. If this rate is
very high (the nonlinearity is very strong), the con-
verge cannot be guaranteed. Several methods have
been tested including local permeability averaging as
in equation (3d), Jacobian smoothing of magnetic
contrast variations at every iteration step as well as
introducing more integration points over the tetra-
hedra volumes and the following averaging. None of
these methods generated ultimately better results.

The only method which was converging in all
tested cases is that which computed the averaged H-
field value within a tetrahedron based on four field
values just inside its four faces at the face centers
i.e. directly via the surface magnetic charges. How-
ever, this method generated choppy fields within the
core and was less favorably compared to the FEM

solver ANSYS Maxwell within the core. Therefore, it
was not implemented, but was rather used as a small
auxiliary contribution to assure the convergence in
the demanding cases.

At present, we could probably guarantee the
method convergence for typical TMS field strengths
and for the simple analytical B–H approximation
curves such as equations (6), and more accurate yet
smooth analytical interpolations [8, 50, 54, 55]. Note
again that this could be quite enough if we are inter-
ested in modeling for higher magnetic flux densit-
ies [57], which is exactly the TMS case.

4.2. Model limitations
Only the simple anhysteretic magnetization curve has
been modeled in the present study, without includ-
ing the core losses described in the introduction into
consideration. The core losses may be significant for
many magnetic materials and at shorter pulse dura-
tions. Their accurate description will require a separ-
ate detailed study.

No material anisotropy has been included
although its modeling is rather trivial with the sug-
gested method. At step 3 in section 2.2.2, the local
permeability µ(|H|) for every tetrahedron could be
different in different directions. This can be taken
into account by adjusting the magnetic contrast for
the four faces of the tetrahedron using the product of
a permeability tensor and the normal vector of every
facet. Unfortunately, the FEM solver ANSYSMaxwell
cannot be used for comparison purposes in this case:
it can either model the B–H curve or the anisotropy
of an otherwise linear magnetic material.

4.3. Temporal considerations
Although the our solver is quasistatic in nature,
there are temporal waveform issues to consider. For
conventional TMS sinusoidal pulses, the coil cur-
rent and electric field waveforms are 180◦ out of
phase. Consequently, when the coil current reaches
its maximum—when we expect higher effects from
the nonlinear core, possibly deeper core saturation—
the induced electric field is zero at this time. Typ-
ically, one is interested in the electric field distribu-
tion at its peak as it is thought to reflect maximum
impact on neuronal activation. In other devices, such
as the controllable pulse width stimulator [61], peak
coil current is reached when the electric field is still
quite high, albeit not at maximum. Interestingly,
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the induced change in neuronal membrane potential
reaches maximum at peak coil current [61]. Depend-
ing on the outcome of interest, one might have to
performmultiple simulations at different time points
along the current waveform. In any case, our model
requires both the coil current and its time derivative
values as input parameters. The effect of themagnetic
core on electric field and neuronal activation can be
studied at different time points along any arbitrary
pulse waveform.

5. Conclusions

The present study reports the simple, accurate,
and accessible algorithm for modeling TMS coils
with a (nonlinear) magnetic core and validates the
algorithm through comparison with FEM simula-
tions and experiments. The algorithm is using the
BEM-FMM applied to all facets of the tetrahedral
core mesh as a single-state solution and the suc-
cessive substitution method to assure the nonlinear
convergence of the subsequent states. The coil–core
combination is solved only once, before incorpor-
ating the head model. The resulting primary TMS
electric field is proportional to the total magnetic
vector potential in the quasistatic approximation; it
therefore also employs the precomputed core mag-
netization. Changes in the regular TMS computa-
tion pipeline are reduced to a minimum. Themethod
demonstrates excellent convergence for typical TMS
field strengths and for analytical B–H approxima-
tions of the experimental magnetization curves in the
form of Froelich’s equation or the inverse tangent
equation. Average execution times have been between
1 and 3min on a common multicore workstation.
Themethod also outputs coil’s self- ormutual induct-
ances, with or without the magnetic core.

Finally, we provided numerous example applica-
tions as part of our codebase, including models for
rodent and human TMS coils with a magnetic core.
These examples have potential impact on transla-
tional and clinical applications of TMS, as well as
future technology development for TMS.
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