Skip to main content
. 2023 Feb 6;4(1):015013. doi: 10.1088/2632-2153/acb416

Table 3.

Comparison of PINNs using different strategies for robustness to solve the 1D Burgers’ equation. The introduction of error in the initial condition causes a significant increase in MSE for the standard PINN. GP-smoothing reduces the MSE to nearly as low as the PINN with no error. SGP-smoothing is also effective in reducing error and uses fewer inducing points (IPs). Results quoted for L 1 and L 2 regularizations are taken from the best performance observed over choices of λ{10n}n=15.

Model MSE
PINN (no error) 0.0116
PINN (σ = 0.5) 0.1982
PINN (σ = 0.1, L 1 regularization with λ=104) 0.0392
PINN (σ = 0.1, L 2 regularization with λ=104) 0.0293
PINN (σ = 0.5, Cole-Hopf regularizer) 0.1125
cPINN-2 (no error) 0.0161
cPINN-2 (σ = 0.5, no smoothing) 0.0834
cPINN-2 (σ = 0.5, Cole-Hopf regularizer) 0.0891
cPINN-3 (no error) 2.782×105
cPINN-3 (σ = 0.5, no smoothing) 0.0854
cPINN-3 (σ = 0.5, Cole-Hopf regularizer) 0.0329
UQ-PINN [20] (σ=0.5) 0.1248
GP-smoothed PINN (σ = 0.5, 50 IPs) 0.0384
SGP-smoothed PINN (σ = 0.5, 41 IPs) 0.0080