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Abstract

Assessing fetal development is essential to the provision of healthcare for both mothers and 

fetuses. In low- and middle-income countries, conditions that increase the risk of fetal growth 

restriction (FGR) are often more prevalent. In these regions, barriers to accessing healthcare 

and social services exacerbate fetal maternal health problems. One of these barriers is the lack 

of affordable diagnostic technologies. To address this issue, this work introduces an end-to-end 

algorithm applied to a low-cost, hand-held Doppler ultrasound device for estimating gestational 

age (GA), and by inference, FGR. The Doppler ultrasound signals used in this study were 

collected from 226 pregnancies (45 low birth weight at delivery) between 5 and 9 months GA by 

lay midwives in highland Guatemala. We designed a hierarchical deep sequence learning model 

with an attention mechanism to learn the normative dynamics of fetal cardiac activity in different 

stages of development. This resulted in a state-of-the-art GA estimation performance, with an 

average error of 0.79 months. This is close to the theoretical minimum for the given quantization 

level of one month. The model was then tested on Doppler recordings of the fetuses with low 

birth weight and the estimated GA was shown to be lower than the GA calculated from last 

menstruation. Thus, this could be interpreted as a potential sign of developmental retardation (or 

FGR) associated with low birth weight, and referral and intervention may be necessary.
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I. INTRODUCTION

Every year about twenty million infants are born globally with low birth weight (LBW) 

(less than 2500g), and the majority are born in low-and middle-income countries (LMICs) 

[1]. LBW can result from fetal growth restriction (FGR) or preterm birth. Fetuses with 

FGR conditions are more vulnerable to mortality and morbidity in the neonatal period and 

beyond. Therefore, early prediction of FGR could help manage the condition and lower 

mortality risk. Accurate estimation of gestational age (GA) using cardiac patterns can help 

with assessing fetal development, preterm birth management, identifying infants at risk for 

adverse health outcomes as well as delivery scheduling [2], [3].

Medical technologies for monitoring fetal and maternal health is not equally accessible to 

all. Almost half of women in LMICs do not receive adequate antenatal care, and worldwide 

an estimated two million early neonatal deaths occur annually in these areas primarily due 

to lack of access to quality care [4], [5]. In high-income countries ultrasound imaging is 

currently most frequently used for fetal health monitoring and estimating GA. Nonetheless, 

the cost of purchase, the technical skills required for maintenance and the user-dependent 

accuracy have limited the application of this technique in resource-limited settings [6]. 

Therefore, low-cost alternative methods are used in LMICs to estimate GA. A common 

method used for GA estimation is the last menstrual period (LMP), in which a 28-days 

menstrual cycle is assumed (Naegele’s rule) [7]. Although, some studies have criticized 

LMP due to the inconsistency in the menstrual cycle length [8] and the difficulty to recall 

the day of the last menstrual period [9], LMP-based GA estimation has been shown to 

be a useful method and clinically preferred for fetal dating in rural areas lacking medical 

equipment. Specifically, a study conducted in Bangladesh showed that LMP is a highly 

feasible estimate of GA if early antenatal ultrasound is unavailable [10]. In another study 

in Vietnam [11], the comparison of LMP based GA and Farr neonatal examination with 

ultrasound was provided. Farr is a method of assessing GA of a newborns by measuring 

certain physical characteristics such as skin texture, skin color and skull hardness [12]. 

They showed that LMP can provide a more accurate estimate of GA [11]. The validity of 

LMP-based GA estimation method was also tested in rural Guatemala [13] by comparing 

this method with the Capurro neonatal examination [14], [15] and the symphysis-fundus 

height [16]. The Capurro method is based on physical and neuromuscular criteria including 

skin texture, ear shape and head lag. The results suggested that, when trained field personnel 

assist women to recall their date of LMP, this date provides the best estimate of GA [13].

Fetal cardiac function assessment is a promising approach to identify high-risk fetuses 

[17]. The Autonomic nervous system (ANS) evolves during pregnancy and regulates fetal 

heart rate (FHR) [18], [19], which modifies FHR dynamics during pregnancy. Therefore, 

FHR is associated with fetal development and GA, which could facilitate the detection of 

pathological fetal development [20]. Studies on the detection of growth restriction using 

FHR showed that FGR fetuses have a lower percentage of heart rate variability compared 

with the normal population [21].

Cardiotocography is an inexpensive Doppler-based method routinely performed during 

pregnancy for fetal heart monitoring. This technique provides continuous fetal heart rate 
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using the data recorded by an ultrasound transducer for a period of 10–60 minutes. Fetal 

heart rate estimation is based on using autocorrelation over a specific window, which is 

generally every 3.75 seconds. However, it has low specificity and is endowed with an 

auto-correlation of the beats, reducing the estimated heart rate resolution. Another type of 

device for recording fetal cardiac activity using Doppler technology is in-home fetal Doppler 

transducers. This non-invasive and low-cost technique can be easily adapted to connect to 

mobile devices such as smartphones for recording and processing, motivating their use in 

mobile-health (mhealth) systems for risk screening in low-resource environments [22].

Using the Doppler technique, blood flow through the heart’s chambers and valves can be 

captured. Therefore, analyzing one dimensional Doppler ultrasound (1D-DUS) in the time 

and frequency domain provides valuable information regarding fetal cardiac functionality. 

However, despite all the advantages, the susceptibility to noise and movement makes the 

morphology of 1D-DUS signals highly variable which demonstrated both at intra- and 

inter-subject levels [23]. Therefore, learning heart rate patterns from 1D-DUS is challenging 

due to changes in the statistical characteristics of the signal.

In this study, we present a deep learning based method for estimating GA using fetal 

1D-DUS recordings to assess fetal development and early identification of FGR conditions. 

FGR may develop at any time during pregnancy due to maternal, fetal, placental, or genetic 

complications. Notably, a common factor in most FGR pregnancies is a restriction of blood 

flow to the fetus. Therefore, FGR is associated with reduced fetal weight at any given GA 

or a categorization of ‘small for gestational age’ (SGA). SGA also refers to newborns with 

a birth weight below the 10th percentile for a given GA at birth. The first goal of this study 

was to develop an accurate GA estimation model using data recorded from individuals with 

normal birth weight (NBW). Next, we tested the model using the data in a LBW category 

expecting an underestimation of GA compared to LMP-based GA dating. Birth weight data 

were collected as part of the perinatal care program. The weight thresholds of 2.64kg for 

males and 2.57kg for females were used [24] to divide the data into normal and LBW 

individuals for the training/validation and testing phases.

The proposed machine learning pipeline is a hierarchical deep sequence learning model to 

estimate GA from fetal 1D-DUS recordings. This model was designed to process sequences 

of time-frequency domain features extracted from 1D-DUS recordings. The network consists 

of two levels of recurrent networks with an attention mechanism to learn the long and 

short-term variability in cardiac activity.

The main novel contributions of this research include:

• The development of an end-to-end deep learning model to automatically estimate 

GA from 1D-DUS recordings is described. This approach mitigates challenges 

regarding 1D-DUS morphology variations and extraction of handcrafted features. 

In particular, the attention layer obviates the need for heuristics or hand-

annotation of activity states to contextualize the variability.

• The resulting model is robust to nonstationary changes in activity and noise by 

using a two-step attention mechanism and reducing the effect of low-quality 
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segments. Some artifacts might be avoidable when recording physiological 

signals, but there are also inevitable artifacts due to the nature of the 1D-DUS 

technique (such as motion of the device, mother, or fetus). Therefore, designing a 

method which is robust to the effects of noise is essential.

• We describe a comprehensive comparison and analysis using the largest cohort 

of raw 1D fetal Doppler data reported to-date. Different network structures and 

training approaches were investigated for noisy and unbalanced data to increase 

the generalizability of the proposed models for future studies on GA estimation.

• A clinically interpretable model is derived from data recorded from normal and 

low birth weight individuals.

A. Related Work

As mentioned above, to estimate GA from cardiac activity, studies often use fetal heart rate 

variability (FHRV) metrics. Specifically, it has been shown that using FHRV parameters 

extracted from magnetocardiographic recordings as an input of the regression model, 

fetal maturation age can be assessed [25], [26]. However, this approach requires high 

resolution fetal magnetocardiographic recording which is costly and nonportable equipment, 

making its use in LMICs impractical. In addition, Marzbanrad et al. presented a method 

for estimating GA using a step-wise regression on cardiac wall intervals derived from 

1D-DUS and fetal electrocardiagram (ECG) signals [27]. In further work, Marzbanrad et 
al. improved the estimation accuracy by incorporating 1D-DUS and fetal ECG quality 

assessment algorithms to filter poor quality signals [28]. Valderrama et al. presented a study 

on using FHRV indexes derived from 1D-DUS and maternal blood pressure to estimating 

GA using support vector regression using 10 minutes recordings [29]. Although previous 

Doppler based methods achieved significant results, they need additional recordings such 

as fetal ECG signals or maternal blood pressure, which increases costs and complicates the 

implementation, particularly in LMICs.

Deep learning models with the capability of automatic feature extraction provide a 

significant improvement in the processing of cardiac signals. Recent works on attention 

based models improved the interpretability and performance of the learning process in 

different applications [30], [31], [32], [33], [34]. To provide an interpretable model with 

high performance for automatic estimation of GA, in this study, we developed a deep 

learning model powered by hierarchical attention networks to process 1D-DUS signals 

captured by a low-cost transducer.

B. Limitations of GA Estimation in Low-resource Settings

In post-processing steps on clinical data acquired in high-income countries, we can discard 

the poor quality records, record them again or switch to a more reliable monitor. However, 

when we propose solutions for LMICs with limited and overloaded medical resources, 

misreported values, low-quality signals, and images become an integral part of the problem. 

Therefore, it is essential to consider these limitations in processing the data.
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Data used in this work was collected as a part of a perinatal care program conducted in 

rural highland Guatemala. Midwives were trained to use a mobile app to record perinatal 

information during regular visits. As part of the project, the community health workers 

performed home visits with newly pregnant patients under midwife care. Community health 

workers also conducted a visit approximately one to two weeks after delivery to collect 

additional information on neonatal health and any perinatal or postnatal complications [35]. 

Therefore, in this study the birth weight was estimated using the weight gain percentage 

derived from the fitted weight curve, as described in our earlier work [24]. This affects the 

accuracy of identifying normal and low birth weight infants. The model presented in this 

study is based on GA derived from the LMP method (reported to the nearest month). LMP is 

a valid and highly-feasible estimate of the GA in low-resource settings even among preterm 

infants of 33 weeks or below [10]. However, it can also be affected by errors due to recalling 

the date of LMP or biologically associated errors.

II. METHODS

A. Data Model

Let x(t; d) denote the time-series of a 1D-DUS signal with discrete time index t, acquired 

during a clinical visit of a pregnant woman on date d. The “true GA” at date d is denoted 

a(d) = d − c, where c is the date of conception, while the reported (LMP-estimated) GA is 

a(d) = d − c, where c is the anticipated conception date. Therefore, the reported and true GA 

can be related as follows:

a(d) = a(d) + η (1)

where η = c − c is the GA presumption error, which without additional priors (such as 

2D-Doppler) remains an unknown stochastic constant over pregnancy. The error η accounts 

for rounding errors due to recording GA labels in months, lack of knowledge of the last 

menstrual period and uncertainties in the exact ovulation, intercourse and conception dates.

We denote the 2-dimensional scalogram feature extracted from the 1D-DUS by 

f(x(t; d)) ∈ ℝ2. The scalogram is constructed as a function of time and frequency based 

on the absolute value of the continuous wavelet transform of a signal. Mathematically, the 

continuous wavelet transform computes the inner products of a continuous signal with a set 

of continuous wavelets [36].

The objective is to design a deep network to estimate the true GA from a single or a set of 

1D-DUS acquired during pregnancy, i.e.,

a(d) = Γ a(d), f x t; dk k = 1
L

(2)

where a(d) is an estimate of the true GA, dk(k = 1, …, L) denote the L dates that 1D-DUS 

is acquired from the pregnant woman, and Γ( ⋅ ) denotes the 1D-DUS to GA transform that 

is learned by the neural network. The network Γ( ⋅ ) gets the series of scalograms and has 

three components, feature extractor Gf ⋅ , θf , beat encoder Gb ⋅ , θb  and window encoder 

Gw ⋅ , θw , as shown in Fig. 1. The first level of the attention mechanism summarizes the 
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extracted features from each scalogram matrix and maps them to the vector si(i = 1, …, N). 
The second attention layer is applied to hidden states (ℎ1 to ℎN produced from s1 to 

sN respectively) to emphasize the importance of each window. In this scheme, the LMP-

estimated GA a(d) is used for model training.

B. Hierarchical Attention Network for Modeling Long- and Short-Term Temporal Patterns

Although the hierarchical attention method was previously introduced and used in other 

applications [37], it was necessary to modify this approach for our work. Specifically, 

we defined the network components for this specific application and the characteristics of 

Doppler signals. We leveraged a hierarchical attention network to test the hypothesis that 

better representations can be obtained by incorporating knowledge of long- and short-term 

fetal cardiac activity in the model architecture. This model includes two levels of attention 

mechanisms, one at the time sample level focusing on the scalogram of the Doppler signals 

and another at the window level focusing on the relationship between consecutive windows. 

This model was designed to capture two insights about fetal Doppler time series: 1) the 

underlying dynamic pattern of a series of fetal heartbeats, and 2) the fact that different time 

epochs of the signal are differentially informative to estimate fetal development. This could 

be due to change in the noise level, different fetal activity levels (as suggested by Hoyer et 
al. [38]) or variation in importance of a specific part of the cardiac cycle for GA estimation.

Both beat and window encoders are followed by an attention layer. The feature extractor 

is a time-invariant neural network that learns a representation based on training data by 

finding a robust transformation. The beat encoder network is a recurrent network that learns 

the dynamic of set of beats. Finally, the window encoder learns the relation of segments of 

multiple beats.

C. Sequence Encoder

In order to model the sequence of beats and segments, gated recurrent units (GRU) [33] 

were used. The GRU uses a gating mechanism to track the state of sequences without using 

separate memory cells. We denote input vector at time t as xt, one can adapt the GRU 

architecture as:

zt = σ Uzxt + W zℎt − 1 + bz ;
rt = σ Urxt + W rℎt − 1 + br ;
ℎt = ϕ Uℎxt + W ℎ rt ⊙ ℎt − 1 + bℎ ;
ℎt = zt ⊙ ℎt + 1 − zt ⊙ ℎt − 1 .

(3)

where rt is a reset gate and zt update gate. rt decides how much information should be 

preserved and zt decides the contribution proportion of the past and new information. σ and ϕ
are point-wise nonliniarity, ⊙ is point-wise product and W , U, b are parameters of the model. 

Both beat encoder Gb ⋅ , θb  and window encoder Gw ⋅ , θb  networks include GRU layers.

D. Hirarchical attention

As mentioned earlier, the hierarchy in the network tries to incorporate long and short-term 

dynamics in 1D-DUS. It is obvious that some parts of the signal are more involved in a given 

Katebi et al. Page 6

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



task due to fetal behavioral states, movement patterns and quality of the signal. Therefore, 

this model utilizes two levels of attention mechanism along with hierarchical training of 

beat-level and window-level networks.

Suppose that ℎit is a hidden representation of the time sample t in window i in vector space, 

the attention layer in Gb ⋅ , θb  network first projects ℎit into hyperbolic space uit . Then, it 

combines the components of uit according to their relevance to the problem and estimate the 

normalized importance weight αit through a softmax function. After that, the weighted sum 

of the time sample representations creates the window vector si:

uit = tanh W bℎit + cb ;
αit = exp uit

Tub

∑t exp uit
Tub

;

si = ∑
t

αitℎit .
(4)

The window vectors s1, …, si are then fed to the Gw ⋅ , θw  network. The window-level 

attention gets hidden representation of windows after processing in GRU layer. In (5), v
is a high level representation and summarizes the information in one recording of 1D-DUS. 

The window-level attention mechanism works as follows:

ui = tanh W wℎi + cw ;
αi = exp ui

Tuw

∑t exp ui
Tuw

;

v = ∑
t

αiℎi .
(5)

E. Generalization with data balancing

Data imbalance is a critical issue in real-world datasets specially in healthcare data. In 

this work, GA labels were recorded in month during the third trimester. Figure 3a shows 

the distribution of GA labels. Since there are less number of samples in months 5 and 6, 

we leveraged learning solutions to improve the generalization of less frequent categories 

using balanced loss function and balanced batch generator. Typically, balanced loss function 

assigns sample weights proportionally to the inverse of number of samples in each category. 

In this work, the inverse of the effective relative number of samples was used to re-weight 

the loss [39]. The mathematical formulation for the effective number of samples in each 

category was defined as 1 − βn /(1 − β) where β ∈ [0, 1) controls how rapidly this value 

grows and n ∈ ℕ is the number of samples.

III. EXPERIMENTAL DESIGN

A. Data

The data were collected as part of a randomized control trial, conducted in rural highland 

Guatemala [40], [41]. The mHealth system described in this article is a part of the NIH 

funded study titled Mobile Health Intervention to Improve Perinatal Continuum of Care 
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in Guatemala. The study was approved by the Wuqu’ Kawoq and Emory University 

institutional review boards (Wuqu’ Kawoq IRB approval number: WK-2015–001, Emory 

University protocol record: IRB00076231) to ensure compliance with ethical standards. 

The dataset includes 1D-DUS signals recorded by traditional birth attendants, who were 

trained to use the hand-held 1D-DUS device and were provided with a mobile application. 

Immediately before recording the 1D-DUS signals, the traditional birth attendants also 

entered the anticipated GA in months based on the last menstrual period. The 1D-DUS 

device was an AngelSounds fetal 1D-DUS JPD-100s (Jumper Medical Co., Ltd., Shenzhen, 

China) with an ultrasound transmission frequency of 3.3MHz. Data were captured using a 

bespoke Android client at 44.1kHz, using a low-cost smartphone (Samsung S3 mini) and 

stored as uncompressed WAV files at 7056/s bits) [22]. Figure 2 illustrates the data sources 

and devices used in this research. The data was captured from pregnant women at 5 to 

9 months of gestation. The inclusion criteria were specified as existence of weight and 

GA label corresponding to 1D-DUS recording at the time of the visit. Noisy signals were 

detected using the model presented by Valderrama et al. [41], which is based on a two-step 

classifier to assess the quality of each 3.75s non-overlapping window of data. The first step 

detects silent segments by using only variance as a feature and a binary logistic regression 

classifier. The second step involved the use of a multi-class support vector machine for 

four classes of data: good quality, poor quality, interference, and talking. The following 

features were used for this classifier: cross correlation with a template of an average beat, 

sample entropy, wavelet coefficients, band limited power spectral density averages, and 

cepstral coefficients. Each recording was split into 3.75s segments for quality evaluation 

and hand-labelled by three individual annotators familiar with the data. After excluding 

the recordings with less than 50% good quality segments, data from 226 pregnancies 

remained, including 45 LBW and 181 NBW deliveries. The identification of LBW newborns 

was based on thresholds estimated from the same population. For newborns the weight 

threshold was found at 2.64kg for males and 2.57kg for females [24]. Weights of the 

newborns were recorded in a visit up to two weeks after delivery. In order to provide a 

more accurate estimation of birth weight, the traditional infant weight models (Count’s 

and Reeds models [42]) were fitted using 918 newborn records from the same Guatemalan 

highland community. Then, estimated birth weights were determined using the weight gain 

percentage derived from a fitted weight curve.

The number of recordings of fetuses with NBW in GA months 5, 6, 7, 8 and 9 were 8, 

35, 72, 78, and 111, respectively. These data was used to evaluate the GA estimation model 

using 5 fold cross validation. It should be noted that the splitting of the recordings into folds 

was performed after dividing the data into train and test sets. The LBW data was used as a 

separate test data and includes 4, 7, 15, 22, 26 visits recorded in months 5 through 9. Figure 

3 illustrates the distribution of the data used for model analysis.

B. 1D-DUS signal processing

Given the nature of the physiological time-series data, 1D-DUS signals are corrupted with 

internal and external interference such as respiration, movement, and environmental noise. 

In this work, a second-order band-pass Butterworth filter was used to reduce the effect 

of unwanted frequencies. By observing the frequency components of the 1D-DUS signals, 
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the cutoff frequencies were set to 25 and 600 Hz, corresponding to cardiac oscillations. 

Specifically, the cardiac frequency range for the device used in this research (which uses 

a 3.3 MHz transducer) was estimated based on the empirical models of the cardiac wall 

velocities and Doppler magnitude frequency shift [43]. After the preprocessing steps, a 

scalogram of the signal is generated using the Morlet wavelet. A scalogram provides a two 

dimensional representation of a signal which shows how the frequency contents change 

overtime [36].

C. Network implementation

Feature extractor network Gf ⋅ , θf  gets the scalogram of the signal (batch size=15) and 

consists of three layers of 2-D convolutional neural network. Each layers is followed by 

batch normalization, rectified linear (ReLU) units, and max pooling units. The beat and 

window encoder networks consist of GRU networks with 50 units. The analysis window 

length was set to 3.75s and each input observation was a one minute 1D-DUS segment. A 

mean absolute error (MAE) was used as a loss function and mini batch stochastic gradient 

decent (SGD) was leveraged to optimize the parameters of the network. In the sample 

weight calculation function β was set to 0.99. The network was implemented in TensorFlow 

2.0 and Python 3.10.1. We used a computing system with the following specifications for 

training and testing the model: 64GB of RAM and a single CPU and one NVidia Tesla P100 

GPU. The processing time per batch was 0.6s during training and the processing time for 

testing the model was 0.89s per recording.

D. Evaluation metrics

Stratified five-fold cross-validation is used to assess the performance of GA estimation. 

The network was trained and validated using one minute recordings of fetuses with NBW. 

To evaluate the performance of the model, mean and standard deviation of the error in 

estimating GA based on reported last menstrual period (LMP) were determined.

To test the effect of using techniques for long-tailed data distribution, we compared the 

performance of the model using Random Batch Generator (RBG) with other training 

strategies. First, the balanced batch generator (BBG) was used, which is based on generating 

balanced batches including the same number of data from each GA category. Second, we 

added a balanced loss function (BLF) for re-weighting samples in the network loss. The 

mean absolute error loss was balanced by using size of data in each category. The network 

we used is shown in Fig. 1. In this experiment, we used the feature extractor network 

Gf ⋅ , θf  with three layers of 2-D convolutional neural network with 32, 64 and 128 

filters (kernel size=(3,3)). Each layers is followed by batch normalization, rectified linear 

(ReLU) units, and max pooling units with pooling size of (2,2). A Wilcoxon signed-rank 

test (one-sided; α = 0.05) was applied in order to test whether the improvements obtained by 

applying the BBG and the BBG with a BLF were statistically significant. The values of this 

statistical test were calculated for each GA label to test the null hypothesis that the error of 

the base model (RBG) is less than the BBG and BLF approaches.

In addition, keeping the hierarchy in the model, we tested the performance of the model 

using three structures in the beat level modeling Gf ⋅ , θf . First, convolutional and 
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recurrent networks were used with time attention mechanism with focusing on time domain 

information. In this experiment, the pooling operation was applied only on frequency 

dimension (pooling size (1, 2)) CNN+GRU + Atttime . The details of this network are 

provided in Fig. 4. Then we omitted the recurrent block in the beat level network and 

tested the time attention model CNN+Atttime . In the last experiment we applied max pooling 

on time dimension (pooling size (2, 1)) and tested the frequency attention CNN+Attfreq .

Qualitative results were also added to illustrate the effect of the attention mechanism and 

learning process. This includes the attention weights on the scalogram of the data using three 

network structures and the window level attention using CNN+GRU + Atttime structure.

In this research we assume that FGR cases are those with LBW. Therefore, to show the 

performance of the model on recognizing the possible FGR cases we leveraged the model 

trained on NBW and tested on LBW data. So, we divided the results section into three 

sections, A) using just the NBW data to find the best model. B) testing the trained model on 

LBW data and C) Qualitative results based on the attention weights visualization.

IV. RESULTS

A. Model evaluation using Normal Birth Weight individuals

Table I and II show the MAE of estimating GA in each month of pregnancy based on 

reported LMP. The results of the experiments show that, assigning sample weights and using 

balanced batch generator in the training process reduced MAE of estimating label five from 

1.99 to 0.91, label 6 from 1.52 to 1.16 and label 7 from 0.87 to 0.71 and label 9 from 0.82 to 

0.79 and increased the error in estimating label 8 from 0.19 to 0.40 due to reducing the bias 

in model. Using the balancing approach also reduced the SD of the error in estimation of 

GA labels 5, 6 and 9. Fig. 5 shows the result of GA estimation using training strategies for 

addressing imbalanced data. A Wilcoxon signed-rank test (α = 0.05) was used to test if GA 

estimation error of the BBG, and the BBG plus BLF models were statistically significantly 

lower than the base model (RBG). These tests gave a p-value of 0.01 and 10−21, both of 

which suggest rejecting the null hypothesis of having lower estimation error using the base 

model (Table I).

Figure 6 illustrates the results of using three different tested structures in the Gb ⋅ , θb

network. Using both GRU and CNN networks resulted in more accurate estimation of GA 

labels 5, 8 and overall MAE of 0.79 and SDE of 0.53.

B. Model evaluation on Low Birth Weight individuals

Figure 7 illustrates the GA estimation spread (using median ± interquartile ranges) on NBW 

and LBW test data for the network trained on NBW. This figure shows underestimation of 

GA for LBW data and can be used to detect the possible cases of FGR by comparing LMP 

based GA with the estimated GA from the model.
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C. Qualitative results

The attention layer provides insights into the model’s reasoning behind its prediction and 

it helps to mitigate the black box limitation of the deep learning model. Figure 8 shows 

two examples of the window attention. The model assigns lower weight to the segments 

with lower quality which validates that our model is able to select informative segments 

of the input signal. Figure 9 demonstrate the important areas of the extracted scalogram 

in the designed experiments. Using time attention approach (figures 9a and 9b) the model 

can detect components with larger amplitude in the time frequency feature. And, using the 

frequency attention (figure 9c) leads to emphasizing important frequencies in the task of GA 

estimation.

V. DISCUSSION & CONCLUSION

This work presents a novel approach based on hierarchical sequence learning with an 

attention mechanism for fetal gestational age estimation using a low-cost one-dimensional 

Doppler ultrasound. The proposed model weights the important segments and time samples 

of the data according to the task of fetal development estimation. Since the imbalanced 

dataset used in this work could affect the model’s generalizability on less frequent labels, 

imbalanced learning strategies, including balanced batch generator and assigning sample 

weights, were employed.

The visualization of the attention weights demonstrated that this model effectively picks 

out important segments based on the quality of the recordings. In addition, the importance 

of different parts of scalogram features as assigned by attention weights shows capturing 

beat-to-beat variability. FHRV is widely used and has been validated in previous studies as 

an indicator of GA.

The proposed method achieved the state-of-the-art performance on estimating gestational 

age using only Doppler signals. It is interesting to compare the work presented in this 

article with that of Hoyer et al. [38], [44] who developed a ‘fetal brain age score’ (fABAS) 

based on heart rate variability and a linear regression model measured separately during 

quiet sleep, active sleep and active wakefulness. Their reported fABAS is very similar to 

our measure of GA development presented here, and in fact inspired our early work on 

using Doppler to identify FGR (Stroux et al. [21]). However, their determination of these 

‘sleep/wake’ states was based on somewhat ad hoc (yet remarkably successful) definitions 

of these states. Moreover, sleep/activity states may manifest differently or at different rates 

for growth restricted fetuses. For these reason, and because the determination of states is 

non-trivial, and the fact that in the practical deployment of our system in rural healthcare, it 

is impossible to guarantee a long enough recording to capture more than one state (Martinez 

et al. [40]), we chose to take a non-parametric and nonlinear approach using a deep learning 

framework to side-step the need to measure activity or estimate sleep/wake states. Our 

assumption was that activity related to development can be implicitly learned using a deep 

neural network from the large number of raw Doppler recordings that we acquired. However, 

in earlier work, we reported on an approach which was comparable to that of Hoyer et al. 
[38], again without explicit states. In our earlier work, we used FHRV indexes derived from 

1D-DUS (together with maternal blood pressure) to estimate GA using 10-minute recordings 
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[29]. The best reported performance for this approach was when using a support vector 

regression (SVR) approach with MAE of 1.51, 0.47, 0.44, 1.04 months for GA of 6, 7, 8, 9. 

(Data in GA label 5 did not meet the inclusion criteria of this study.) We note that previous 

Doppler-based methods were based on using additional devices such as fetal ECG signals 

or maternal blood pressure, which increases costs and complicates the implementation, 

particularly in LMICs. In another Doppler-based study, Marzbanrad et al. [28] presented 

a method to assess fetal development using 1D-DUS and abdominal electrocardiography. 

By validating the results against the GA identified by Crown-Rump length, they reported 

3.8 weeks MAE and 2.7 weeks after excluding low quality signals. While the error in this 

method is only slightly higher that we report, the results are not directly comparable because 

they are on a different population.

The primary methods of GA estimation are ultrasound imaging and manual measurement of 

fetal biometry, as well as LMP-based approaches. Gestational dating based on first-trimester 

ultrasound imaging was once reserved for women with unknown LMP. However, ultrasound 

imaging is currently the most common and reliable technique, which uses a variety 

of sonographic measurements and parameters to estimate GA [45]. The most important 

criticism on this method is that all these measures are based on physical growth and they fail 

to account for normal variability. Ultrasound imaging-based methods for gestational dating 

can also be different due to factors such as unsuitable positioning of the fetus, operator error, 

and the quality of the images. For example, 95% prediction intervals of ±10 days at 20 

weeks, ±14 days at 24 weeks and ±17 days at 34 weeks were found for estimation based on 

femur length [46], [47]. The error in gestational dating using methods with higher standard 

errors, such as fundal height, was shown to be ±28 days at 34 weeks [48], [47]. In another 

study, the LMP-based GA was determined as a reference to evaluate ultrasound image-based 

methods. The results of using head circumference demonstrated that the uncertainty of 

estimated GA gradually increases with advancing GA, from 6–7 days to 15–20 days in 

either direction in time [49]. In summary, previous studies showed that current techniques 

might differ in estimating GA. However, for guiding postnatal care at the individual level, 

a discrepancy of 1–2 week(s) may be acceptable [10]. It is important to note that LMP 

was used to label our data and that the healthcare workers rounded to the nearest month. 

Therefore an error of ±15 days is the intrinsic lower bound error of our framework. Hence, 

our error of 0.79 months is close to the theoretical minimum for our data. In our most recent 

study, we are using Doppler imaging to perform more accurate dating at the end of the first 

trimester and expect to report improved results from this in the coming years.

A. Limitations

The results presented here demonstrate that the proposed GA estimator model provides 

sufficiently accurate results. We note several minor limitations of the current study, which 

require further investigation in the future. The model introduced in this study was trained 

using the gestational age labels based on a last menstrual period. However, the LMP 

approach is not particularly accurate, and thus introduces noise at the labeling stage. In 

order to improve the accuracy and validate the labels, additional devices such as Doppler 

imaging is needed. However, Doppler imaging is relatively expensive, requires trained 

expert use, and is not readily available in most low resources areas such as rural Guatemala. 
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Nevertheless, the approach described in this article can be easily applied to a dataset with 

more accurate gestational age labels. We also note that the weight data in this study was 

recorded serendipitous in the first few weeks after birth. Therefore, the birth weight was 

estimated using the fitted weight curve [24] which is likely to introduce additional error in 

the estimates of LBW and NBW data in this study. By improving birth weight collection, 

and having clinical teams provide true FGR fetuses at birth, it is likely that the results of this 

study will improve further. Finally, we note that there may be normal variations in genetics 

that affect fetal growth curves between populations [50]. Therefore, a cross-population study 

is required to examine whether this affects the FGR estimations of our proposed method.
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Fig. 1: 
The architecture of the proposed hierarchical attention network. It contains three main 

components: a) convolutional feature extractor, Gf ⋅ , θf , b) beat encoder, Gb ⋅ , θb , and c) 

window encoder, Gw ⋅ , θw . The input Doppler signal is divided into windows of 3.75 s 

x1, x2, …, xn . The scalogram of each window is calculated before feeding the network where 

itℎ window has time samples xi1, …, xiT after the time-frequency feature construction.
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Fig. 2: 
Data collection using the developed mobile application and Doppler transducers.
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Fig. 3: 
Distribution of gestational age labels and birth weight in the data set.
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Fig. 4: 
Architecture of the beat encoder Gb ⋅ , θb  in the CNN+GRU + Atttime experiment. In this 

structure Max Pooling was applied on the frequency dimension and attention mechanism 

was applied on the time dimension.
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Fig. 5: 
Five-fold cross-validated results using random batch generator (RBG) and strategies to deal 

with the imbalanced data using balanced batch generator (BBG) and BBG with balanced 

loss function (BBG+BLF).
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Fig. 6: 
Five-fold cross-validated results using different structures in the beat encoder Gb . , θb

network. The first structure is CNN+GRU + Atttime which is shown in Fig. 1 and consists of 

both CNN and GRU networks with an attention mechanism on the time dimension. In the 

CNN+Atttime structure, the GRU was removed from the beat encoder, and the attention model 

was applied to the time dimension. The CNN+Attfreq structure is similar to CNN+Atttime, except 

that the attention model was applied to the frequency dimension.
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Fig. 7: 
Median ± interquartile range estimates of gestational age on NBW (left, green) and LBW 

(orange, right) individuals. Note that the GA estimates of the LBW are always lower than 

those of the NBW.
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Fig. 8: 
Visualization of window level Gw ⋅ , θw  attention weights. The model assigns lower weights 

to the low quality segments.
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Fig. 9: 
Visualization of attention weights using different Gb ⋅ , θw  structures. Attention weights are 

shown in red, indicating the importance of different parts of the scalogram in the task of GA 

estimation. We tested three structures: a) CNN+GRU and time attention structure. b) Time 

attention using just CNN network and c) CNN network and frequency attention.
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TABLE I:

Results of using random batch generator (RBG), balanced batch generator (BBG) and balanced loss function 

(BLF). Columns show mean and standard deviation (MAE and SDE) of estimation error in GAs of 5–9 

months together with the average over all months (All). A one-sided Wilcoxon test was used to compare RBG 

model with BBG and BBG+BLF models.

Gestational Age (months since reported last menstrual period)

5 6 7 8 9 All

MAE
RBG
BBG

BBG+BLF
1.99
1.26
0.91

1.52
1.26
1.16

0.87
0.84
0.71

0.19
0.53
0.40

0.84
0.76
0.96

0.82
0.79
0.79

SDE
RBG
BBG

BBG+BLF
0.90
0.82
0.46

0.73
0.77
0.69

0.35
0.52
0.43

0.33
0.43
0.45

0.84
0.58
0.44

0.6
0.6
0.53

Wilcoxon BBG 10−3 9 × 10−3 10−4 0.16 0.99 0.01

p-value BBG+BLF 5 × 10−7 5 × 10−7 10−9 6 × 10−4 4 × 10−5 10−21
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TABLE II:

Results of using three structures in the beat-level Gb ⋅ , θb  network: 1) Convolutional and recurrent networks 

with attention CNN+GRU + Atttime ; 2) Convolutional network and time attention CNN+Atttime ; 3) 

convolutional network with frequency attention CNN+Attfreq  were tested. Columns show mean and standard 

deviation (MAE and SDE) of estimation error in gestational ages of 5–9 months, together with the average 

over all months (All).

Gestational Age (months since reported last menstrual period)

5 6 7 8 9 All

MAE
CNN+Atttime
CNN+Attfreq

CNN+GRU + Atttime

1.58
1.09
0.83

0.99
0.96
0.98

0.74
0.75
0.78

0.54
0.54
0.48

0.73
0.70
0.94

0.91
0.80
0.79

SDE
CNN+Atttime
CNN+Attfreq

CNN+GRU + Atttime

0.71
0.70
0.53

0.65
0.68
0.72

0.50
0.50
0.47

0.42
0.38
0.50

0.51
0.56
0.44

0.54
0.54
0.53
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