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Abstract

Vertebrates have some of the most complex and diverse features in animals, from varied 

craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All 

of these traits have their developmental origins in a multipotent embryonic lineage of neural 

crest cells. This “fourth germ layer” is a vertebrate innovation and the source of a wide range 

of adult cell types. While others have discussed the role of neural crest cells in human disease 

and animal domestication, less is known about their role in contributing to adaptive changes in 

wild populations. Here, we review how variation in the development of neural crest cells and their 

derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of 

traits under natural and sexual selection whose variation may originate in the neural crest, with 

emphasis on behavioral factors such as intraspecies communication that are often overlooked. 

In all, we encourage the integration of evolutionary ecology with developmental biology and 

molecular genetics to gain a more complete understanding of the role of this single cell type in 

trait covariation, evolutionary trajectories, and vertebrate diversity.
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1. Introduction

Neural crest cells (NCCs) are often touted as the “fourth germ layer” [1] for the range 

of derivative cell types they produce, and many species-defining characteristics like facial 

shape and coloration are generated from this embryonic lineage. The influence of these 

cells in human health has been long recognized, with a broad spectrum of conditions 

classified as neurocristopathies [2] because of their shared developmental origin in NCCs. 

Within evolutionary variation, NCCs have been linked to animal domestication [3–5]. The 

domestication syndrome hypothesis proposes that a series of traits observed in domesticated 

animals—reduced facial structures, loss of pigmentation, and docility, among others—can 
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be unified due to their NCC origins, and should be considered a neurocristopathy [3–5]. 

However, we still do not have a full view of how changes in NCC development can generate 

natural phenotypic variation, particularly with regards to behavior. The role of NCCs in 

tameness has been discussed as it relates to domestication [3–5], but the span of behavioral 

traits that may be mediated by NCCs and their derivatives has received considerably less 

attention in the literature than traits such as craniofacial variation and coloration (though see 

[6,7]). Here, we take a trait-based approach, assessing how phenotypes shaped by natural 

and sexual selection are diversified through variation in development of NCCs and their 

derivatives. We extend ideas begun by [3–8] to create a more complete understanding of the 

types and patterns of phenotypic diversification that trace their origins to NCCs.

We first highlight the types of cells derived from NCCs, developmental sources of 

phenotypic variation, and how NCC macroevolution may impact microevolutionary 

diversification. We then focus on a series of traits, discussing how variation in the 

development of NCCs and their derivatives have or could contribute to the evolution 

of phenotypic diversity. After addressing co-variation of these traits through examples 

of domestication and cavefish as neurocristopathies, we suggest future work that will 

provide fruitful insights into the sources and effects of variation in NCC development on 

microevolution.

2. Neural crest cell development

The molecular and genetic program that underlies NCC development is well reviewed in 

the literature. Here, we highlight two major points about these cells: (1) the wide variety 

of cells differentiating from this single embryonic lineage and (2) developmental changes 

that produce variation in NCCs and their derivatives. We refer the reader to multiple reviews 

below for more details on the development of these cells, including primary literature cited 

therewithin.

NCCs are specified at the boundary between neural and non-neural ectoderm within the 

neural tube [9,10], and from there migrate extensively throughout the embryo [11,12]. The 

fate of NCCs is influenced by factors such as anterior-posterior position, signaling pathways, 

and interactions with their local tissue environment. NCCs differentiate into a multitude of 

cell types including Schwann cells and neurons of the peripheral nervous system [13,14], 

neurons of the enteric nervous system [15,16], chromaffin cells of the adrenal gland [17], 

odontoblasts in the teeth [18], and chondrocytes and osteocytes within the head [19,20] 

(Table 1). Neural crest cells also produce pigment-producing cells. While mammals and 

birds only develop black/brown melanocytes, NCCs in fishes and amphibians generate a 

series of chromatophores including black/brown melanophores, red/yellow xanthophores, 

and reflective iridophores [21,22].

NCCs may also influence the development of the sensory organs. While sensory structures 

are primarily derived from sensory placodes instead of NCCs, their migration and 

morphogenesis is coordinated with NCCs through a series of reciprocal interactions [23,24]. 

Through these interactions, NCCs may affect the size, number, or pattern of sensory organs, 

but not how or what signals are detected by the organ. For example, a tradeoff in cavefish of 
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a reduced size of the optic placode for an expanded olfactory placode [25] may be partially 

mediated by NCCs through altered co-migration of NCCs and sensory placodes. However, 

we do not suggest that NCCs are likely to influence evolution of opsin protein types in the 

retina.

Variation at multiple stages of development of NCCs and their derivatives can produce 

phenotypic diversification on which natural and sexual selection can act (Fig. 1). We use the 

development of pigment-producing melanocytes as an example. Altered specification and 

migration through loss of SOX10 causes a complete loss of these cells, and also impacts 

other NCC derivatives [26,27]. Mutation of the MITF gene causes multiple subpopulations 

of migratory NCCs including melanocyte precursors to undergo apoptosis, which produces 

white patches of skin in dogs and Waardenburg syndrome in humans [28,29]. Additionally, 

the biosynthesis of the black/brown pigment, eumelanin, in differentiated melanocytes can 

be affected, resulting in hypopigmented phenotypes such as red hair or albinism (MC1R 
and TYR mutations, respectively) [30]. These examples highlight how cellular changes 

throughout NCC development can produce diversity not only within a single cell type, but 

across NCC derivatives.

3. Potential legacy of neural crest cell macroevolution

As stated in the seminal “New Head Hypothesis” [31], the innovation of NCCs and 

a complex head were critical for vertebrate macroevolution, including a shift to active 

predation. The macroevolutionary origins of NCCs is much discussed in the literature [32–

38]. Others propose that it occurred in an incremental manner through a combination of 

gene duplications, evolution of novel cis-regulatory elements, and co-option of existing 

sub-networks from other tissues to form the NCC gene regulatory network [32–38].

Discussed less often (but see [39,40]) is how the macroevolutionary history of NCCs 

facilitates their microevolutionary path and potential. For instance, a critical property 

co-opted by NCCs in their macroevolution is multipotency [32,33,41]. However, post-

embryonic retention of multipotency or an ability to de-differentiate may also expand 

the microevolutionary plasticity of NCC associated cells and traits. For example, NCC 

derived Schwann cell precursors in the adult body can also differentiate into enteric and 

parasympathetic neurons, chromaffin cells, pigment-producing cells, and even odontoblasts 

[42,43]. This innate ability to produce multiple cell types may allow an animal to have a 

plastic response or more rapid adaptation in traits influenced by these cells. However, it is 

unclear the extent that this flexible fate restriction is common across NCCs subpopulations 

or derivatives, or if this microevolutionary potential is regulated by the same factors that 

were critical for NCCs to obtain multipotency in the first place. Notably, such questions 

feed into larger and long-standing debates about the degree to which NCCs are plastic 

versus pre-programmed [40,41,44–49], and are important considerations for the trajectory 

and range of phenotypic diversification.
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4. Traits influenced by neural crest cell microevolution

We discuss below a series of traits that originate in NCCs or their derivatives and are under 

natural and sexual selection. Where available, we highlight the genetic or cellular basis for 

phenotypic diversification.

4.1. Trophic specialization

As NCCs contribute to the majority of the bones and cartilage of the face [19,20], their 

development is central to producing craniofacial variation. This morphological diversity can 

confer a biomechanical advantage in foraging or enable an animal to occupy a new feeding 

niche, such as occurred in textbook examples of adaptive radiations including Darwin’s 

finches and cichlid fishes.

The multi-faceted and cumulative effect of NCCs in generating species-specific faces has 

been demonstrated within avian species. While the short-beaked quail and broad-billed 

duck specify a similar number of NCCs, more cells migrate to the developing jaw in the 

duck, providing a larger pool of precursors as mesenchyme in the pharyngeal arches [50]. 

After migration, changes to NCC proliferation can further change the volume and shape of 

facial prominences. In the bills of ducks and ground finches, increased levels and expanded 

domains of Bmp4 expression [51,52] and Wnt signaling [53,54], or variation within the 

length of the cell cycle [50] can all increase proliferation of post-migratory NCCs to produce 

deeper and wider beak primordia. Additionally, a longer beak can develop from increased 

expression of Calmodulin within NCC derived mesenchyme [55]. Further variation comes 

after NCCs differentiate and begin to produce bone. For example, bone development starts 

earlier in Darwin’s finches with more robust beaks [54]. Also, ossification occurs earlier 

in the quail at the expense of further proliferation [56], and fine-tuning of bone shape 

occurs through differential rates of bone resorption [57]. The combinatorial effect of these 

developmental changes in NCCs and their derivatives generates the distinctive beaks that 

birds use to exploit different food sources.

The diversification of craniofacial structures within cichlid fishes occurred through similar 

mechanisms and even some of the same molecules. NCC migration is affected by a single 

amino acid change in lbh identified in species with shorter mandibles [58], which decreases 

the post-migratory pool of NCC precursors from which this bone derives. Differential 

expression of bmp4 and ptch1 are associated with mandible shape variation [59,60]. 

Additionally, NCC derived osteocytes show altered timing and levels of bone deposition 

[61] between cichlid species that ultimately have different jaw structures as adults. Finally, 

facial bones that originated from NCCs can be shaped through bone remodeling due 

to biomechanical strains during feeding [62]. These combined genetic and epigenetic 

mechanisms produce jaw morphologies with distinct kinematics that allow species to occupy 

new trophic niches.

Further foraging specialization occurs through tooth evolution, especially multi-cusped teeth 

that promote more efficient breakdown of food [63]. NCCs are a major source of the 

mesenchyme of the developing teeth, which is critical in the formation of tooth cusps 

[64]. NCCs later differentiate into dentin-secreting odontoblasts in the teeth [65], further 
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implicating this cell type in the microevolution of feeding structures. Work in mammals 

directly connects NCCs to tooth development, with a loss of BMP signaling within NCCs 

resulting in molars with more cusps, altered shape, delayed mineralization, and even the 

complete arrest of tooth development [65–67]. Cichlids again provide an example from 

nature, with the evolution of unicuspid, bicuspid, and tricuspid teeth [68]. While the 

molecular mechanisms responsible for dental adaptations in cichlids are not completely 

understood, changes in BMP, FGF, and Wnt signaling in cichlids can affect both cusp shape 

and number, mimicking the observed adaptive changes in these fishes [69].

4.2. Intrasexual competition

Craniofacial structures often face multiple selective pressures at the same time. For 

instance, extreme tooth phenotypes like elephant tusks can be used for foraging, but also 

intrasexual fights. These male-male or female-female competitions for food, territory, social 

dominance, and access to mates play a critical role in evolution [70,71]. Transcriptome 

analysis demonstrates that mineralized headgear like horns and antlers primarily derive 

from NCCs [72], and may have evolved through a “developmental accident” where cranial 

NCCs migrated to new embryonic locations [73]. In support of this theory, horns are 

associated with cis-regulatory changes in genes critical for NCC migration and patterning, 

including SNAI2, TWIST1, SOX9, and the HOXD gene cluster [72]. Weapons used in 

intrasexual competition need not be specialized structures, however. Male cichlid fishes 

use their diet-adapted jaws to fight for social dominance and territories, forgoing the need 

for elaborate weaponry [74]. Similarly, in several lizard species, craniofacial structures are 

strongly correlated with fight performance [75,76]. Thus, the series of changes in NCC 

development detailed above in relation to trophic specialization may also evolve due to 

strong sexual selection.

Also important to intrasexual competition are NCC derived melanocytes and 

chromatophores that advertise status to same-sex rivals for mates and resources. Colored 

feather patches serve as honest signals of health to competitors, and an individual sporting 

a conspicuously-colored badge usually has higher fitness and larger territory than birds that 

lack this pigmentation [77]. The aggression-induced coloration exhibited by numerous fish 

species [78] represents a similar use of pigmentation to signal one’s status to rivals.

4.3. Mate choice

Sexual selection consists of intrasexual selection and mate choice. Structures like antlers are 

used in both of these interactions [79], but are not the only NCC derived characteristics that 

attract a mate. Within the craniofacial complex of certain cichlid fishes, an elaboration of the 

frontonasal region, the nuchal hump, is associated with differential expression of pappa [80] 

and is predicted to function in mate choice [81]. These changes in expression of the PAPP-A 

metalloprotease may generate these phenotypes by altering insulin-like growth factor (IGF) 

signaling [82], and thus NCC migration and differentiation [83,84].

Facial variation associated with trophic specialization (described above) can also impact 

signaling between potential mates. Beak shape constrains the acoustics and performance of 

bird songs that are a signal to both mates and competition, such that birds with larger beaks 
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produce slower songs with lower frequencies [85,86]. Thus, natural selection for foraging 

efficiency that shapes these NCC derived structures also impacts reproductive isolation and 

sexual selection, and vice versa.

Mate choice is also a strong force in the evolution of pigmentation patterns. Female 

preference for more brightly colored males is a common theme in animals as divergent as 

primates [87], birds [88], and fishes [89], and this coloration has its developmental origins in 

NCCs and NCC derivatives. For instance, cis-regulatory changes in pax3a underlie patches 

of red and yellow pigmentation in populations of cichlid fishes. This may be due to a fate 

switch of NCC derived chromatophores, as pax3 promotes the production of red/yellow 

xanthophores, at the expense of black/brown melanophores [90]. A similar mechanism could 

underlie the nuptial coloration in stickleback fishes, with a set of genes (pcbd1, slc2a15a, 

slc24a3, sox10, and csf1) that are all involved in chromatophore fate determination also 

proposed as candidates that control deposition of red pigmentation in the throat [91].

It is not just hue that is attractive to females, but also pattern. Conspicuous pigmentation on 

the anal fins of some male cichlids, called egg spots, attract females and are under positive 

sexual selection. These egg spots are formed from xanthophores, a type of NCC derived 

chromatophore [92]. Egg spot size and pattern are associated with changes in edn3b and 

ednrB1a expression [93], a pathway critical for migration of NCCs from the neural tube, 

and also of migration of mature chromatophores [94]. Egg spot variation also occurs due 

to modulation of csf1ra expression [92], which is associated with terminal differentiation of 

xanthophores [95,96], further implicating NCC development in variation of this trait critical 

for mate choice.

4.4. Aggression and social behavior

The ability of an animal to recognize an individual as a friend or foe and decisions of 

when to fight are critical for survival. While fighting may result in a fatal injury, flight 

may result in lost access to food or mates. While neural ectoderm forms much of the 

nervous system, NCCs are a critical source of neurons in the parasympathetic system. 

This parasympathetic “rest and digest” response is critical for an animal to self-soothe and 

respond to an individual as a potential mate rather than a competitor. Through this action, 

these NCC derived ganglia form a critical part of courtship or social bonding that affect an 

animal’s fitness [97].

Opposing the action of the parasympathetic system is the “fight or flight” response that 

mediates risk assessment, exploratory behavior, and defensive actions when faced with 

a predator or rival. The tendency of an animal to fight is regulated by the sympathetic 

nervous system and the stress response mediated by the adrenal gland, including NCC 

derived ganglia and chromaffin cells, respectively. NCC derived chromaffin cells secrete the 

catecholamine hormones epinephrine and norepinephrine, and thus play a key role in rapid 

stress response [98]. While variation within the brain and neurotransmitters like serotonin 

play a key role in aggressive behaviors [99], levels of catecholamine stress hormones are 

also linked to fighting and boldness across vertebrates [100] and changes in aggression 

and social status in anoles [101]. Increased production [102] and slower catabolism of 

epinephrine [103] are both associated with increased aggression in mice. Thus, NCCs are 
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poised to play a crucial role in aggressive behaviors. Others [3–5] have proposed that 

a decrease in NCC migration and consequent reduction of adrenal gland function was 

critical for tameness and animal domestication (see Section 5.1). One candidate gene for 

this evolutionary change in behavior is Sox10, loss of which results in apoptosis of trunk 

NCCs during migration to the adrenal gland and a loss of chromaffin cells in mice [104]. 

But we have few empirical examples of how changes in NCC development are linked 

with evolved changes in adrenal gland morphology, catecholamine secretion, or animal 

behavior. Such analyses would complement our mechanistic understanding of craniofacial 

and pigment evolution to give a more complete view of the phenotypic effects of aberrant 

NCC development.

Sensory structures such as the eyes and lateral line organ, which detects movements 

and vibration in aquatic animals, are the interface between an animal’s environment and 

their neural system. These are thus critical structures for an animal to be able to detect 

predators, rivals, or potential risks and react appropriately. Sensory organs begin as sensory 

placodes which, as previously described (see Section 2), coordinate with NCCs for their 

development. Because of this, variation in the amount or location of sensory cells may 

trace their developmental origins to variation in their co-migration with NCCs. Co-evolution 

is often observed among changes in the size and distribution of sensory structures, risk-

taking behavior, and aggression in vertebrates [105,106]. For instance, variation in the size, 

number, and distribution of lateral line sensory structures in cichlids are associated with 

male-male aggression [74]. Further, changes to sensory systems are associated with use of 

open versus protected habitats, which is often related to an animal’s boldness and overall 

risk-taking behavior [105]. These examples suggest that assessment of the impact of NCC 

migration on the evolution of sensory structures may prove a useful avenue of investigation 

into the developmental origins of variation in an animal’s interaction with competitors and 

its environment.

4.5. Social communication

An extension of the one-on-one or few-on-one interaction discussed above is a particular 

type of social behavior that involves the coordination of large groups of conspecific animals. 

Collective animal behaviors like bird flocking and ungulate herding provide evolutionary 

benefits such as predator protection, enhanced feeding efficiency, and hydrodynamic, 

aerodynamic, or thermodynamic advantages [107]. For these social groups to form, the 

activity of the NCC derived parasympathetic system must override stress responses. But 

additional NCC derivatives also feed into these social interactions. Sensory systems like 

vision and lateral lines [108] have each been shown to be important for schooling in cave-

dwelling Astyanax [109] and sticklebacks [110]. However, both fishes also demonstrate 

sensory-independent aspects to this behavior that implicate hormones secreted from NCC 

derived cells in the adrenal gland. Cave morphs of Astyanax have elevated levels of 

catecholamine stress hormones [111], a loss of schooling behavior, decreased aggression, 

and less alarm response compared to surface morphs [112]. Thus, changes in collective 

behavior in these fishes may originate in NCC development, particularly through chromaffin 

cells and an ability to withstand the stress of crowding.

Brandon et al. Page 7

Semin Cell Dev Biol. Author manuscript; available in PMC 2023 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Collective animal behaviors may also be influenced by pigmentation patterns produced by 

NCC derived melanophores. The presence of horizontal stripes in cichlid fishes correlates 

with shoaling behavior [113], and striped zebrafish show a preference to shoal with fishes 

who also exhibit horizontal stripes [114,115]. It is thought that these stripes may serve to 

reduce intraspecific aggression while also concealing the fish from their prey during hunting 

[113]. This positive correlation between stripes and group interactions extends from fishes 

to birds and mammals [116], suggesting convergent evolution of this NCC derived trait. 

Microevolution in this trait can manifest through the presence and number of stripes, and 

we know much of the genetic basis of this trait from mutant and naturally-occurring variants 

in zebrafish [117]. In addition to the molecules associated with melanocyte or melanophore 

development previously discussed (see Section 2), we highlight three additional genes that 

control distinct aspects of stripe formation through development of NCC derived cells. 

Asip2b is a master regulator for the presence of stripes versus vertical bars in cichlids 

and is associated with melanin production in differentiated melanophores [118]. Ednrb1 
mutant zebrafish show fewer and disrupted stripes [96]. While endothelin signaling plays a 

role in migration of NCCs from the neural tube, this pigmentation defect is thought to be 

due to effects on migration of differentiated melanophores [96]. Finally, the connexin41.8 
(leopard) gene in zebrafish controls formation of gap junctions that organize differentiated 

melanophores into stripes rather than spots [119].

4.6. Predator avoidance

The ability to eat but not be eaten is critical for survival, no matter one’s place in the food 

chain. One way that animals evade predation is to detect predators before the predators 

detect them. This is primarily achieved through sensory structures, which as previously 

discussed (Section 2) may be affected by changes in NCC development.

But this is far from the only way to avoid predation. Another common approach is for 

prey to camouflage themselves. A series of color patterns made possible by NCC derived 

pigment-producing cells mediate both cryptic and disruptive coloration, wherein animals 

try to match their surroundings or obscure their shape, respectively. One widespread 

mechanism of camouflage in vertebrates is countershading, where the illuminated back of 

the body is darker than a lighter-colored belly. While countershading may also influence 

thermoregulation and protection from ultraviolet radiation (see Section 4.7), these dorsal-

ventral differences in color help an animal hide from predators [120,121]. Such adaptive 

color patterns occur based on the development of NCC derived pigment-producing cells, 

with the examples below specifically relating to eumelanin biosynthesis in melanocytes 

and melanophores. In mice and zebrafish, countershading is controlled by interactions 

between Mc1r and Asip that regulate eumelanin deposition [122,123]. Mutations in ASIP 
may also generate cryptic spotting patterns famously adorned by the leopard [124,125]. A 

final example is the case of Peromyscus beach mice. Mainland mice exhibit darker coats 

colors with the pigmentation extending more ventrally, which serves to conceal mice within 

similarly-colored soil. Likewise, beach mice match their surroundings through a lighter 

shade and color primarily on the back. This adaptation is mediated by changes in the level 

and pattern of Agouti expression within NCC derived cells, which alters the distribution and 
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maturation of melanocytes [126], and a single amino acid change in Mc1r that decreases 

eumelanin biosynthesis [127].

4.7. Thermoregulation and photoprotection

The regulation of body temperature is a critical component of maintaining homeostasis. A 

distinctive feature of endotherms is the presence of turbinals, which are thin bony structures 

within the nasal cavity that develop from cranial NCCs [128]. Increases in the surface area 

of the respiratory turbinals, presumably through the modification of NCC development, 

allow an animal to regulate moisture exchange or increase evaporative surface to cool the 

body in a hotter environment. Amphibious mammals [129] and human populations that 

evolved in hot climates [130] both have increased nasal sinus areas for this purpose, though 

we do not yet know the molecular basis of this adaptation.

Other NCC derivatives such as pigment-synthesizing chromatophores and melanocytes can 

also regulate body temperature. For example, some lizards actively change their skin color 

in response to their thermal environment to regulate the amount of sunlight absorbed, with 

warm temperatures triggering lighter pigmentation [131]. Even the patterns that may serve 

roles in predator avoidance might also undergo selection due to thermoregulatory needs. The 

trademark black and white stripes of a zebra generate differences in air temperature based 

on their absorption or reflection of sunlight, respectively. These temperature changes create 

chaotic air motion that accelerates cooling of the animal [132]. The genetic mechanism 

underlying zebra stripes is unknown, but there may be clues from other mammals. Striping 

patterns may be regulated by SLC25A2, which generates stripes in tigers [133], or by TBX3, 

which controls eumelanin deposition in stripes of other equids [134].

Related to thermoregulation, radiation from the sun is another potent abiotic selective 

pressure, and many vertebrates shield themselves with photoprotective pigments synthesized 

in NCC derived melanocytes. An example comes from our own species. Humans have 

evolved skin color variation based on the amount of ultraviolet radiation present in certain 

geographic areas [135]. High deposition of eumelanin (i.e., darker skin) is beneficial 

in tropical and subtropical regions to protect from folate degradation. Pigment was 

subsequently lost as humans migrated to latitudes with lower ultraviolet levels where dark 

skin was less advantageous [136]. Notably, most of the genes currently associated with 

human skin color (OCA2, MC1R, TYR, ASIP, and SLC45A2) [137,138] are involved in the 

biosynthesis of eumelanin within melanocytes that differentiated from NCCs and not due to 

changes such as NCC migration or fate determination.

5. Coordinated changes

While adaptations like those discussed above can affect a single NCC derived trait, multiple 

NCC associated traits like craniofacial variation, pigmentation patterns, and neuronal 

circuitry often co-evolve (Fig. 1). An example from both artificial and natural selection, 

domestication and cavefish, respectively, are discussed below, but they are far from the 

only instances of coordinated changes in NCC derived traits. Eumelanin-based coloration 

is associated with aggression and head shape in a range of species including fishes, 

reptiles, and mammals [6,7] and see [7] for additional discussion. This trend also occurs 
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in model organisms. Mutagenesis screens for eumelanin-based pigmentation in zebrafish 

identified mutants like puma (tuba8l3a), which also show altered development of other 

NCC derivatives including xanthophores, Schwann cells, peripheral nerves, and facial 

bones [139,140]. Together, these examples demonstrate that multifactorial changes in NCC 

development, such as changes in the timing, number, and regulation of NCCs, have the 

potential to produce sweeping changes in a range of NCC derived traits.

5.1. Domestication

A prime example of NCCs causing coordinated phenotypic changes is the domestication 

of animals, which is reviewed by others [3–5] and we summarize below. Domestication 

of dogs, sheep, and pigs is associated with a suite of changes, including tameness, loss 

of pigmentation, reduced tooth size, and shortened snouts [3]. This phenomenon has been 

coined domestication syndrome, and others [3–5] have proposed that it should be considered 

a neurocristopathy. This hypothesis posits that selection for docility resulted in reduced 

migration of all NCCs, in turn causing morphological changes observed in domestication 

[3–5]. Long-term selection experiments in various canine groups support this idea. For 

instance, when docility is selected for in foxes, NCC associated traits such as white fur 

patches and adrenal gland reductions also appear [141]. Further, genomic analyses between 

feral wolves and domesticated dogs show an enrichment of genetic variation related to NCC 

development, including members of the Fgf and Wnt signaling pathways. An interesting 

finding of this genomic study is the possible involvement of the collagen-binding protein 

SERPINH1 in reducing the number of NCCs migrating to the craniofacial region, leading 

to reduced cartilages and bones in the head [142]. Importantly, while these findings point to 

an integral role of NCCs, others have found little evidence of covariance of traits [143,144]. 

This contradiction highlights the need for more research into the molecular and genetic basis 

of domestication, and the need to understand the degree to which NCCs underlie this set of 

phenotypic changes.

5.2. Cavefish

Similar to domestication, we suggest that many adaptations in the cave-dwelling Mexican 

tetras (Astyanax mexicanus) [145–148] can be traced to changes in NCC development and 

represent a neurocristopathy. Astyanax fishes exist as two populations (a sighted surface 

morph and a blind cave morph) with distinct ecomorphological phenotypes. Compared to 

surface morphs, cavefish have evolved multiple traits associated with NCCs, including larger 

jaws, craniofacial changes associated with eye loss, increased numbers of maxillary teeth, 

variation in lateral line neuromast number and pattern, hypopigmentation, and decreased 

aggressiveness [147,148]. Morphological, genetic, and embryological data all suggest these 

changes may be coordinated and have a cellular origin in NCCs.

First, several morphological adaptations that co-vary in hybrids between cave and surface 

morphs have developmental origins in NCCs. Eye size, for instance, shows negative 

correlations with multiple pigment phenotypes and tooth number, while pigmentation 

levels co-vary with the length of craniofacial bones and the number of taste buds [149]. 

Second, multiple traits map to the same genomic intervals. Traits including lens size, 

taste bud number, and oral jaw size are genetically linked [149], and a separate multi-
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trait locus influences phenotypic variation in jaw morphology and pigmentation [145]. 

Whether these traits are controlled through a single gene with pleiotropic effects or through 

“hotspot” clusters, this genetic architecture generates co-inheritance and correlated evolution 

[145,150]. Genetic linkage provides a potential mechanism through which NCC derived 

traits descending from multiple NCC progenitor populations can co-evolve. Finally, and 

perhaps most convincingly, experimental embryology has demonstrated co-variation of 

these traits and have directly connected them to NCCs. Cavefish NCCs have intrinsic 

differences in migration compared to surface fish [150], and NCCs from cavefish are unable 

to differentiate into some pigment cell types [151]. Transplantation of NCCs from surface 

to cave morphs demonstrate an autonomous effect on both eye size and pigmentation levels 

[150], providing direct evidence that NCCs link these distinct traits. In total, these data 

demonstrate that evolution of multiple traits in cavefish can be traced back to variation in 

NCCs and their derivatives, and demonstrate the capacity of NCCs to produce suites of 

phenotypic variation.

6. Conclusions and perspectives

Overall, we highlight NCCs as a central source of microevolutionary diversity in 

morphology, physiology, and behavior. Viewed through the perspective of traits undergoing 

natural and sexual selection, we suggest that many if not most vertebrates have phenotypic 

diversification due to modification of NCC development that directly affects their fitness. 

This embryonic cell population has a remarkable ability to influence traits as varied as 

feeding, predation, and mate choice, providing a rich source of evolutionary diversity within 

vertebrates. While we have extended discussions initiated by others [3–8] to give a more 

comprehensive analysis of the range of traits with a common developmental origin in 

NCCs, this is far from exhaustive. Below we suggest several avenues to strengthen our 

understanding of NCCs and phenotypic diversification.

From the trait perspective, we have a lack of empirical examples that directly link molecular 

genetics of NCCs to behavioral or neurological traits. This contrasts sharply with the number 

of details known for trophic adaptation or pigment patterns. We argue that this is not because 

the connection is rare, but due to challenges quantifying these attributes and a general 

delay in the study of neurobehavioral work relative to morphological traits in fields such 

as Evolutionary Developmental Biology [152,153]. To this end, we have included as many 

theoretical and experimental examples involving phenotypic variation arising from NCCs in 

the nervous and sensory systems as possible, but acknowledge that there is still much to 

be learned in these areas. For instance, we still have an incomplete understanding of how 

variation in NCC migration influences the microevolution of sensory organs or examples of 

molecular variation that generate adaptation in the adrenal medulla. While the sympathetic 

nervous system and stress response can directly affect fecundity [154,155], metabolism 

[156,157], and immune system function [156], it is currently unclear how or if changes in 

NCC development generate natural variation in these characteristics.

From the cellular perspective, several NCC cell types (Table 1) have been understudied, 

leaving our view of neurocristopathies in nature incomplete. We highlight Schwann cells 

and enteric nerves as important examples. First, NCC derived Schwann cells generate 
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myelination of axons, a critical adaptation that accelerated nerve conduction. Variation in 

the degree and timing of myelination could directly affect fitness through more rapid flight-

or-fight responses when faced with life-threatening situations, more complex predatory 

behaviors such as stalking and chasing prey, or even neural plasticity and learning 

[158]. Second, among other effects, activity of the enteric nervous system can affect the 

composition of the gut microbiome [159,160]. Through this, variation in the enteric nervous 

system could have indirect effects on trophic specification [161], immune function [162], 

and social behavior [163,164]. While these would be critical for an animal’s fitness, the 

specific impact of NCCs remains unclear. It is notable, however, that cavefish have altered 

motility in the gastrointestinal tract, which is hypothesized to be due to changes in the 

activity or patterning of enteric nerves [165], as well as an altered metabolism [166] that 

could be indirectly affected. In all, the involvement of NCCs in microevolution of such 

behavioral and neurological traits remains underexplored and would yield useful insights 

into the role of NCCs in microevolution.

Finally, we still do not fully understand the evolutionary dynamics that shape NCCs and 

traits that derive from these cells. As described above, many structures derived from 

NCCs are selected on by multiple pressures, which may push the phenotype to the same 

optimum or not. For example, bones of the face impact an animal’s feeding, intrasexual 

competition, and mate choice, yet we do not have a clear picture of the relative impact of 

these pressures. Further, the evolutionary order of these selective forces may limit the total 

phenotypic range possible. For instance, if sexual selection dominated early in evolution, 

this history may constrain development or change the evolutionary trajectory away from 

potentially optimal phenotypes for feeding. Additionally, much is to be learned about 

the plastic and evolutionary potential of NCCs, particularly in comparison to other cell 

types. Notably, as invertebrates, insects lack NCCs but have evolved many of the same 

traits that derive from NCCs in vertebrates. Those include sexually-selected pigmentation 

patterns [167], innervation of the gut [168], social behaviors [167], and even covariation 

of both pigmentation and sexual behavior due to mutation of a single gene [169]. We 

suggest it will be beneficial to address whether vertebrates and NCCs may have increased 

evolutionary potential (i.e. are more evolvable) compared to other cellular lineages. While 

this would be experimentally challenging, this could include quantifying modularity within 

NCC regulatory networks or measuring the multipotency of NCCs and NCC derivatives 

compared to other cell types. NCC derived traits could be assessed in terms of the degree 

of disparity or plastic responses to environmental changes compared to those derived from 

non-NCCs. Of particular interest would be to assess if the molecular or genetic basis of 

this microevolutionary potential of NCCs is regulated by similar factors and mechanisms 

governing the macroevolutionary origins of this vertebrate innovation. Additional work in 

these areas will supplement our understanding of how all lineages of NCC derivatives 

contribute to phenotypic diversification under natural and sexual selection.
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Fig. 1. 
Overview of the relationship of neural crest cell embryonic regions, cells, and evolved traits. 

Embryonic neural crest cell populations are represented in the center. Derivative cells and 

tissues for regions are illustrated in dotted circles with matching colors. Related variation in 

evolutionarily selected phenotypes is shown in solid squares, also color-coded. Coordinated 

changes in NCC derived traits in cavefish adaptation and dog domestication results from 
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multiple populations, as indicated by the solid embryo outline. Created with BioRender.com 

with permission.
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Table 1

Some cell types that arise from subpopulations of neural crest cells.

Neural crest cell 
subpopulation

Cell type or structure derived

Cranial Osteocytes and chondrocytes within the facial skeleton 
Odontoblasts of the teeth 
Sensory ganglia of cranial nerves V, VI, IX, and X 
Mesenchyme of the parathyroid and thymus Corneal endothelium and stroma 
Parafollicular cells of the thyroid gland 
Chromatophores of the skin, including melanocytes, melanophores, xanthophores, and iridophores Carotid body 
cells

Cardiac Cardiomyocytes of the aortic and pulmonary arteries 
Portions of the septa of the heart

Trunk Chromatophores of the skin, including melanocytes, melanophores, xanthophores, and iridophores 
Chromaffin cells of the adrenal gland 
Neurons and ganglia of the sympathetic nervous system 
Dorsal root ganglia 
Schwann cells of peripheral nervous system

Vagal and Sacral Enteric ganglia 
Neurons and glia of the parasympathetic nervous system 
Neurons of the enteric ganglia
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