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Abstract
Objective.Dual-energy computed tomography (DECT)has beenwidely used to reconstruct numerous
types of images due its ability to better discriminate tissue properties. Sequential scanning is a popular
dual-energy data acquisitionmethod as it requires no specialized hardware.However, patientmotion
between two sequential scansmay lead to severemotion artifacts inDECT statistical iterative
reconstructions (SIR) images. The objective is to reduce themotion artifacts in such reconstructions.
Approach.Wepropose amotion-compensation scheme that incorporates a deformation vectorfield
into anyDECTSIR. The deformation vector field is estimated via themulti-modality symmetric
deformable registrationmethod. The precalculated registrationmapping and its inverse or adjoint are
then embedded into each iteration of the iterativeDECT algorithm.Main results.Results from a
simulated and clinical case show that the proposed framework is capable of reducingmotion artifacts
inDECTSIRs. Percentagemean square errors in regions of interest in the simulated and clinical cases
were reduced from4.6% to 0.5% and 6.8% to 0.8%, respectively. A perturbation analysis was then
performed to determine errors in approximating the continuous deformation by using the
deformation field and interpolation. Ourfindings show that errors in ourmethod aremostly
propagated through the target image and amplified by the inversematrix of the combination of the
Fisher information andHessian of the penalty term. Significance.Wehave proposed a novelmotion-
compensation scheme to incorporate a 3D registrationmethod into the joint statistical iterativeDECT
algorithm in order to reducemotion artifacts caused by inter-scanmotion, and successfully
demonstrate that interscanmotion corrections can be integrated into theDECTSIR process, enabling
accurate imaging of radiological quantities on conventional SECT scanners, without significant loss of
either computational efficiency or accuracy.

1. Introduction

Compared to conventional single-energy CT (SECT), dual-energy CT (DECT) generatesmore informative and
quantitative results from transmission sinograms acquired at two different x-ray spectra. In 1976, Alvarez and
Macovski (1976) represented the linear attenuation coefficient (LAC) as the outer product of an energy-
dependent basis function and a set of spatially-dependent coefficients and introduced the basic idea ofmulti-
energyCT to estimate the energy-independent spatial functions.

Since then,DECThas been further developed and is widely used in numerous clinical applications,
including automated bone removal inCT angiography, blood-pool imaging, and virtual noncontrastenhanced
imaging (McCollough et al 2015). In radiotherapy applications, DECThas improved the accuracywithwhich
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electron density (Tsunoo et al 2008), effective atomic number (Goodsitt et al 2011, Bonnin et al 2014,Hua et al
2018, Schaeffer et al 2021) and proton stopping power (Han et al 2016, Taasti et al 2016) can be imaged.More
recently, statistical iterative reconstruction (SIR) algorithms forDECThave been introduced to reduce noise and
improve resolution and accuracy (Fessler et al 2002,O’Sullivan et al 2004, Zhang et al 2014, Chen et al 2016,
Zhang et al 2017). A novel SIR algorithm that jointly operates on different-energy raw-data sinograms
demonstrated that it achieves sub-percentage uncertainty in imaging proton stopping-power (Zhang et al 2019,
Medrano et al 2020, 2022). In current proton-therapy clinical practice, SECT is used tomap stopping-power
ratios, leading to 2–3.5%proton beam range uncertainty (Paganetti 2012, Park et al 2012).

Dual-energy data acquisitionmethods include rapid-kVp switching scanning, single-sourcemulti-layer
scanning, and dual-source scanning (McCollough et al 2015), all of which require specialized hardware. In
contrast, single-source sequential scanning can be implemented on any conventional SECT scanner.However,
thismethod ismore vulnerable tomotion and deformation of the scan subject during the scanning process. Such
patientmotion includes changes in position, respiratory- and cardiac-induced organmotion, peristalsis, and
intestinal gas transit, and can be as large as several cmover a 1–10min period and are highly nonlinear and
localized (Langen and Jones 2001). Since the two sinograms are acquired fromdifferently deformed or
positioned instances of the same anatomy, potentially large global artifacts result, significantly degrading the
quantitative accuracy achieved byDECT SIR.

To address the dual-energymotion artifact, image registration has been incorporatedwithmedical imaging
techniques to reconstruct dual-energy images frommeasurements taken in different patient positions. Gang
et al, Huang et al and Leng have all deployed deformable image registration (DIR)methods to align two
sequentially scanned images at different energies before dual-energymaterial decomposition (Gang et al 2009,
Leng et al 2015,Huang et al 2020) and demonstrated significant reduction ofmotion artifacts. However, these
motion-compensatedmethods are designed for image-domain decomposition techniques, which cannot be
simply applied toDECT SIR.

More relevant to our setting, is the literature on single-energy,motion-compensated 4D cone-beamCT
(CBCT) image reconstruction. In this application, the source andflat-panel detector assembly slowly rotate
(15–60 s/rotation) around the free-breathing patient, acquiring asmany as 2000 projections. Tominimize
image blur and undersampling artifacts, Rit et al, followed bymany others (Tang et al 2012, Brehm et al 2013,
Mory et al 2016), proposed incorporating a 4D inverse deformation vector field (DVF)model into the
backprojection operator so that all projections, regardless of breathing phase, can be backprojected onto a single
artifact-free reference phase image. Several investigators (Jailin et al 2021,Wang andGu 2013, Renders et al
2021)developed iterative 4DCBCT reconstruction algorithms, inwhich precomputed or iteratively updated 4D
deformation fields are incorporated into each iterative image update.

Inspired by these investigations, we propose to incorporate a 3D registrationmethod into our joint statistical
iterativeDECT algorithm in order to reducemotion artifacts caused by inter-scanmotion. To the best of our
knowledge, embeddingDIR in iterativeDECT algorithms has not been previously reported. The proposed
scheme is derived from the forwardmodel for a deformed object and can be used by anyDECT SIR. Aswell as
testing themethod on digital phantoms and patient images, we perform afirst-order perturbation analysis to
theoretically evaluate the estimation error introduced by registration target-registration errors (TREs).

We acknowledge that intrascanmotion can also degradeDECTperformance. However, in this work, we
consider only themotion between two scans. Nevertheless, 4D-CTmotion-compensatedDVFs could be
incorporated into the proposed scheme. Similarly, formore than two scans, the techniques here can be extended
in a straightforwardmanner tomore than two energies.

2.Materials andmethods

2.1. General framework
As shown infigure 1, the framework of the proposedDECT reconstruction algorithmwith registration consists
of 2 steps: registrationmaps evaluation andDECT algorithm.

The registrationmappings are evaluated based on SECT images reconstructed from low- and high-energy
data. The SECT images could be reconstructed by analytical algorithms or iterative algorithms. Single-energy
alternatingminimization algorithm is utilized in this work to reduce the influence of artifacts, so the registration
algorithm is less likely to attempt tomatch the noise.

After the image registration, the iterativeDECT algorithm is initialized by the analytical DECT images, and
the deformation fields correct the systemoperator thatmaps the data domain and the image domain in both the
initializationmethod and the iterativeDECT algorithm.
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2.2. Algorithmderivation from the forwardmodel
Let ÎxH

3 and ÎxL
3 be the coordinate systemsdescribing the subject anatomyduring high- and low-energy

scanning, respectively. The true deformation transform  j :0
3 3, identifies the locationxL=j0(xH) in the

low energy image corresponding to the high-energy image location xH.j0(xH) is closely related to theDVF
uL→H(xH) byj0(xH)= uL→H(xH)+ xH. Given the LACmapμ(xH,E) as a functionof energyE, specified in the
fixed coordinate system xH, thewarpedmoving image canbewritten asμ(j0(xH),E)= (μ◦j0)(xH,E), where
◦denotes the function composition operator.

Therefore, the transmissionmeasurements forDECT aremodeled by

( ) ( ) ( )( )( ◦ )( )ò ò~ m j-d y y E EI e d, , 1h x y x E x
L

N
L

d
0,

, ,

E

H H H0

( ) ( ) ( )( ) ( )ò ò~ m-d y y E EI e d, , 2h x y x E x
H

N
H

d
0,

, ,

E

H H H

where dL and dH denote the low- and high- energymeasurements, respectively, Îy 3 denotes the location in
themeasurement space,NE is the domain of the energy bin, I0 denotes the photon counting number in the
absence of the object (explicitly the outer product of the bowtiefilter in the sinogramdomain and the spectrum
in the energy domain), and h(x, y) denotes the systemoperator.

Since xL=j0(xH) and ( )j= -x xH L0
1 , the forward-projection of an imageμ(xH,E) from the distorted image

frame of reference can be rewritten as

( ∣ ( )) ( ) ( ) ( ( ) ) ( )ò òm m jd= -FP y x E x E h x y x x x xd d, , , , 3L L H H L H L0

where theDirac-delta function δ satisfies


( )
( )ò d =x xd 1
0

for all open balls  ( ) Î0 3 of radius ò> 0,

centering the origin.
The function ( ) ( ) ( ( ) )ò jd¢ = -x y h x y x x xh d, ,L H H L H0 is the distorted anatomy systemoperator, which

allows an image formed in the high-energy coordinate system to be comparedwith its low energy projection,
whichwas acquiredwith the patient in the deformed state. By the definition of adjoint, we can derive the
corresponding back-projection as

( ) ( ) ( )ò ¢ x y g y yh d, 4L

( ) ( ( ) ) ( ) ( )ò ò jd= -h x y x x x g y yd d, 5H H L H0

Figure 2. Flowchart of iterativeDECT algorithmwith registration.

Figure 1. Flowchart of the proposed framework.
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whereBP(xH)= ∫h(xH, y)g(y)dy is the back-projection of the sinogram g(y) into the high-energy image domain.
The determinant of the Jacobian of the deformation fieldj-

0
1 compensates for the variation of the space

density in the epsilon-ball about the location x after the deformation field is applied. If the neighborhood of the
point x is concentratedwhen the image is warped by the forward deformation fieldj, the point x tends to get
moreweight in the gradient calculation.

Because images and sinogramdata are discretized, x, y can be treated as integer indices, i.e. so that image
μ(x, E) can be represented as amatrix sincewe choose to discretize energy aswell. In this case,μ(j0(xH), E) is not
defined for ( )j ÏxH0 .

The forwardmodel can be represented as

( ) ( ) ( )
( ) ( ( ) (· ))

å~
å j m

Î

-
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and
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where Îx y, 3 denote the discrete indices of the image space andmeasurement space, respectively,μ denotes
the discretized image that only takes integer indices,μ( · ,E) is the attenuation image at the energyE, and Interp
(x: I)denotes the interpolated image that is indexed by Îx 3, estimated from the digital image I.

Thefirst proposedmethod for the discretized problem could be easily derived following the continuous case.
The back-projection becomes
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Note that (9) provides the adjoint operator for an arbitrary interpolationmethod, which allows the use of
nonlinear interpolations in the proposed scheme.

Conventionally, the interpolated image could be computed elementwise by a linear combination of the
neighboring value and a set of coefficients



( ) ( ) ( ) ( )
( )

å=
Î

x xI w x I xInterp : , . 10
x

H
x

H L L

L H

where ( )xH denotes the neighborhood indices of xH, andw(xH, xL) denotes the coefficients based on the
distance between xH and xL.

Moreover, for any interpolation of the form in (10), one could combine the deformation field and the
interpolation as

( ( ) (· )) ( ) ( ) ( )åj m m= jx E w x x x EInterp : , , , . 11H
x

L L0

L

Then, the adjoint of the combination of interpolation and forward-projection to calculate the gradient could
also be computed as

( ) ( ) ( ) ( ) ( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
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⎛

⎝
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⎞

⎠
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y x
H H L

x y
H H L

H

which is the back-projection followed by the adjoint of thewarped linear interpolation.

2.3.DECTSIRwith image registration
In the previous section, we have shown that thewarp of the image could be plugged into the forward-projection
process to form a ‘distorted forward-projection’, and the adjoint of the distorted forward-projection could be
represented as a back-projection followed by the inverse warpingmultiplied by the determinant of its Jacobian
matrix (shown in (9)) or the adjoint of the interpolation if the interpolation function is linear (shown in (12)).

Since the substitution of the forward-projection does not influence the convergence property of the original
algorithm, one could easily apply the proposed framework to anyDECT SIR bywarping the image before the
target forward-projections and applying the adjoint warping after the corresponding back-projections.

This study employed amaterial decompositionmodel to simulate the target LAC, based on the assumption
that the LACof typical biologicalmedia can be accurately represented through a linear combination of distinct
materials, denoted as ( ) ( ) ( )m m= å =x E E c x, i i i1

2 , where c is the basis component weight, and i denotes the
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index of the basis. For the sake of simplicity, here we transform c1 and c2 into a 1-dimensional vector, denoting as
ÎC N2 X . Then, suppose the objective function ofDECT SIR has the formof (O’Sullivan andBenac 2007,Huh

and Fessler 2009, Xu et al 2009, Long and Fessler 2014, Zhang et al 2014, Chen et al 2016)

 ℓ ( ) ( ( ) ( )) ( ) ( )åå l= +C d y g y C C, : , 13
j y

j j

where    ( ) : ,N N2 2y y denotes the datafidelity term,   : N2 X denotes the regularization term, and
λ is a scalar that controls the penalty strength; jä [L,H] denotes the scan index, and [ ( )]g Cj y is themean photon
counts estimated from the basis imagesC. The update step can bewritten as a function involving backprojections
of the reweightedmean sinograms and the reweightedmeasured sinograms,

( ( ) ( ) ( ) ( ) ( )) ( )† † † † l+= + +C f C H S C H S C H P d C H P d C C, , , , , , 14L H L L H Hnew

where
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=
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, 18j j i y j

E j i

E j

,

Î ´H N N2 2Y X and † Î ´H N N2 2X Y denote the systemoperator (forward-projection) and its adjoint (back-
projection), respectively,NX andNY are the numbers ofmeasurements and image voxels, respectively. Two
 ´N NY X matrices on the diagonal ofH are identical, and the  ´N NY X matrices off the diagonal ofH arefilledwith
zeros. Therefore,HC, Sj(C) andPj(dj,C) are  ´N2 1Y vectors. (·)exp denotes the element-wise exponentiation,

 f : N NY Y is the gradient function that evaluates the update direction based on the back-projections of the
mean andmeasured transmissions aswell as the penalty term.

The proposedmethod changes the updating step from (14) to



( ( ( ( ))) ( )

( ( ( ))) ( ) ( )) ( )

† †

† † l

+ =

´
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~
j j

j j

C f C W H S W C H S C
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, , ,

, , , , , 19

L H
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new

where  Î jW N N2 2X X is the interpolation operator given the deformation fieldj, ˜jW is a dummyoperator
that represents j-W 1 or †

jW , and †
jW is the adjoint operator ofWj ifWj represents a linear operation. The

flowchart is shown infigure 2.

2.4. Error analysis
Due to the inherent errors in approximating a deformation using the combination of thewarping and the
interpolation, therewill always be errors between the ground truth and the computed image. In this section, we
theoretically analyze the influence of warping error on the result ofDECT SIR.

LetC f be the stationary point of thewarpedDECTSIRwith the truth deformation fieldj0 and perfect
interpolationmappingW0. Note that the stationary point is achieved onlywhen the first-order necessary
condition is satisfied for (13). Then,C f satisfies (see the proof in the appendix)

˜ ( ) ( ) ( )

˜ ( ) ( ) ( )

† †

† †

l+ + 

= +

j j

j j

W H P d W C H P d C C

W H S W C H S C

, ,

. 20

L L
f

H H
f f

L
f

H
f

0 0

0 0

0 0

0 0

Let = + Dj jW W W0
0

be the interpolation operator based on the estimated deformation fieldje, andΔW

be the difference between the estimated interpolation and the ‘truth’ interpolation, then the estimated image Ĉ
satisfies

˜ ( ˆ ) ( ˆ ) ( ) ˜ ( ˆ ) ( ˆ ) ( )† † † †l+ +  = +j j j jW H P d W C H P d C R C W H S W C H S C, , . 21L L H H
f

L H

One could expand (21) atC f and jW 0
0
, combiningwith (20) yields

( ˜ ) ( ( ) ˜ ) ( )† † †lD » - L + L + Y W D - L Dj j
-C W H HW H H W HQ WH H WC , 22L H L

0 0 1
0 0

whereΛL,ΛH,Ω(ΔW) andQ are defined in the appendix.
Equation (22) describes a linear relationship between the small perturbation of the deformation fieldΔW

and the change in the estimated imageΔC. Thefirst two terms in (22) give the Fisher InformationMatrix of the
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loss function, which provides amanifold on the domain of c describing themean of gained information over all
the random realizations of the observed data. Intuitively, an uniform imagewill not propagate any error to the
result even if theDVF residual is large. The deformation error is propagated through the application on the
imageC. Small components in the invertedmatrix will amplify the error introduced by estimatedDVF.
However, increasing the penalty strengthλ helps reduce the error.

In order to ensure thatmaximumaccuracy is achieved relative to data quality, a plausible requirement is that
estimated image errors due toDVF errors are small compared to the errors caused by Poisson noise in the
transmission data (Qi andHuesman 2004), i.e.

[ ] ( )† hD D SC C , 23d

where  denotes the expectationwith respect to the randommeasurement, η is a tolerance factor (i.e. 0.01), and
Σd denotes the covariancematrix caused by noise in data d. One can easily derive an approximation toΣd in the
case ofDECT (Fessler 1996), which is

( ) ( ) ( )l l+ Y + Y- -F F F , 241 1

where ˜ † †= L + Lj jF W H HW H HL H
0 0

0 0
.

Combining (23) and (24) yields

( ˜ ( ˜ ) ) ( ˜ ) ( )† † † † †hL D L D L + Lj j j jW H H WC W H H WC W H HW H H . 25L L L H
0 0 0 0

0 0 0 0


As it wasmentioned inQi andHuesman (2004), the comparison of traces of thematrices could be a
surrogate of (25) for the sake of computational simplicity, i.e.




(( ˜ ) ˜ ) ( ( ˜ ))

( ( ˜ ) ) ( )

† † † † †
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v L H
T

0 0 0 0

1
0 0

0 0 0 0

0 0

2.5.WarpedDEAM
In this section, we introduce the dual-energy alternatingminimization (DEAM) algorithm as an example of
DECT SIR. TheDEAMalgorithm is a statistical DECT algorithm that operates jointly on low and high-energy
sinograms by decoupling themaximum log-likelihood problem at the energy domain using an alternating-
minimizing strategy. The objective function ofDEAMconsists of the I-divergence and penalty term as

 ( ∣∣ ) ( ) ( )å +d g C , 27
j

j j

where

( ∣∣ ) ( )
( )
( )

( ) ( ) ( )å= - +d g d y
d y

g y
d y g ylog . 28j j

y
j

j

j

j j

LetR be the local regularization term that constrains the gradient of the image, such that




( )
( )

( ) ( ( ) ( )) ( )åå å y=
¢ Î

¢ - ¢C
x x

w x x c x c x, , 29
x i

R i i

where ( )x denotes the neighborhood of x,wR denotes theweight addressing the distance between x and ¢x ,
and the potential functionψ is a element-wise convex symmetric smooth function. The derivation of the image
update with the penalty of the form (29) is shown in the appendix.

InDEAM,ψ is assumed to be aHuber-type potential function:

( ) ∣ ∣ ∣ ∣ ( )⎜ ⎟⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

y d
d d

= - +t
t t

ln 1 , 302

where δ controls the transition betweenℓ2-norm andℓ1-norm.With an appropriate choice of δ (see appendix
A.3 for the penalty parameter selection), this differentiable function preserves sparsity in the gradient domain.
Then,




[ ( )]
( )

( ) ( ) ( )( )
( ) ( )

å y x
x

 =
¢ Î

¢
¶
¶ x= - ¢

C
x x

w x x2 , . 31f
i x

c x c x

,

i
f

i
f

When the high- and low-energy images are perfectly aligned,DEAMyields decomposed images that can estimate
physical properties, e.g. charged-particle stopping powers and electron densities, with subpercentage
uncertainties (Medrano et al 2022) on both synthetic andmeasured sinogramdata acquired from clinical CT
scanners (Medrano et al 2020). Theflowchart of themodified version ofDEAM, calledwarpedDEAM, is shown
infigure 3, and the algorithm is shown in algorithm1.
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Algorithm1.DEAMwith registration

whileNotConverged do

for i in { }1, 2 do ▹Inverse warping
◦j¬ -c ci i2 1

1

for i j, in { }1, 2 do ▹Forward-projection
( ) ( ) ( )¬ åc y h x y c x,ij

F
x ij

for j in {1, 2}do ▹Basis vectormodel

( ) ( ) ( ) ( )¬ m-åq y E I y E e, ,j j
E c y

0,
i i ij

F

for i j, in { }1, 2 do

˜ ( ) ( ) ( )m¬ åg y E q y E,ij E i j

˜ ( )
( ) ( ) ( )

( )
¬

må

å ¢¢
d yij

E q y E d y

q y E

,

,

E i j j

E j

for i j, in { }1, 2 do ▹Back-projection
( ) ( ) ˜ ( )¬ åg x h x y g y,ij

B
y ij

( ) ( ) ˜ ( )¬ åd x h x y d y,ij
B

y ij

for i in { }1, 2 do ▹Forwardwarping
( ) ( )◦j¬g x g xi

B
i
B

2 2

( ) ( )◦j¬d x d xi
B

i
B

2 2

Solve decoupled function ▹Image update

( ) ( ) ·
( )⎡⎣å å å +d x c g xargminc j i x ij

B
i
new

ij
B

Z x1
1

i i1

( ( )[ ( ) ( )])] ( )- + +Z x c x c x R cexp i i
old

i
new k

1 1
1

outputs:

=c c1 11, =c c2 21

In this work, thewarpedDEAMalgorithm is accelerated by the ordered subset technique (Erdogan and
Fessler 1999) during the early iterations. TheGPU-accelerated code has been implemented so that the algorithm
is run on 4NVIDIAV100 for time efficiency.

2.6.Deformable registration
In our setting, we require aDIR algorithm that yields diffeomorphic, topology-preservingmappings.

Sincewe need to repetitively and reciprocally warp image volumes between two differentmaterial energy
domains (c1 and c2), a symmetric algorithm that guarantees the invertibility of the estimated transformation is
critical to thewhole reconstruction process. This guarantees the inverse consistency of the outputmappings.
Since the patient’s anatomymay vary during two successive scans, the algorithm should also be stable with large-
scale deformation.Of the algorithmsmeeting these specifications (Oliveira andTavares 2014), the state-of-the-
art advanced normalization tools (ANTs) (Avants et al 2009) toolkit was selected for ourwarpedDEAMpipeline.

Designating the 90 and 140 kVp images as thefixed image J andmoving image I. TheANTsDIR algorithm
(symmetric image normalizationmethod (SyN) (Avants et al 2008)) computes the optimal transformationj*

within a transformation space thatmaps the coordinates xäΩ of themoving image I(x) to a location ¢ Î Wx
whichminimize a cost function E describing the similarity between I and J.

SyN generates transformations in a diffeomorphic space that forms a group of differentiablemapswith
differentiable inverses (Ebin andMarsden 1970) that is closed under composition. The diffeomorphismj is
defined on the image domainΩ and is parameterized over time as a family of diffeomorphisms,j(x,
t):Ω× t→Ω, tä [0, 1], which can be calculated by integrating a time-dependent, smooth velocity field,

W ´ v t: d, described by the following ordinary differential equation (ODE)

Figure 3. Flowchart ofDEAMwith registration.
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where is the similaritymetric depending on the images and the transformation,λ is a parameter controlling
the tradeoff between smoothness and image similarity, L is a differential operator that enforces smoothness of
the vector field, and Lv represents the vector normof v.

Note that the regularization term in (33) is the total distance between the initial and the final
transformations, which enforces a geodesic property on the resulting transformations. The resulting Euler–
Lagrange equations are solved by variational optimization (Beg et al 2005).

Tofind the optimal v*, the variational energy E isminimized from either endpoint towards themidpoint of
the transformation, as indicated by the similarity term. This strategy ‘splits’ the optimization dependence equally
between both images. Thus, gradient-based iterative convergence deforms I and J along the geodesic
diffeomorphism,j, to afixed pointmidway (intuited by the notion of shape distance)motivating themoniker
‘symmetric normalization’ (SyN) for the solution strategy (Avants et al 2011).

As discussed in section 2.10, amulti-modality similarity termmust be used since the attenuation coefficients
of the samematerial differ significantly from90 to 140 kVp.

2.7. Initialization
Weuse the iterative filtered back projection (iFBP)method to initializeDEAM (Yan et al 2000). iFBP is an image-
domain decompositionmethod that incorporates the polychromatic characteristics of the x-ray source into
reconstruction and iteratively updates the image by the FBP of the discrepancy between themonochromatic and
the polychromatic sinograms.However, since the estimated image is iteratively projected for the sinogram
evaluation in iFBP, the inverseDVF should be applied prior to each forward projection.

2.8. Simulation studies
Two synthetic phantomswere used to evaluate the performance of the proposedmotion-compensatedDEAM
method. Thefirst was amodified high-contrast resolution phantom shown infigure 4 consisting of disks,
squares, and grids at 1–5 intervals composed of 18%CaCl2 solution embedded in a 30 cmdiameter water
cylinder. The resolution insert bars were composed of 45%K2HPO4 solution. Theflowchart for this test is
shown infigure 4. The phantomwaswarped by a harmonic deformation field that has an exact analytical inverse.
The original andwarped phantomswere then back-projected to generate the non-warped (NW) and distorted
geometry synthetic transmission data.

The dimensionality and voxel size of the phantomwere 2440× 2440× 52 and 0.25× 0.25× 1 mm,
respectively, so as to preserve its sub-millimeter information. The phantom iswarped by a harmonic

Figure 4.The flowchart of the simulation study on high-resolution phantom and illustration of harmonicDVF.
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deformation field that has a strict analytical inverse. Then, the original DEAMandwarpedDEAMalgorithms
jointly operated on the low- and high-energy synthetic sinograms for the non-warped andwarped phantom
geometries.

For the anthropomorphic simulation study, we utilize the advanced version of the 4Ddigital phantom4D
ExtendedCardiac-Torso (XCAT) (Segars et al 2010) as the ground truth. XCAT is an anthropomorphic
phantombased on a non-uniform rational B-spline (NURBS)with highly detailedwhole-body anatomies. The
deformation fields are given by parameterizedmotionmodels with the heart and respiratory cycles. TheXCAT
phantomCTprojector generates projections via continuous line integrals from theNURBSfile rather than the
discretized phantom. Synthetic polychromatic CT sinogramswere constructed using the continuous XCAT
projector in fan beammode.We used a script to simulate the helical scanning process that duplicated Philips Big
Bore scanner geometry and scan settings. The incident photon-fluence profile was scaled so that the variance of
XCAT image reconstructed by the in-house FBP algorithmmatched the variance of the clinical FBP image
reconstructed by the same algorithm.

2.9. Clinical study
Helical 90 and 140 kVp scans of a patient subject (IRB studyNCT03403361)were sequentially acquired on a 16-
rowPhilips Brilliance Big Bore CT scanner with 0.75mm× 16 row (12mm) collimation. The scanned region
extended from the top of the head to the base of the skull tomodel a typical CNS patient and from the base of the
skull to the top of the pelvis to represent a typical lung patient. The central-axis spectra used in the
reconstruction process were experimentally determined byfitting thewell-established BirchMarshallmodel to
measured transmission profiles through aluminumand copper attenuators of varying thickness (Evans et al
2013).

The raw sinogramswere exported directly from the scanner and preprocessedwithout beamhardening
correction using proprietary software provided by the vendor. The sinogramswere then reconstructedwith our
original andwarpedDEAMwith a resolution of 1× 1× 1.034mm3. The z-direction resolutionwas chosen to
ensure that eight slices covered exactly a single gantry rotation. A research-oriented version ofDEAMalgorithm
was run for 400 iterationswith 33 ordered subsets followed by 500 iterations without ordered subsets. Each
reconstruction took approximately 8 h for the component weights with a size of 610× 610× 146.

2.10. Similarity and image qualitymetrics
In this workwe use twometrics,mutual information (MI) and local cross-correlation (LCC), formultispectral
image registration.

MI quantifies the similarity between two images by predictability, which is the information gained about one
image by observing the other. LetPI(a)denote the probability that value a appears in image I,PJ(b) denote the
probability that value b appears in image J, andPIJ(a, b) denote the joint probability that value a appears in image
I and value b appears in image J. Then,
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LCCquantifies the similarity using the local Pearson correlation coefficient.
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The point-wisemutual information (PMI) is utilized as themisalignment indicator of two images to
visualize the registration improvement (Rogelj et al 2003):
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In order to quantitatively assess the performance of the proposedmotion-compensation frameworkwith
DEAM, relative LACbias andmean absolute error (MAE) are introduced against the reference value at different
energies
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respectively, whereμref denote the reference LACs of the selected tissue.
In addition, we also use the SPR estimation error as anothermetric to assess the performance of the proposed

method. The stopping powermappings are estimated fromDEAMbasis component images following the
procedure outlined in previous studies [41], and the estimated SPR is compared to the ground truth value
derived fromknownmaterial compositionwith respect to the bias and themean absolute error.

3. Results

3.1. Resolution simulation results
The reconstructed images for the high-contrast study are shown infigure 5(a). Figures 5(b) and (c) show the
zoomed details of the corresponding reconstruction. As expected, theDEAM-NW image has the cleanest edges,
and the iFBP image has themost severe artifact, especially around the upper region in 5(b) and left region in 5(c).
DEAM-Linear (DEAM-LI), DEAM-BSpine (DEAM-BS), andDEAM-Adjoint (DEAM-AD) share a similar
pattern of the artifact in the region of 1mmspacing bars, andDEAM-BS performs better thanDEAM-ADand
DEAM-LI. The lower left corn of the reconstructed grids in 5(c) are blurred, and theDEAM-LI andDEAM-AD
images are slightly better thanDEAM-BS.Moreover, with the increase of the energy for VMIs, the artifact would
be reduced. Figure 5(d) shows profiles through the various bar patterns. Since thewarpingmagnitude varies
across the bar pattern, the profiles are not identical for bars within the same group. In profile 1, the outer and
inner bars are over- and under-estimated, respectively, by the threewarpedDEAMalgorithms. As bar spacing
increases, the differences between bars in the same spacing group are reduced. For the 4 mmpattern, thewarped
DEAMprofiles closely approximate those of the non-warpedDEAM image.

Figure 5. (a)The reconstructed images. From the top row to the bottom:DEAM-NW: baseline (reconstruction fromundistorted
sinograms), iFBP: initial condition (image-based decompositionwith imagewarping), DEAM-Linear: warpedDEAMwith linear
interpolation (Jacobian-weighted inverse), DEAM-Bspline: warpedDEAMwith B-Spline interpolation (Jacobian-weighted inverse),
andDEAM-adjoint: warpedDEAMwith linear interpolation (adjoint). From left column to the right: c1 with displaywindow [–0.2,
1.2], c2 with displaywindow [–0.2, 1.2], virtualmono-energetic image (VMI) at 20, 60, and 140 keV estimated from c1 and c2.(b) and
(c): zoomed-in version of the reconstructed images. (d) Shows the profiles of the differentDEAMalgorithms through five regions of
interest (ROI) shown in the lower-left image of (a).
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Regarding the dependence of image quality onDEAM interpolation scheme, none standards out as
unambiguously superior. For example, in profile 1, DEAM-BS andDEAM-ADoutperformDEAM-LI at 20 keV,
whereasDEAM-LI andDEAM-ADoutperformDEAM-BS at 140 keV. In profile 3, DEAM-LI andDEAM-AD
outperformDEAM-BS at 20 keV, but in profile 4, DEAM-BS outperformsDEAM-LI andDEAM-AD at 20 keV.
Considering both the overall performance and the computational complexity, DEAMwith adjoint was used in
later studies.

3.2. Anthropomorphic simulation results
Figure 6 shows the performance ofDEAMwith different deformation fields on three different slices of the XCAT
phantom. The PMI images demonstrate the pointwise similarity between 140-kVpfixed image and deformed
90-kVp image.

DEAM-SyN andDEAM-GTboth outperformDEAM.The percentageMAEs in the region of the soft tissues
and spine forDEAM-SyN are reduced by 12.55, 3.27, and 4.88-fold compared to the result without registration
at 20, 60, and 150 keV, respectively.

For extra-lung tissue, incorporatingwarpedDEAMusingGT reducesMAEs from14.82%–24.89% to
2.66%–2.76% for 20 keV LACFor 150 keV,warpedDEAMwithGTDVF reduces the errors from1.53%–2.46%
to 0.32%–0.35%. For lung parenchyma, the corresponding error reductions are 44.84%–77.02% for 20 keV
LAC, and 4.95%–7.58% for 150 keV LACThe LACof lung parenchyma is small compared to soft and bony
tissues, leading to the small denominator inMAE. Therefore,MAEs for lung parenchyma are significantly larger
thanMAEs for extra-lung tissue.

DEAM-SyN errors are onlymodestly higher thanDEAM-GT errors. It could be seen that themismatches in
PMI images and artifacts in reconstructed images aremainly concentrated in the heart region. The artifacts
caused bymisalignmentmatch the shape of red regions in PMI.Most of themismatching artifacts are corrected
by theDVF fromSyN.However, DEAM-GT still outperformsDEAM-SyN in reconstructing the boundaries of
organs.

Figure 6.Three different slices fromDEAMreconstructions of XCATphantomwithout registration (DEAM), motion-compensated
DEAM (DEAM-SyN), andmotion-compensatedDEAMusing theXCAT ground truthDVF (DEAM-GT). From left to right the
columns showPMI overlaid on the 140 kVp image, c1 image (displaywindow [–0.2, 1.2]), c2 image (displaywindow [–0.2, 1.2]),
20 keVVMIwith the displaywindow [0, 0.1], percentage absolute error to the ground truth at 20 keVwith the displaywindow [0%,
30%], 60 keVVMI from c1 and c2 with the displaywindow [0, 0.05], percentage absolute error to the ground truth at 60 keVwith the
displaywindow [0%, 5%], and 150 keVVMI from c1 and c2 with the displaywindow [0, 0.03], percentage absolute error to the ground
truth at 150 keVwith the displaywindow [0%, 5%]. The numbers in the upper left corner of each error image denote the percentage
MAE for extra-lung soft-bony tissue and lung parenchyma, respectively.
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Figure 7 shows the accuracywithwhichDEAMXCAT reconstructions with andwithoutmotion
compensation estimatemono-energetic linear attenuation coefficients inmuscle (heart), adipose,muscle, and
spine, respectively. The selected ROIs are 10 mm long cylinders. Figure 7(b) and (c) shows thatmotion
compensation significantly reduces themagnitude of bias andMAE. For example, bias for heartmuscle is
reduced from56% to 8%and 5% to 0.4% at 20 keV, 150 keV, respectively. The same trend can also be seen in
other regions. Themagnitude of bias for adipose andmuscle is reduced from1.7% and 4% to 0.2% and 0.1% at
40 keV, respectively. Both the bias andMAE forwarpedDEAM in the selected regions arewithin 1% from40 to
150 keV, except for the heartmuscle. Themagnitude of bias andMAE for heartmuscle is within 1% after
55 keV.

To assess the robustness of the proposed pipeline against noise, we conducted a quantitative comparison
between the results reconstructed from the simulated normal-dose and low-dosemeasurements of the XCAT
phantom,where the low-dosemeasurement was simulated at 1/10 of the normal dose. In order to highlight the
superiority of our approach, we conducted a performance comparison between our proposedmethod and the
pure image-domain decompositionmethod that is widely used in clinical practice. In image domain
decomposition, two bead-hardening-correctedmeasurements were reconstructed by the filtered back
projection, and the low-kVp imagewaswarped by the estimatedDVF. Subsequently, two basis component
images are obtained by linearly combining the low- and high-kVp images, whichwe refer to as IDD-SyN. The
results are presented infigure 8. Each histogramplots the pointwise errors between the estimated LAC and the
ground truth LAC, divided by the ground truth LAC, in a 610× 610× 100 image volume.We only considered
non-boundary voxels corresponding to soft and bony tissues in this assessment to avoid extremely small values
being used as the denominator.

Figure 7. (a) Four regions of interest in theXCATphantom indicated by circles. Plots and the zoomed plots of (b) percentage bias and
(c) absolute error versus energy for original andwarpedDEAMreconstructions ofmonoenergetic LACs of theXCATphantom.

Figure 8.Histograms of percentage errors of LACs reconstructed by differentDEAMalgorithms against the ground truth (μGT(x,
E) − μest(x,E)). A higher concentration of values near zero indicates better performance. The distribution tails were truncated to
enhance clarity and legibility. The columns from left to right correspond to the estimated LAC at different energies. Thefirst and
second rows illustrate the performance of the normal dose and lowdose simulation studies, respectively. IDD-SyNdenotes the image-
domain decomposition results with SyN-estimatedDVF.X-axis unit:%.
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The evaluation results indicate that bothDEAM-GT andDEAM-SyN algorithms reconstruct the results with
negligible bias and variance in the normal dose and low dose studies. Themajority of the errors fall within the
range of−1% to 1%at 60 and 150 keV for normal dose. The histograms ofDEAM-NWat 60 and 150 keV
exhibit two peaks, where one peak represents the correctly reconstructed values, and the other denotes the values
influenced by themisalignment. In the 20 keV results, the peak corresponding to the ‘correct’ values is greatly
reduced, indicating thatmotion artifacts inDECT SIR can significantly affect the fixed region evenwhen the
target energy is relatively low.

When comparingDEAM-SyNwith IDD-SyN in the normal-dose case, we found that the FWHMof the
IDD-SyNhistogram is approximately 1.8 times larger than that of theDEAM-SyNhistogram at 60 keV. This
difference becomesmore pronounced for other energies. Specifically, the FWHMforDEAM-SyN is around 11.7
and 8.9 times larger than the FWHMfor IDD-SyN at 20 and 150 keV, respectively. Additionally, the estimation
biases of IDD-SyN are larger than those ofDEAM-SyN. As a result, our study demonstrates that the image-
domain decompositionmethodwith the estimatedDVF leads to greater bias and variance compared to the
proposed algorithmwith the sameDVF.

Moreover, since the penalty weight inDECT SIR can be adjusted to compensate for the noise, our proposed
method is less likely to be affected by variance in themeasurement than the image-domain decomposition
method. In the low dose case, wemultiply the penalty weight by a factor of 3 to balance the noise level and
resolution of the reconstructed result. The FWHMof low-doseDEAM-SyN errors is approximately 1.6 times
larger than that FWHM in the normal-dose case at 60 keV, while the FWHMof low-dose IDD-SyN errors is
approximately 3.1 times larger than that at 60 keV. Figure 9 depicts a representative slice of the reconstructed
image. As the simulated dose decreases, the image reconstructed by IDD exhibits a notable increase in noise
levels, while DEAM-SyNwith the appropriate penalty weight effectively suppresses the noise. However, DEAM-
SyN-LD exhibits a larger boundary error in comparison toDEAM-SyN, especially at 20 keV. This discrepancy is
likely due to the intensified penalty strength employed inDEAM-SyN-LD. Figure 10 shows propagated
uncertainty in BVMcomponent weights due toDVF inaccuracies, whereΔcest is calculated fromourfirst-order
theoretical analysis, equation (22), andΔcreal denotes the actual observed difference betweenwarpredDEAM

Figure 9.A representative slice of the reconstructed image. IDD-SyN andDEAM-SyNdenote the reconstructed image from the
normal dosemeasurement, and IDD-SyN-LD andDEAM-SyN-LDdenote the reconstructed image from the low dosemeasurement.
The numbers in the upper left corner of each error image denote the percentageMAE for extra-lung soft-bony tissue and lung
parenchyma, respectively.

Figure 10.Theoretical and practical errors introduced by inaccurateDVF.
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reconstructions based on-SyN and ground-truthDVFs.Note that SyN registration errors are sufficiently large
that the inequality (26) is not satisfied (the errormostly clustered around the organ boundaries.)

3.3. Clinical results
Figure 11 displays reconstructed images byDEAMusing different DVFs for two patient datasets. For the head-
neck patient, it is observed that themismatches in the reconstructed images are concentrated in the regions of
the pharynx, teeth, and shoulder. These regions of interest aremagnified and displayed in the upper left and right
corners of the reconstructed images. In thefirst head-neck slice of theDEAM images,mismatches are observed
around the teeth (blue) and pharynx (orange), which exacerbate the artifacts in theDEAM-NW images. In the
absence ofmotion compensation, the pharyngeal wall is reconstructed as a high-density structure in the 30 keV
image due to themisalignment of its surface, as shown in the corresponding PMI image. In the second head-

Figure 11.Reconstructed images fromnon-warpedDEAM (DEAM-NW), warpedDEAMbased on SyNDVFs derived byminimizing
themutual information (DEAM-MI), and cross correlation (DEAM-CC). Two typical slices are selected from a head-neck patient and
a lung patient, respectively. Column (1)–(3): inverse PMI overlaying on corresponding 140 kVp image slice, c1, c2 (displaywindow [–
0.2, 1.2]). Column (4), (6), (8): 30 keVVMI ([0, 0.08]), 60 keVVMI ([0, 0.04]), and 150 keVVMI (displaywindow [0, 0.022]). Column
(5), (7), (9): pointwise local cross correlation (PCC) between 140 kVp (fixed) image and 30, 60, 150 keVVMI.
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neck slice of theDEAM image, themotion artifact on the left shoulder (indicated in blue) has a similar shape to
themismatch identified by the inverse PMI.Moremismatches are apparent on the boundary of the right
shoulder (indicated in orange), affecting image intensity at the corresponding positions and in the surrounding
areas. By incorporatingmotion compensation, both geometricmismatches (as indicated by PMI image) and the
associated image artifacts are significantly reduced.

Due to the lack of the ground truth, we used the 140 kVp image as the structural ground truth, and
quantitatively evaluated the image quality through the pointwise cross correlation (PCC) of VMI against the 140
kVp image. PCC images are displayed as 1−PCC, so a brighter region indicates a serverermismatch. The
number on the top right shows themean value of the corresponding image. BothDEAM-MI andDEAM-CC
outperformDEAM-NWwith respect toCC images for all keVs, especially for the reconstructions at 30 keV. For
thefirstHN slice, themeans of PCC increase from0.7854 to 0.8442 and 0.8503, and for the secondHN slice,
from0.7918 to 0.8659 and 0.8750, respectively.

For the lung dataset, themismatches are concentrated in the regions of the heart and lung parenchyma blood
vessels. Thesemismatches aremanifested as artifactual high-density structures in the 30 keVVMI estimated
derived fromDEAM-NW (1st, 2nd, 3rd orange and 3rd blue). The blue ROI of thefirst lung slice shows an
overestimation of c1 and underestimation of c2 byDEAM-NW,which results in the underestimation of 30 keV
attenuation coefficients in the heart. Themismatch and themotion artifact for the right bronchus are shown in
the blue rectangles in the second lung slice, which ismanifested as anomalously high attenuation coefficients in
the bronchial wall. Themeans of PCC are increased from0.8478 to 0.9018 (DEAM-MI) and 0.9048 (DEAM-CC)
for thefirst lung slice, and 0.7710 to 0.8785 (DEAM-MI) and 0.8965 (DEAM-CC) for the second lung slice at
30 keV.

In conclusion, the results presented infigure 11 demonstrate that bothDEAM-MI andDEAM-CC yield
fewermismatches andmotion artifacts thanDEAMwithout registration. Our analysis of the CC images suggests
thatDEAMwith the proposed framework outperformsDEAMwithout registration, and theDVFderived from
minimizing CCoutperforms theDVFderived fromminimizingMI in this task. Thisfinding is consistent with
the research of BrianAvants et al (Avants et al 2009), who demonstrated that CC ismore effective at capturing
local patterns and reducing the impact of artifacts and noise thanMI.

Figure 12 shows the histograms of PCC for clinical imaging reconstructed byDEAM,with andwithout the
use of theDVF.Overall, the PCC values forDEAM-MI andDEAM-CC images exhibit a reduced number of
occurrences near zero, indicating a successful reduction ofmotion artifacts. Additionally, this result also
indicates thatDEAM-CCoutperformsDEAM-MI, as demonstrated by lower PCC counts in the range of 0-0.5.

Figure 12. Log-scaledHistograms of PCC.Higher counts of PCC around 1 indicate better performance. First row: head-neck patient,
second row: lung patient. From the left column to the right: PCCof 140 kVp image against 30 keV, 60 keV, and 150 keVVMI.
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Figure 13 compares the accuracywithwhichwarpedDEAMand uncompensatedDEAMalgorithms
reconstruct LAC and SPRs in three cylindrical adipose ROIs in the head and neck dataset. SinceDEAM-CC
performed slightly better thanDEAM-MI in the previous evaluation, the comparison is limited toDEAM to
DEAM-CC. The following quantitative analyzes are based on the assumption that thematerials property of the
object is close to our anticipation. Since theweight fraction of lipids in adipose tissue is highly variable, we use
three different lipid concentrations, 61%, 87%, and 94%, representing the lower limit,mean, and upper limits of
lipidmass fraction documented in reference (Woodard andWhite 1986) to derive three difference adipose-
reference LACs.

Three regions of interest in the adipose are indicated infigure 13(a). For the reference adiposewith 61%, the
magnitude of bias andMAE forwarpedDEAM is less than the original DEAMresult for the 20 to 67 keV energy
range abovewhich the uncompensatedDEAMoutperformswarpedDEAM.However, since the bias andMAE
in the least affected region (region 3) are larger than the bias andMAE in other regions, it is reasonable to assume
that adipose with 61% lipid is unlikely to be the ‘true’ adipose composition for this patient.With the reference
adiposewith 87%and 94% lipid, thewarpedDEAMhas a lower bias andMAE than the original DEAMatmost

Figure 13. (a)Three adipose regions of interest are indicated by circles. (b) From thefirst image to the sixth image are the percentage
bias and percentagemean absolute error against adipose tissue attenuationwith 61%, 87%, and 94%of lipid. The last two figures show
the error in estimating SPR.

Figure 14. (a)Two adipose regions of interest are indicated by circles. (b) From thefirst image to the sixth image are the percentage
bias and percentagemean absolute error againstmuscle attenuationwith 71%, 76%, and 81%ofwater. The last two figures show the
error in estimating SPR.
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energies. The percentageMAEwith 87% lipid reference adipose is within 2% after 60 keV, and the percentage
MAEwith 87% lipid reference adipose is within 2% after 47 keV.

Proton SPR estimation error is used as another performancemetric.With 87% lipid reference adipose, the
SPRbias of original DEAM is 5.7%, 3.4%, and –2.5%, respectively, while the SPR bias of warpedDEAM is
−1.2%,−1.1%, and−1.2%, respectively.With 94% lipid reference adipose, themagnitude of the SPR bias of
warpedDEAMcould be as low as 0.3%. The same trend could be observed for the plot ofMAE.With the
proposed scheme, theMAEofDEAMresult could be reduced from5.8%, 3.7%, and 2.8% to 1.7%, 1.4%, and
1.5%.With 94% lipid reference adipose, theMAEs could be as low as 1.0%, 0.6%, and 0.6%. Figure 14 shows a
similar analysis of two heartmuscle ROIs, wheremass fractions of water are varied over the range of
documented compositions. Over this range, the variation ofmuscle LAC ismuch smaller than for adipose. The
magnitude of bias andMAE for images fromwarpedDEAM is less than the correspondingDEAMmetrics for all
three reference compositions.With the proposedDEAM-CC scheme, the SPR estimation bias is reduced from
8.4% and 4.4% to 0.4% and –0.3%, respectively, whileMAE is reduced from8.4% and 4.4% to 1.1% and 0.6%,
respectively.

4.Discussion

In thismanuscript, we explore the feasibility of utilizingDVFs inDECT SIR to compensate for interscan organ
motion and tissue deformation that would otherwise compromise the accuracy of quantitativeDECT
applications.We fully appreciate that an 8 h reconstruction time is not acceptable for even off-line radiotherapy
use cases and continue to investigate acceleration strategies. TheDECT SIR process is dominated by the forward
and back projection operations, which consume approximately 95%of the elapsed time. In contrast, the
motion-correction step is relatively efficient, accounting for less than 1%of the total time as it involves only two
trilinear interpolations per iteration. This paper successfully demonstrates that interscanmotion corrections can
be integrated into theDECT SIR process, enabling accurate imaging of radiological quantities on conventional
SECT scanners, without significant loss of either computational efficiency or accuracy.

Nevertheless, the current total reconstruction time still falls far below the clinically acceptable threshold, due
to the slow convergence rate ofDECT SIR and high computational demands of forward- and back-projection.
However, the potential exists to substantially reduceDECT SIR reconstruction time from several hours to on the
order of tenminutes through a combination ofmore efficient update strategies (Degirmenci et al 2015,
Zhang 2018), deploying additional computational resources (Mitra et al 2017), and incorporating deep learning-
based acceleration. Recently, a novelmodel-based deep-learning technique forDECTSIRwas proposed (Ge et al
2023). Themodel-based networkwas able to reconstruct clinical images in less than 6min, achieving accuracy
comparable to existingmethods.

Reducing the computational burden associatedwith accurate radiological quantitymapping remains a
challenge, requiring additional engineering efforts to achieve clinically acceptable reconstruction times,
especially for online adaptive replanning applications which demand near real-time computational efficiency.
However, as currently practiced, proton-treatment planning is an offline non-real-time process (1–2 h), for
which a reconstruction time on the order of tenminutes is clinically acceptable.While a two-orders-of-
magnitude efficiency gain is a feasible engineering goal, its implementation is beyond the scope of this paper and
is left to other ongoing and future investigations by our laboratory.

5. Conclusion

Wedeveloped amotion-compensated scheme that effectivelymitigatesmotion artifacts in dual-energy
sequential scanned reconstructions. This scheme is compatible with anyDECT SIR that necessitates the
assessment of projection and backprojection. The perturbation analysis described a linear relationship between
the error inDVF and the error in the estimatedDECT image.

The evaluation of the proposed schemewith a selectedDECT SIR,DEAM, indicates a notable decrease in
errors related to estimatedmono-energetic linear attenuation coefficients. Specifically, ourmethod reduces such
errors from a range of 1.45%–21.16% to 0.40%–4.18% in both simulated and clinical cases. In the latter case, we
observed significant reductions inmotion artifacts in the pharynx, shoulder, and heart regions upon
implementation of our scheme.
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Appendix

A.1. Derivation of the error analysis
Suppose the objective function ofDECT SIRwithout registration is given by
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Letwf be an arbitrary interpolationmapping that satisfies = + Df fw w w0
0

, where ||Δw||→ 0 andf denotes
the estimated deformation field. AssumewarpedDECTSIRwith the above interpolationmapping converges to
the stationary point Ĉ .We have
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A.2. Gradient evaluation of local penalty
In this appendix, the derivative of the local potential function ( ( ) ( ))y - ¢c x c xi i for image update is derived from
its convex property. A function f (t) is convex if and only if
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A.3. Parameter selection of regularization term
The variance and resolution are considered as the imagemetrics to select the optimal penalty parameter. For
traditional computational imaging, there is a trade-off between the strength of noise reduction and the image
resolution.

We use a cylinder phantomwith cylinder inserts to evaluate the influence of the penalty parameter values on
the selected two imagemetrics. The transmission data is acquired from aPhilips Big Bore scanner at the same
dose level as the patient data. The resolution evaluation process follows the steps in (Evans et al 2011). Pixels that
share the same distance to the center are accumulated in the same bin to produce the edge spread function (ESF).
Then, a nonlinear data-fitting solver is used tomodel the discretized ESF as a continuous function
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Figure 15. (a)The experimental phantom for the parameter selection study. (b)ESF, LSF, andMTF for vendor reconstruction.
(c)ESF, LSF andMTF forDEAMreconstructionwith (λ = 1e5, δ = 2e−3). (d) scatter plot of variance versus resolution.
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The resolutionmetric is calculated by the integral from the frequency 0 to 0.5, i.e.

( ˜ ) ˜ ( )ò w wMTF d , A23
0

0.5

and the noise levelmetric is denoted by the variance of the selected uniform region.
Infigure 15(a),five red circles indicate five selected edges for ESF evaluation, and the corresponding variance

is computed on the region surrounded by each circle. Figure 15(b) and (c) show two examples of ESF, LSF, and
MTF for theVendor andDEAM images. Figure 15(d) shows the scatter plot of variance versus resolution of the
DEAMresult with different sets of penalty parameters comparedwith the vendor reconstruction.We selected
(λ= 1e5, δ= 2e−3) as the parameter set forDEAMbecauseDEAMwith this set of penalty parameters generates
imageswith higher resolution and less noise compared to the vendor reconstruction.
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