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Summary

Understanding the basis for cellular growth, proliferation, and function requires determining the 

roles of essential genes in diverse cellular processes, including visualizing their contributions to 

cellular organization and morphology. Here, we combined pooled CRISPR/Cas9-based functional 

screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging 

of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual 

cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in 

specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative 

parameters further revealed co-functional genes across diverse cellular activities, providing 

predictions for gene functions and associations. By conducting pooled live-cell screening of 

~450,000 cell division events for 239 genes, we additionally identified diverse genes with 

functional contributions to chromosome segregation. Our work establishes a resource detailing 

the consequences of disrupting core cellular processes that represents the functional landscape of 

essential human genes.
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Introduction

For a human cell to grow, proliferate, and function, it must carry out multiple 

essential processes, including transcription, mRNA splicing, translation, vesicle trafficking, 

proteolysis, DNA replication, and cell division. CRISPR/Cas9-based pooled genetic screens 

have revolutionized the ability to test the functional requirements for cell proliferation and 

survival by enabling the potent disruption of thousands of individual genetic elements.1 

However, most current screening approaches, including those based on fluorescence-

activated cell sorting (FACS),2,3 produce a single scalar measurement of barcode enrichment 

or depletion that summarizes the contributions of each perturbation to cellular phenotypes 

at the population level. Defining the specific contributions of essential genes across 

core cellular processes requires quantitative analysis of complex cellular phenotypes. 

Recent studies have combined pooled functional genetic screens with single-cell profiling 

of transcript abundance.4–6 However, many phenotypes corresponding to core cellular 

functions, particularly regarding cellular morphology or subcellular localization, instead 

require direct visualization using microscopy. Arrayed screens have analyzed genetic 

contributions to microscopy phenotypes,7 but are difficult to scale as each perturbation is 

tested individually. To scalably identify relationships between specific gene knockouts and 

their corresponding cellular phenotypes using microscopy, recent pooled approaches have 

utilized either in situ perturbation genotyping8,9 or the physical selection of cells for image-

based phenotypes.10–14 However, these latter enrichment approaches probe pre-defined 

phenotype bins and thus do not enable in-depth exploration of perturbation-phenotype 

associations. The ability to interrogate and systematically compare a large and diverse 

array of cell biological phenotypes, especially morphology and spatial organization, across 

thousands of genomic perturbations represents an important unmet goal for functional 

studies. Here we use optical pooled screening8,15 to combine large-scale Cas9-based 

targeting of essential genes with comprehensive single-cell phenotyping and perturbation 

genotyping by microscopy to resolve a diversity of complex phenotypes in tens of millions 

of cells (Figure 1A).

Results

A large-scale, image-based pooled CRISPR screen of essential human genes

To determine the functional contributions of essential genes in cultured human cells, we first 

defined a set of fitness-conferring genes based on combined evidence from multiple Cas9- 

and transposon-based genetic screens16–24 (STAR Methods). This approach identified 5,072 

genes that contribute to optimal cellular fitness, although we note that not every gene will be 

required in a given cell line. We selected four sgRNA sequences targeting each gene from 

existing sgRNA libraries,24–26 as well as 250 “non-targeting” sgRNAs, for a total library 

of 20,445 sgRNAs (Table S1; STAR Methods). We delivered the sgRNA library to HeLa 
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cells containing an integrated, doxycycline-inducible Cas9 construct27 (STAR Methods). 

Based on trial image-based screens (Figure S1A) and an analysis of sgRNA depletion from 

the cell library at 3 and 5 days post-Cas9 induction (Figure S1B), we selected 78 hours 

post-Cas9 induction as a time point to maximize phenotype observability. This approach 

balances the time required for Cas9 activity and protein depletion with negative fitness 

effects that deplete knockout cells from the population. At this time point, we fixed the 

cells and amplified the sgRNA sequences in situ8,15 (Figure 1A). Following amplification, 

we stained and imaged cells for DNA (DAPI), the DNA damage response (γH2AX; anti-

phospho-Ser139 H2AX antibody), microtubules (anti-α-tubulin antibody), and filamentous 

actin (phalloidin; Figure 1C). These stains were chosen to visualize diverse cell biological 

behaviors, including nuclear morphology, DNA damage response, cytoskeletal structures, 

and cell division.

Following the completion of phenotype imaging, we performed in situ sequencing-by-

synthesis to identify the sgRNA present in each individual cell8,15 (Figures 1A, 1C 

and S1C). We extracted 1,084 phenotypic parameters from each individual cell image, 

including measurements of the intensity, subcellular distribution, and colocalization of 

stains, and cellular and nuclear size and shape (STAR Methods; Table S2). Based on their 

distinct morphological characteristics, we classified cells as either interphase or mitotic and 

conducted downstream analyses separately (STAR Methods; Figure S1D). This approach 

yielded microscopy images, extracted phenotypic measurements, and matched sgRNA 

identities for 31,884,270 individual cells with a median of 6,119 cells per gene target 

across each set of four sgRNAs (Figure 1B, 1E; Table S2). Image montages and phenotypic 

parameters for interphase and mitotic cells are available through the companion interactive 

web portal (https://vesuvius.wi.mit.edu/).

Interphase nuclear phenotypes identify regulators of genomic integrity

Maintaining genomic integrity is critical to ensuring proper cellular function. Cells utilize 

a range of DNA damage-sensors, DNA repair mechanisms, and cell cycle checkpoints to 

prevent, recognize, and correct genomic aberrations.28 To identify genes that are required 

for genome integrity, we analyzed summary phenotype scores for interphase nuclear 

parameters that monitor DNA damage (mean γH2AX nuclear intensity; Figure 1D) and 

DNA content (integrated DAPI nuclear intensity; Figure 1E; STAR Methods). Genes that 

displayed decreased γH2AX intensity in interphase cells relative to random samples of cells 

expressing targeting sgRNAs included H2AX itself and ATR, which is involved in directing 

the γH2AX phosphorylation event28 (Figure 1D). Reciprocally, genes whose disruption 

resulted in increased relative γH2AX intensity included many factors with known roles 

in DNA replication, DNA repair, and telomere protection28,29 (Figure 1D). Overall, we 

observed a clear correlation between DNA damage and DNA content (r = 0.62; Figure 1F). 

However, a subset of knockouts, including gene targets required for cytokinesis (e.g., ECT2, 

AURKB)30,31 or cell cycle control (e.g., MAD2L1, ESPL1)32displayed increases in DNA 

content due to increased ploidy or multinucleation, but less severe DNA damage (Figure 1F; 

Figure S2D–E). Amongst genes with increased γH2AX intensity, we also identified several 

arising from duplication events such that the corresponding sgRNAs target multiple genomic 

loci, and therefore likely reflect strong Cas9-associated DNA damage. This was particularly 
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pronounced for sgRNAs whose target sites are spread across multiple chromosomes (Figure 

S2A). Of the 5,072 genes targeted in the screen, we observed 1,258 genes that displayed 

statistically increased γH2AX intensity, reflecting both direct roles for DNA replication and 

repair proteins, as well as indirect consequences of disrupting other cellular processes such 

as translation or RNA splicing (Figure S2B–C; see also Pederiva et al.33).

To validate our approach for identifying genes involved in genomic integrity, we investigated 

selected gene targets that displayed increased DNA damage, including the E3 ubiquitin 

ligase subunits LRR1 and TRAIP, and the mitochondrial iron-sulfur cluster biogenesis gene 

ISCU. We generated individual cell lines with inducible Cas9 and a single sgRNA targeting 

the corresponding gene.27 Based on Western blotting, we noted a substantial increase in 

γH2AX levels relative to a control sgRNA with a single genomic target site following 

ISCU, LRR1, and TRAIP depletion, comparable to the positive control PCNA (Figure 1G). 

The effect of ISCU knockout is consistent with the requirement for iron-sulfur clusters 

in the enzymatic activity of DNA metabolism proteins,34 and LRR1 and TRAIP have 

recently been reported to play roles in replisome disassembly.35 This analysis validates our 

image-based screening strategy to identify diverse players in genome integrity and highlights 

the importance of multiple genes in DNA replication and repair.

Identification of essential genes controlling cytoskeletal function

To direct cellular proliferation, organization, and mechanical force production, cells rely on 

dynamic cytoskeletal networks involving actin and microtubule polymers.36,37 Among the 

genes with strong changes in F-actin intensity in our screen, we identified established factors 

required for regulating actin assembly and dynamics including the actin depolymerization 

factor cofilin (CFL1) and F-actin capping protein CAPZB, as well as RHOA and 

ARHGEF7, which regulate the actin polymerization (Figure 2A). Although disrupting most 

established regulators altered F-actin levels as anticipated, loss of the actin-nucleating 

Arp2/3 complex37 resulted in a counterintuitive increase in mean actin intensity (Figure 

2A). This increased actin staining was coupled with a substantial decrease in cell area 

(Figure S3B), suggesting that disrupting the actin cytoskeleton perturbs cellular adhesion 

and results in an increase in mean cytoplasmic actin intensity due to altered cell shape. 

Indeed, we observed similar phenotypes for adhesion components and Integrin subunits 

(Figures S3B–C). The gene target whose loss resulted in the largest increase of mean F-actin 

intensity in both interphase and mitotic cells was the E3 ubiquitin ligase KCTD10, along 

with its partners CUL3 and RBX1 (Figures 2A and S3A). Recent work implicated KCTD10 

in restricting actin assembly during cell migration or developmentally-programmed cell 

fusion,38,39 but our analysis suggests a general role for this complex in regulating actin 

assembly. In total, we identified 460 gene knockouts with decreased F-actin intensity relative 

to non-targeting sgRNA controls and 899 genes with increased actin intensity (Figure 2A).

We also identified multiple factors regulating interphase tubulin levels. Mean tubulin 

intensity was significantly decreased for genes encoding tubulin proteins, tubulin-specific 

chaperones, and factors required for tubulin folding and assembly (CCT chaperonins/TRiC 

complex and prefoldin subunits; Figure 2B). As noted above, cytoplasmic stains can display 

increased mean intensity under conditions where cell area is reduced due to altered substrate 
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adhesion (Figures S3B–D). Thus, we compared actin and tubulin intensity to identify gene 

targets that selectively affect one stain (Figure 2C). We observed substantially increased 

tubulin fluorescence without corresponding increases in actin intensity for Casein kinase I 

delta (CSNK1D), which has been suggested to regulate microtubule-associated proteins,40 

and subunits of the CCR4-NOT complex (CNOT1/4/10/11), which functions in post-

transcriptional mRNA regulation.41 In summary, our analysis identifies the contributions 

of diverse molecular players in controlling cytoskeletal assembly and dynamics.

Analysis of morphological phenotypes reveals a tight correspondence between cellular 
and nuclear size

In addition to measuring stain intensities, we also analyzed morphological parameters 

including nuclear and cellular area. We noted substantial differences in median interphase 

cell area across gene targets, ranging from 319 μm2 to 583 μm2 (Figures 2D and S3E). 

Consistent with a role for protein production in cell growth, targeting translation-related 

genes resulted in substantially reduced cell area (Figure S3F). In contrast, gene targets with 

roles in DNA replication and repair, mRNA splicing, and proteasome function displayed 

increased cell area (Figure S3F), suggesting continued cell growth in the absence of division. 

Using individual inducible knockout cell lines, we confirmed these substantial changes in 

cell size for DTL and DONSON gene knockouts (Figure S3G). Nuclear size similarly varied 

widely across gene targets, including increased nuclear area for five genes identified in a 

recent photoactivation-based CRISPRi imaging screen (AURKB, CDCA8, FBXO5, TICRR, 

and RAD51).14 Strikingly, we observed a strong correlation between cell and nuclear area 

across all tested gene targets (r = 0.96; Figure 2D). Prior work has suggested that cells 

actively regulate their nuclear to cytoplasm ratio.42 Our analysis demonstrates that, across a 

wide range of cell sizes and functional perturbations, this relationship is closely maintained. 

However, we identified a limited number of gene targets whose depletion altered this 

coordinated scaling including factors with established roles in nuclear integrity and nuclear 

pore components (Figure 2D). Together, this analysis demonstrates that cell biological 

parameters from a large-scale screen can be used to provide insights into the control of 

cellular morphology and organization.

Phenotypic clustering of interphase cellular parameters defines co-functional genes

We next sought to take advantage of the full range of phenotypes in the rich image data 

from our screen to reveal gene activities required for cellular function. To represent the 

phenotypic landscape of essential genes, we combined summary phenotype scores from all 

extracted image features to create phenotypic profiles for each gene (STAR Methods). We 

visualized these profiles using the PHATE algorithm43 and performed Leiden clustering44 

to identify genes with similar interphase phenotypes, leveraging hierarchical sub-clustering 

to identify relationships between individual genes in specific cases (STAR Methods; Figure 

3A). Based on clear functional relationships between the genes within a given cluster, we 

identified clusters primarily composed of genes with roles in transcription, RNA processing, 

translation, protein degradation, DNA replication and damage response, cell cycle control, 

and other core cellular processes (Figures 3B–F and S4A–F; https://vesuvius.wi.mit.edu/). 

Strikingly, the clustering behaviors also allowed us to distinguish functional sub-categories 

with high resolution and coherence for the genes within a given cluster. For example, 
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despite a shared role in translation, we identified separable clusters containing established 

40S ribosome subunits (cluster 66), 60S ribosome subunits (cluster 23), tRNA ligases and 

eIF2 translation initiation subunits (cluster 14), distinct clusters for factors involved in 

40S and 60S ribosome biogenesis (clusters 136 and 15, respectively), and several others 

which included nucleolar proteins, RNA helicases, and additional related factors (clusters 

21, 112, 203, and 216; Figure 3C–D). Knockouts for the genes within each of these clusters 

resulted in reduced nuclear and cellular areas, but displayed differences in other phenotypic 

parameters, such as actin and tubulin stain intensities, enabling distinction among these 

functional sub-categories (Figure 3D). We also observed fine-grained functional clustering 

within other diverse cellular processes, including protein degradation (Figure S4A) and 

transcription (Figures 3E–F). Although our stains did not include membrane markers for 

cellular organelles, we identified multiple distinct clusters composed of vesicle trafficking 

components (Figure S4F). This suggests that specific cellular changes resulting indirectly 

from disrupting these processes can be detected by our analysis despite the limited number 

of stains.

Based on a quantitative comparison of knockout phenotypes to non-targeting sgRNAs, 

4,665 of the 5,072 tested gene targets displayed a measurable interphase phenotype 

(Figure S4G). Of the remaining 407 gene knockouts, only 55 genes displayed strong 

fitness effects at 5 days post-Cas9 induction based on sgRNA depletion from our library 

(Figure S4G). Thus, the 352 genes without a measurable phenotype or fitness effect are 

likely not required for cellular fitness in HeLa cells at the tested time point following 

Cas9 induction. To evaluate these behaviors, we compared our dataset with multiple 

orthogonal approaches to identify co-functional genes, including protein-protein interactions 

(BioPlex),45 co-essentiality analysis,46 curated protein complexes (CORUM),47 functional 

annotations (KEGG),48 and STRING associations.49 We found that the relative similarity of 

gene phenotype profiles measured in our screen was increased among annotated gene pairs 

in each of these other databases (Figure S4H). Based on our analysis, 2,058 genes (40.6%) 

are contained in phenotype clusters that are enriched for annotations in at least two of the 

tested datasets, with an additional 1,195 genes (23.6%) present in clusters that are enriched 

for one dataset (Figure S5A; Table S3). Although functional relationships identifiable in 

our approach are not limited to physically-interacting proteins, the “precision” and “recall” 

correspondence between our interphase phenotype clusters and curated CORUM protein 

complexes is similar to prior studies directly measuring protein interactions or inferring 

relationships using co-essentiality analysis46,50,51 (Figure S5B).

We also compared our dataset to the annotated clusters from a recently-published large-scale 

Perturb-seq study, which infers gene function based on transcriptional changes following 

Cas9 targeting.5 Both approaches identified clear clusters for core functional complexes 

including the TCP-1 Chaperonin complex, COP9 Signalosome, Exosome complex, NELF 

complex, FACT and Paf complexes, Pol I and rRNA biosynthesis factors, and others 

(Figures S5C–D; not shown). Similarly, both strategies identified key players in protein 

translation and protein degradation, although our optical screening strategy captured a larger 

number of these proteins and was able to achieve a more fine-grained resolution, allowing us 

to distinguish between ribosome core subunits and biogenesis factors, for example (Figure 

S5D). Notably, the Perturb-seq dataset identified clusters for mitochondrial 28S and 39S 
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ribosomal complexes, which were likely not identified in our screen as we did not image 

specific markers for mitochondrial function. However, our image-based analysis captured 

gene contributions to core morphological processes that were not identified in the Perturb-

seq results, including cytokinesis (cluster 148), nuclear transport (cluster 104), and adhesion 

(cluster 29).

In summary, our phenotypic clustering provides a fine-grained picture of the distinct 

functional contributions of specific proteins to core cellular processes. Our clustering 

analysis is based on functionally-defined phenotypic similarities from imaging data, and 

represents an orthogonal strategy for identifying co-functional genes that is not limited to 

physically interacting proteins or phenotypes associated with transcription effects. Thus, 

gene targets with measurable phenotypes present in clusters lacking prior annotations 

represent opportunities for identifying poorly-characterized biological pathways.

Phenotypic clustering provides insights into gene functions and pathway relationships

The coherent phenotypic clustering of known co-functional gene targets provides predictions 

of the cellular function for co-clustering genes. We sought to test these predictions for 

diverse clustering behaviors. Our interphase phenotypic clustering revealed similarities 

between knockouts of the key signaling proteins KRAS and BRAF with multiple 

mitochondrial components (cluster 149; Figure S5E). In independent experiments with 

stains selective for mitochondrial membrane potential, we identified a disruption of active 

mitochondria in KRAS and BRAF knockout cells, similar to knockouts of co-clustering 

mitochondrial factors (Figure S5F). This is consistent with roles for KRAS and BRAF 

signaling in maintaining metabolic homeostasis.52–54 Similarly, among clusters containing 

transcriptional regulators, we identified a cluster (121) with a distinct phenotypic profile that 

contains the master regulator Myc and Max transcription factors, along with multiple other 

transcriptional regulators, chromatin remodeling factors, and E3 ubiquitin ligase components 

(Figure 4A). This clustering suggests that these factors may either be specifically required 

for Myc expression (as is the case for ZMYND8, see Cao et al.55) or function together with 

Myc to promote downstream expression at its target promoters. By analyzing Myc mRNA 

and protein levels in individual gene knockouts from this cluster, we confirmed a role 

for SETD2 in regulating Myc expression (Figures 4B and S5G). Our interphase clustering 

analysis further implicated poorly characterized genes in specific cellular activities. For 

example, we nominated C1orf131 as putatively involved in ribosome biogenesis based on its 

membership in cluster 21 (Figure 3D), which was recently confirmed by others.56 Similarly, 

AKIRIN2 clustered with the 20S core particle proteasome subunits (cluster 167, Figure 

S4A), and was recently described as a proteasome nuclear import factor.57 In addition, 

HNRNPD clustered with the m6A mRNA modification writers METTL3 and METTL14 

(197; Figure S5H), consistent with the emerging role of m6A in promoting HNRNPD 

associations with mRNA.58

We also identified the poorly characterized gene C7orf26 in a cluster containing multiple 

components of the mTOR signaling and ER-Golgi transport pathways, as well as subunits 

of the Integrator complex, an RNA endonuclease involved in RNA processing59 (cluster 

37; Figure 4C). Based on hierarchical sub-clustering, we found that C7orf26 segregated 
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closely with Integrator subunits, including INST10, and also displayed related phenotype 

profiles to the Integrator subunits in cluster 217 (Figure 4C). To evaluate this co-clustering 

relationship, we generated a cell line stably expressing GFP-C7orf26. GFP-C7orf26 

localized to the nucleus (Figure 4D), consistent with Integrator complex localization.60 

In affinity purifications, GFP-C7orf26 pull-downs specifically isolated multiple Integrator 

complex subunits, with particularly robust levels of INTS13, INTS10, and INTS14 (Figure 

4E; also see ref.61,62). These proteins were recently shown to comprise a functional subunit 

of the Integrator complex that associates the cleavage module with target RNA.63 Our data 

suggests C7orf26 may interact with this sub-complex, consistent with concurrent studies.5,64 

Thus, the phenotypic clustering of this dataset identifies established interacting partners and 

provides predictive insights to identify associations and co-functional players across key 

biological processes.

Analysis of mitotic phenotypes identifies requirements for proper cell division

We next analyzed the phenotypes observed in mitotic cells. In total, 2.6% of the cells 

visualized in our microscopy-based screen were present in the mitotic phase of the cell 

cycle (median of 157 mitotic cells per gene). In the presence of mitotic errors, cells 

activate the spindle assembly checkpoint and arrest in mitosis32 such that an increased 

fraction of mitotic cell images (i.e., mitotic index) can reflect a mitotic disruption. We 

observed an increased mitotic index for gene knockouts targeting established components 

of the kinetochore and mitotic spindle, but a reduced mitotic index for Spindle Assembly 

Checkpoint factors (Figure 5A).

Similar to our analysis of interphase cells, we created summary image-based profiles of 

mitotic phenotypes for each gene and then clustered gene targets with similar profiles 

(Figures 5B–C; STAR Methods). In parallel, we conducted a manual visual analysis for 

each gene, which strongly corresponded to the profile-based results (Figures S6A–B). 

Our computational analysis identified multiple mitotic clusters with functionally-related 

genes, including established factors with roles in spindle assembly, DNA replication, 

mRNA splicing, ribosome function, and chromosome alignment (Figures 5B–C). This high-

dimensional computational analysis provides a complementary, but distinct measurement of 

mitotic phenotypes as compared to mitotic index (Figure 5A). Visual analysis of cell image 

montages further allowed us to distinguish phenotypic clusters and individual genes for their 

specific roles during mitosis (Figure 5C). For example, we detected reduced microtubule 

density following depletion of the tubulin chaperone TBCC, chromosome mis-alignment 

following knockout of kinetochore components and splicing factors, monopolar spindles 

associated with the targeting of KIF11 or PLK4, and short mitotic spindles in knockouts of 

CKAP5 or Augmin subunits (Figure 5C).

To evaluate our analysis of mitotic phenotypes, we compared our findings to those 

from MitoCheck,7 a genome-wide siRNA-based arrayed microscopy screen for mitotic 

phenotypes in HeLa cells. Of the 293 genes identified as displaying mitotic phenotypes 

by MitoCheck that were also present in our screen, 79 displayed an aberrant mitotic 

index or measurable mitotic phenotype in our dataset, with an additional 70 genes that 

scored significantly in at least one interphase phenotype category that is consistent with 
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downstream consequences of mitotic defects (Table S3). Conversely, we identified 799 

genes with mitotic phenotypes in our screen that were not identified in MitoCheck. These 

genes are enriched for proteasome, cell cycle, and DNA replication genes among other 

relevant pathways (Figure S6C). The genes with mitotic phenotypes only observed in our 

study encode many canonical mitotic factors, such as kinetochore components, Augmin 

complex subunits, and centrosome proteins (Table S3). Our approach thus represents a 

significant improvement in sensitivity and efficiency over prior systematic approaches to 

identify mitotic regulators, enabled by precise Cas9-based gene perturbation and pooled 

phenotype acquisition.

In addition to established mitotic players, predicted mitotic roles emerged for poorly-

characterized genes based on co-clustering with well-defined mitotic functions. For 

example, ZNF335 clustered with spindle proteins and gamma-tubulin complex subunits 

(cluster M109; Figure 5C). Analysis of an individual inducible knockout cell line for 

ZNF335 revealed a substantially increased proportion of cells with monopolar spindles 

(Figure 5D) and a reduction in centrioles (Figure 5E). GFP-ZNF335 localizes to the 

nucleus in interphase cells (Figure S6D), but did not localize to the spindle or centrioles 

during mitosis, and did not associate with established mitotic factors in immunoprecipitation 

experiments (not shown). However, RNA-sequencing analysis of gene expression following 

ZNF335 knockout revealed a significant decrease in the expression of the proteasome 

subunit PSMD1 and the gamma-tubulin ring complex subunit TUBGCP6 (Figure 5F), which 

both displayed similar monopolar spindle phenotypes in our screen (Figure 5C). Together, 

this suggests that ZNF335 promotes spindle function by regulating the expression of specific 

centrosome factors, and provides a potential explanation for why ZNF335 mutations are 

observed in human microcephaly,65 as is the case for many centrosome components.66 This 

highlights the value of our profile-based functional clustering approach, as this indirect 

role of ZNF335 in centrosome function was not identified previously based on physical 

interactions with centrosome components (e.g., see Gheiratmand et al.67). This analysis 

demonstrates the utility of pooled large-scale image-based screening to identify complex 

mitotic phenotypes, and also identifies dozens of genes with mitotic phenotypes that have 

not been implicated previously as having roles in cell division (see below).

A pooled live-cell imaging-based screen for mitotic defects

Based on the large number of genes with unexpected mitotic phenotypes and the ability 

of microscopy to directly visualize these phenotypes,7,68 we next performed a secondary 

pooled live-cell screen. We selected 228 genes with unexpected mitotic phenotypes and 

11 positive controls with established roles in diverse mitotic processes. We transduced an 

sgRNA library containing 2 sgRNAs per gene and 50 non-targeting sgRNAs (526 total 

sgRNAs; see STAR Methods) into a HeLa cell line containing doxycycline-inducible Cas9 

and a constitutively-expressed H2B-mCherry fusion to visualize chromatin (Figure 6A). We 

conducted time-lapse imaging of the pooled cell population for 24 hours with time points 

at 10 minute intervals, followed by fixation of the cell population and in situ readout of the 

sgRNA in each cell (Figure 6A; STAR Methods). After tracking cell lineages through each 

time course and identifying mitotic cells, we obtained time-lapse movies for 451,434 total 
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cell division events, with a median of 1,381 division events per gene target (Figure 6B–C 

and S6E–F; Table S4; Movie S1; https://vesuvius.wi.mit.edu/; STAR Methods).

Using this automated live-cell analysis, we calculated the mean duration of cell division 

events for each gene target, as well as the fraction of cells that enter mitosis during the time 

course (Figure 6B). 197 of the 239 tested gene knockouts, including 10 of 11 established cell 

division factors, displayed altered mitotic duration or entry relative to non-targeting controls 

(Figures 6B and S6G), further supporting our ability to identify diverse mitotic players 

in the fixed cell analysis. We were also able to distinguish gene targets with established 

or predicted roles in DNA replication or repair, based on their increased mitotic duration 

but reduced fraction of cells entering mitosis (Figure 6B), indicative of defective mitotic 

entry. From visual inspection of the time-lapse montages (Figure 6C; Table S4), we selected 

28 genes with chromosome alignment defects. Based on fixed and live-cell analysis of 

individual knockout cell lines (Figures 6D, S7A and Movie S2), each of the 28 selected 

gene targets displayed clear defects in chromosome alignment and segregation or spindle 

assembly (Figure S7A).

Unexpectedly, amongst the gene targets whose knockouts resulted in misaligned 

chromosomes, we identified two membrane-bound transporters - the plasma membrane-

localized aquaporin AQP7 and the sodium/potassium-transporting ATPase ATP1A1 (Figure 

6D). Individual AQP7 and ATP1A1 knockout cell lines displayed a reproducible delay 

in chromosome alignment and an extended mitotic duration (Figures 6E–F), but we did 

not observe defects in bipolar spindle assembly (Figure 6D) or kinetochore assembly 

(Figures S7B–C). As both membrane transporters are involved in maintaining a proper 

intracellular osmotic environment, we tested the effect of treating cells with 300 Da 

polyethylene glycol (PEG 300), which creates hyperosmotic stress.69 PEG300 treatment 

of control cells resulted in qualitatively similar mitotic phenotypes to AQP7 and ATP1A1 

knockouts, including chromosome misalignment and a mitotic delay (Figures 6E–F). By 

titrating PEG300, we also observed an additive mitotic defect from combining hyperosmotic 

stress with ATP1A1 and AQP7 knockouts (Figures 6E–F). Thus, we propose that AQP7 

and ATP1A1 are required to create an internal osmotic cellular environment that promotes 

proper chromosome segregation, revealing an unanticipated role for osmolarity and its 

regulation in mitotic fidelity. Our pooled live-cell screen confirms the observed mitotic 

defects from the primary screen and reveals the roles of diverse gene targets in mitotic 

progression and fidelity.

LIN52, CLP1, and RNPC3 are required for the correct expression of kinetochore assembly 
factors

To define the basis for the observed mitotic phenotypes, we next tested the function of 

the kinetochore, the key player in mediating interactions between centromere DNA and 

microtubule polymers during cell division.70 Of the 28 gene knockouts that we selected 

based on their chromosome alignment defects, 25 displayed no difference or only modest 

changes in the recruitment of the outer kinetochore protein Ndc80 (Figure S7B), suggesting 

that kinetochore assembly is largely intact. In contrast, CLP1, RNPC3, and LIN52 inducible 

knockouts displayed a substantial reduction in both Ndc80 localization and total Ndc80 
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protein levels (Figures 7A and S7D). Similarly, of the tested gene knockouts, only LIN52 

resulted in a substantial reduction in the kinetochore localization or protein levels for the 

centromere-specific histone CENP-A (Figures 7B and S7C–D). Based on these changes in 

kinetochore assembly, we chose to focus on LIN52, CLP1, and RNCP3.

LIN52 is a component of the DREAM complex, comprised of E2F family transcription 

factors, LIN9/37/52/54, MYBL1/2, RBL1/2, RBBP4, and TFDP1/2, which acts together 

with FOXM1 as a transcriptional regulator for cell cycle genes.71,72 GFP-LIN52 localizes 

to the nucleus (Figure S7E) and associates with LIN9/37/54, RBBP4, and RBBP7, but 

not other established DREAM complex proteins in immunoprecipitations (Figure S7E). 

Correspondingly, in our fixed-cell screen, LIN52 displayed interphase phenotypes similar 

to LIN9/37/54, RBBP4 and RBBP7 (cluster 46; Figure 7C), but did not co-cluster with 

the other DREAM-related genes present in the screen. Consistent with the phenotypic 

co-clustering and physical interactions, we observed chromosome misalignment, a mitotic 

delay, and substantial changes to kinetochore assembly in knockouts of LIN52, LIN9, 

and LIN54 (Figures S7F–G). RNA-seq analysis of LIN52 knockout cells revealed a 

pervasive decrease in the expression of diverse cell division genes (Figure 7D) including 

Ndc80 complex subunits, CENP-A, and the CENPA deposition machinery, providing an 

explanation for the broad defects in kinetochore assembly. In contrast, we did not detect 

altered kinetochore protein levels or chromosome misalignment for FOXM1 knockouts and 

only observed a modest change in CENP-A and Ndc80 localization in MYBL2 knockouts 

(Figures 7A–B and S7B–D), suggesting a potent role for a LIN52 sub-complex in the 

expression of these cell division components.

CLP1 is a component of the pre-mRNA cleavage complex II.73 In our interphase phenotypic 

clustering analysis, CLP1 closely associated with its interacting partner PCF1173 and the 

transcription termination factor ZC3H474,75 (Figure 7E). We performed RNA-sequencing 

analysis of CLP1 knockout cells, which revealed wide-spread defects in transcription 

termination (Figure S7H) and a global decrease in mRNA expression (Figure 7F). Amongst 

the genes that evaded downregulation, PCF11 displayed significantly increased relative 

gene expression, consistent with autoregulation of the pre-mRNA cleavage complex.76 

Reciprocally, we observed strong downregulation of selected cell division components, 

including the Ndc80 complex subunits Spc24 and Spc25, explaining the selective loss of 

the Ndc80 complex (Figures 7A–B) and the chromosome mis-alignment defects in CLP1 

knockouts (Figures 6C–D). This finding provides insights into the specific importance of 3’ 

end RNA processing in mitotic function.

Finally, we analyzed RNCP3. In our fixed-cell screen, RNPC3 displayed an interphase 

phenotype closely related with multiple components of the minor spliceosome machinery 

(Figure 7G), consistent with prior work.77 Based on RNA-seq analysis of RNPC3 knockouts 

arrested in mitosis, we found pervasive defects in the splicing of minor introns for diverse 

genes, coupled with a substantial down-regulation of these minor intron-containing mRNAs 

(Figures 7H–I). Amongst these genes, we identified the Ndc80 complex subunit SPC24 

as being specifically mis-spliced and downregulated (Figures 7H–I and S7I; see also de 

Wolf et al.78). Strikingly, we were able to rescue the chromosome alignment defects and 

mitotic arrest in RNPC3 knockout cells through the exogenous expression of a spliced 
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SPC24 cDNA (Figure 7J). Thus, the role of RNPC3 in the minor spliceosome and the 

selective requirement for minor intron splicing in the production of the SPC24 mRNA 

explains the observed outer kinetochore assembly defects and chromosome mis-segregation 

phenotype in RNPC3 knockouts (Figures 6C–D and 7A). Our work specifically implicates 

RNPC3-mediated splicing in maintaining the fidelity of chromosome segregation during cell 

division.

Together, these analyses provide molecular explanations for the diverse cell division 

phenotypes for the LIN52, CLP1, and RNPC3 knockouts observed in our large-scale optical 

pooled screens, with selective defects in the production of critical mitotic players resulting 

in chromosome mis-segregation and kinetochore dysfunction. These analyses highlight the 

ability of our image-based phenotypic clustering to identify functional relationships and 

define roles for diverse factors in complex cellular phenotypes.

Discussion

A central goal of our study was to define the phenotypic landscape for essential human 

gene function, including identifying unrecognized functions of well-characterized genes 

and assigning functional roles for poorly characterized genes. Our pooled microscopy-

based analysis of tens of millions of individual knockout cells for thousands of fitness-

conferring human genes identified specific contributions to core biological processes based 

on the resulting cellular phenotypes. Using combinations of statistically-significant changes 

from hundreds of quantitative parameters that are directly comparable across a large cell 

population, we generated phenotypic “fingerprints” for each gene target. By comparing these 

phenotype profiles, we defined co-functional gene relationships with sufficient resolution to 

distinguish related roles in specific cellular processes. Notably, the fine-grained precision 

and richness of the cell biological phenotype profiles we obtained using only four cellular 

stains were sufficient to identify functional relationships between genes across a wide 

range of biological pathways without analyzing specific cellular markers corresponding to 

each pathway or function. In addition to identifying established relationships, this work 

provides multiple predictions for the contributions of incompletely characterized genes 

to fundamental cellular processes. For example, together with concurrent studies from 

others,5,56,57,64 our phenotype clustering analysis implicated C7orf26 as a core integrator 

complex subunit, C1orf131 as a regulator of ribosome biogenesis, and AKIRIN2 in 

proteasome function. We also identified gene knockouts resulting in defects in mitotic 

function including unanticipated roles for the membrane-bound transporters AQP7 and 

ATP1A1 and cellular osmolarity in promoting accurate chromosome segregation. In 

addition, our work revealed roles for multiple gene expression regulators in controlling 

cell division, including the predicted transcription factor ZNF335, the DREAM complex 

(LIN52), the 3’ end mRNA processing complex (CLP1), and the minor spliceosome 

(RNPC3) in the expression of specific cell division components. These examples highlight 

the power of optical screening to identify co-functional genes across diverse biological 

pathways, with the potential for further discovery from the data published here. This work 

also creates a powerful data resource for researchers to explore and an extensive testbed for 

future analytical method development.
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Our work highlights the power of combining CRISPR perturbations with rich, 

quantitatively-defined cell biological phenotypes extracted using image-based analyses to 

precisely identify co-functional genes across a wide range of cellular processes. As two 

proteins may act in a single biological pathway without displaying a direct interaction, 

strategies for defining co-functional genes based on functional perturbations and phenotypic 

measurements provide an important and highly scalable orthogonal approach to proteome-

wide protein interaction studies.45 Recent related work has defined functional relationships 

based on their correlated fitness requirements in pooled CRISPR screens across more 

than 1000 cell lines17,21,46,51 and by analyzing single-cell transcriptional states using 

Perturb-seq.5 The precision and breadth of the clustering behaviors reported here highlights 

the ability of quantitative image-based phenotypic profiling to provide a similar scale of 

functional information, with both overlapping and distinct insights. For example, as gene 

co-essentiality analyses rely on substantial differences in fitness requirements across cell 

lines, gene clusters based on the DepMap dataset are excellent for identifying developmental 

signaling pathways such as TGF-Beta, Interferon, p53, and MHC signaling.46 These 

genes are not essential in most cell lines, and thus were largely excluded from our 

screening library or do not result in potent cellular phenotypes in HeLa cells. Within the 

essential gene landscape, we found that our approach excelled at defining gene clusters 

for pan-essential genes, such as ribosome components, which display clear similarities 

in cellular image-based phenotypes but do not show variable requirements across cell 

lines, thereby limiting their detectability based on co-essentiality analyses. Similarly, the 

Perturb-seq approach identified similar gene clusters to many of those in our analysis, 

including ribosome components and other protein complexes.5 However, in many cases, 

our analysis identified additional genes and achieved a more fine-grained resolution for 

these clusters, for example allowing us to effectively distinguish amongst core ribosome 

subunits and ribosome biogenesis factors (Figure S5C–D). Our approach was also highly 

successful at identifying gene clusters for morphological processes, including cytokinesis, 

nuclear transport, chromosome condensation, adhesion, and others, which may be harder to 

identify based on transcriptional changes. Finally, both the Wainberg et al.46 co-essentiality 

analysis and Replogle et al.5 were better able to identify clusters containing mitochondrial 

genes than our study, highlighting the potential value of including a specific cellular 

marker for mitochondrial function in future analyses. Overall, the flexibility of phenotype 

measurements and modest relative cost of image-based pooled CRISPR screens, together 

with the results reported here, further establish image-based pooled profiling screens as a 

robust strategy for defining gene networks and the functional contributions of human genes.

Image-based measurements have the unique ability to define cellular and morphological 

phenotypes across a broad range of time and length scales, and report on non-cell 

autonomous phenotypes that require spatial context. Arrayed image-based screens have been 

used successfully for diverse purposes,7,79–82 but these depend on extensive automation 

and are subject to multilevel batch effects that are difficult to control. In contrast, pooled 

image-based screens are comparatively simple to scale with intermixed controls providing 

a strong statistical basis for comparisons. Recent studies have used physical enrichment via 

FACS or other approaches to isolate individual cells with desired phenotypes using pooled 

microscopy screening,10–14 but this strategy is only feasible using a limited number of 
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pre-defined phenotypes. In contrast, pooled image-based screens produce complex profile 

data and perturbation identity for each cell to enable multiple high-dimensional phenotypes 

to be directly associated with individual perturbations in a single experiment. Here, we 

efficiently leverage complex, multi-dimensional image-based phenotypes to yield dozens of 

functionally-relevant clusters of genes across diverse cellular processes at a scale an order 

of magnitude greater than any reported individual image-based pooled profiling screen.8,9 

Together, this paper represents important advances through the data and initial insights 

produced, as well as the general strategy for exploring biological function at scale.

Limitations of the study

Although the image-based phenotypic profiling strategy described here is applicable to a 

wide range of phenotypes and cellular models, we chose to focus on the well-characterized, 

transformed, aneuploid cervical cancer HeLa cell line, which lacks a functional p53 

pathway. As the gene targets analyzed in this study are pan-essential, we expect the majority 

of the observations in HeLa cells to be reflected across most cell lines. However, p53 status 

plays an important role in modulating the observed phenotypes for some cell cycle factors,27 

suggesting that future work should prioritize extending this approach to non-transformed 

cell lines with intact p53 signaling. Here we also selected a time point (78 hrs) that 

maximized the observed penetrance of phenotypic defects based on pilot screens (Figure 

S1A), but we recognize that our results are time point-dependendent. At the later time points 

required to elicit phenotypes associated with eliminating stable proteins, increased cell 

death will reduce phenotypic differences between gene knockouts and rising fluorescence 

background in dying cells will degrade in situ sequencing signals. Finally, although we 

were struck by how powerfully four cellular stains revealed requirements for diverse cellular 

processes, the inclusion of additional cellular markers, such as a reporter for mitochondrial 

function or early-stage apoptosis, would likely provide further increases in phenotypic depth 

and insights.

In addition to the cell model and time point, the results are sensitive to the methods 

used to extract information from the cell images. We used previously-defined intensity 

and morphological metrics to extract information from each stain and each cell at a 

low computational cost. Although this approach proved exceptionally powerful, more 

information likely remains latent in the raw images. Other approaches, including training 

convolutional neural networks to learn cellular phenotype representations,83–85 are well-

poised to make additional findings in this dataset. We also focused primarily on robust 

central tendency statistics, which do not capture biological information contained in the 

distribution of phenotypes across cells (apparent in Figures S2E, S3C, and S6G). However, 

sgRNA performance and other technical effects will also contribute to cell-level phenotype 

variation. Most sgRNAs targeting the same gene in our screens exhibit similar phenotypes 

(Figures S1E and S6G), but there is value in considering differences that may reflect 

biologically-important effects of targeting specific functional protein regions.
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STAR★Methods

Resource availability

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Iain Cheeseman (icheese@wi.mit.edu).

Materials Availability—Plasmids generated in this study have been deposited to Addgene 

(additional details provided in the Key Resources Table).

Data and Code Availability

• RNA-sequencing data have been deposited at the Gene Expression Omnibus 

(GEO) and are publicly available as of the date of publication. Accession 

numbers are listed in the key resources table. Processed images and data 

from the screen are available in the supplemental materials and through the 

companion web portal (https://vesuvius.wi.mit.edu). Full single-cell extracted 

image phenotype measurements from the primary screen have been deposited at 

the Harvard Dataverse and are publicly available as of the date of publication. 

DOIs are listed in the key resources table. Raw image data are being deposited at 

the BioImage Archive and are publicly available. Accession numbers are listed in 

the key resources table.

• All original code has been deposited at GitHub and Zenodo and is publicly 

available as of the date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the Lead Contact upon request.

Experimental model and subject details

Tissue Culture—HeLa and HEK293 cells were cultured in DMEM with sodium 

pyruvate and GlutaMAX (Life Technologies 10569044) or 2 mM L-glutamine supplemented 

with 10% heat-inactivated fetal bovine serum (Sigma F4135) and 100 U/mL penicillin-

streptomycin (Thermo Fisher Scientific 15140122). Cells were screened routinely for 

mycoplasma contamination and validated based on the presence of appropriate cellular 

behaviors and markers.

Method details

Library design and cloning—The primary screen library of fitness-conferring genes 

was defined based on evidence from multiple published sources. First, we used data from 

the Broad Institute DepMap project to identify genes that are broadly fitness-conferring in 

a variety of cell lines.17,18,21 Specifically, we selected genes with a genetic dependency 

probability of >0.35 in at least 10% of the >600 tested cell lines, resulting in 3,991 selected 

genes. We subsequently chose 1,081 additional genes that had evidence of essentiality in at 

least 2 other published screens.16,19,20,22–24 CRISPR sgRNA sequences were selected from 

published libraries,24–26 with simultaneous optimization of sgRNA performance (e.g., on- 

and off-target efficiency) and minimization of 5’ sequence length required to demultiplex 

all sgRNAs during in situ sequencing. In total, we selected 20,445 sgRNA sequences, 
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including 4 sgRNAs each for all but one gene target (3 sgRNAs targeting RGPD5) and 

250 non-targeting control sgRNAs that lack targets in the human genome, with a minimum 

Levenshtein distance of 2 between the leading 11-nucleotide 5’ sequence for all possible 

pairs of sgRNAs (Table S1). Although most sgRNAs targeting the same gene display similar 

phenotypes (Figure S1E), multiple sgRNAs per gene are used to buffer any gene or protein 

domain-specific targeting effects or variable efficiency. We note that, for some groups of 

genes with high sequence homology, it is not possible to design distinct targeting sgRNAs 

for each gene. For groups of genes where the full lists of possible sgRNAs collected from 

previously published libraries were identical, a single set of 4 sgRNAs was chosen to target 

these genes collectively (specified as gene identifiers joined by “&” in the supplementary 

tables). Two sgRNAs per gene were selected for the 239 genes in the live cell screen based 

on performance in the fixed-cell screen, in addition to 50 non-targeting guides selected using 

the 5’ sequence optimization described above. Targeting and non-targeting sgRNA libraries 

were designed as separate subpools of synthesized oligo arrays (Agilent) and independently 

cloned into CROPseq-puro-v2 (Addgene #127458), which contains an optimized sgRNA 

scaffold as described previously,8,86 via Golden Gate assembly with Esp3I restriction sites.

For expression of fusion proteins, H2B (pKC96) was amplified from a template retroviral 

construct87 and SPC24 (pKG422) from pJAG261 (gift from Jagesh Shah), while C7orf26 

(NP_076972.2; pKC509) and LIN52 (Q52LA3.1; pKC518) were human codon-optimized 

and synthesized (Twist Biosciences). Gene fragments were ligated into an mCherry, GFP, or 

EGFP pBABE-based vector (Addgene #44432). ZNF335 (pKC530) was amplified from 

Synthetic construct Homo sapiens clone IMAGE:100066405 and ligated into a EGFP 

lentiviral vector. sgRNA constructs for individual inducible knockout cell lines were 

generated by primer annealing and ligation into sgOPTI88,89 (see Table S5). A control 

sgRNA with a single target site within the non-essential LBR gene (HS1)90 was used for 

comparison of all follow-up experiments.

Virus production, transduction and selection—Prior to lentiviral production of 

screening sgRNA libraries, the corresponding targeting and non-targeting plasmid pools 

were mixed (final non-targeting sgRNA pool fraction of 5% for the primary fixed-cell 

screen, 9.5% for the secondary live-cell screen). Lentiviral production and transduction were 

performed as described previously for libraries.8,15 Briefly, HEK293FT cells were seeded 

into 15-cm or multi-well plates at a density of 100,000 cells/cm2. After one day, cells were 

transfected with pMD2.G (Addgene #12259), psPAX2 (Addgene #12260), and a lentiviral 

transfer plasmid (2:3:4 ratio by mass) using Lipofectamine 3000 (Thermo Fisher Scientific 

L3000015). Viral supernatant was harvested 48 hours after transfection and filtered through 

0.45 μm cellulose acetate filters (Corning 431220).

Retrovirus was generated by transfecting 2.5 μg VSVG packaging plasmid and 5 μg 

pBABE-based vectors containing H2B-mCherry, EGFP-C7orf26, EGFP-Lin52, GFP-SPC24 

fusions or mNeonGreen into 4 million HEK293-GP cells in 300μl Buffer EC with 16 μl 

Enhancer and 60μl Effectene (Qiagen 301425) for transduction as described previously.91 

Transduced cells were enriched by FACS (GFP-SPC24) or selected with 375 μg/ml 

hygromycin (Invitrogen).
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Fluorescence microscopy—All screening datasets were acquired using a Nikon Ti-2 

inverted epifluorescence microscope with automated stage control, hardware autofocus, 

and an Iris 9 sCMOS camera (Teledyne Photometrics). All hardware was controlled using 

NIS-Elements AR, and a CELESTA light engine (Lumencor) was used for fluorescence 

illumination. In situ sequencing cycles were acquired using a 10X 0.45 NA CFI Plan Apo 

Lambda objective (Nikon MRD00105) and 2×2 pixel binning with the following laser lines, 

filters, and exposure times for each channel: DAPI (408 nm laser excitation with 0.8% 

power, custom Chroma dual-band 408/473 dichroic and emission filter set, 50 ms exposure), 

Miseq G (545 nm laser with 30% power and Semrock FF01–543/3 excitation filter, Chroma 

T555LPXR dichroic filter, Chroma ET575/30 emission filter, 200 ms exposure), Miseq T 

(545 nm laser excitation with 30% power, Chroma T565LPXR dichroic filter, Semrock 

FF01–615/24 emission filter, 200 ms exposure), Miseq A (635 nm laser excitation with 

30% power, Chroma ZET635RDC dichroic filter, Semrock FF01–680/42 emission filter, 200 

ms), Miseq C (635 nm laser excitation with 30% power, Chroma ZET635RDC dichroic 

filter, Semrock FF01–732/68 emission filter, 200 ms exposure). Fixed-cell primary screen 

phenotype images were acquired using a 20X 0.75 NA CFI Plan Apo Lambda objective 

(Nikon MRD00205) using DAPI (as before), FITC (473 nm laser excitation, custom 

Chroma 408/473 filter set), Alexa Fluor 594 (same settings as MiSeq T), and Alexa Fluor 

750 (750 nm laser excitation, Semrock FF765-Di01 dichroic filter, custom ET820/110 

Chroma emission filter) fluorescence channels. For the live-cell secondary screen, timelapse 

phenotype images were acquired using the 20X objective lens, an mCherry fluorescence 

channel (same settings as MiSeq T), and a microscope enclosure with temperature and CO2 

control along with passive humidification (Okolab H201).

Immunofluorescence images of single knockout cell lines were taken on the Deltavision 

Ultra (Cytiva) system using a 60x/1.42NA objective and deconvolution. For kinetochore 

component quantification, z-sections at 0.2 μm intervals were taken using a 100X/1.45NA 

objective. For time lapse imaging of individual inducible knockouts and EGFP fusion cell 

lines, we used a Nikon Eclipse microscope equipped with an ORCA-Fusion BT sCMOS 

camera (Hamamatsu) using a Plan Fluor 20X/0.5 NA (live cells) or 40x/1.3NA (EGFP) 

objective lens.

Fixed-cell optical pooled CRISPR screen—For the fixed cell screen, HeLa-TetR-Cas9 

(A7) cells were transduced with the 20,445 sgRNA library in CROPseq-puro-v2 and 

selected with 2 μg/mL puromycin (Thermo Fisher Scientific A1113803) for 4 days. Cas9 

expression was induced with 2 μg/mL doxycycline for 78 hours, and the cell library was 

seeded into eight 6-well glass-bottom plates (Cellvis P06–1.5H-N) at a density of 300,000 

cells per well (~30,000 cells/cm2) 48 hours prior to fixation. Cells were fixed with 4% 

paraformaldehyde in PBS for 30 minutes, followed by in situ amplification as described 

previously.8,15 First, cells were permeabilized with 70% ethanol for 30 minutes. Cells were 

then carefully exchanged over six washes into PBS-T wash buffer (PBS + 0.05% Tween-20). 

Reverse transcription mix (1x RevertAid RT buffer, 250 μM dNTPs, 0.2 mg/mL BSA, 1 

μM LNA-modified RT primer (oRT_CROPseq-v2), 0.8 U/μL Ribolock RNase inhibitor, and 

4.8 U/μL RevertAid H minus reverse transcriptase) was added to the sample and incubated 

overnight at 37°C. Following reverse transcription, cells were washed 5 times with PBS-T 
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and post-fixed with 3% paraformaldehyde and 0.1% glutaraldehyde for 30 minutes at room 

temperature. Cells were then washed with PBS-T 5 times before incubation in a padlock 

probe and gap-filling reaction mix (1x Ampligase buffer, 0.4 U/μL RNase H, 0.2 mg/mL 

BSA, 100 nM padlock probe (oPD_CROPseq-v2), 0.02 U/μL TaqIT polymerase, 0.5 U/μL 

Ampligase and 50 nM dNTPs) for 5 minutes at 37°C and 90 minutes at 45°C, and then 

washed 2 times with PBS-T. Circularized padlocks were then amplified using rolling circle 

amplification (1x Phi29 buffer, 250 μM dNTPs, 0.2 mg/mL BSA, 5% glycerol, and 1 

U/μL Phi29 DNA polymerase) overnight at 30°C and washed 2 times with PBS-T. After 

rolling circle amplification, cells were stained with rabbit anti-gamma H2A.X (phospho 

S139) antibody (Abcam ab81299, 1:2000 dilution in PBS with 3% BSA) for 1 hour at 

room temperature. Cells were washed twice with PBS-T (PBS with 0.05% Tween-20), 

then stained with mouse anti-alpha-tubulin-FITC antibody (Sigma F2168, 1:500 dilution), 

goat anti-rabbit antibody disulfide-linked to Alexa Fluor 594 (Invitrogen 31212, Thermo 

Fisher Scientific A10270, custom conjugation; 1:500 dilution), and Alexa Fluor Plus 750 

Phalloidin (Thermo Fisher Scientific A30105, 1:1000 dilution) in PBS with 3% BSA for 

45 minutes at room temperature. After washing with PBS-T three times, well plates were 

replaced with 200 ng/mL DAPI in 2X SSC and imaged for cellular phenotypes using the 

microscope configuration described above with 4 z-slices at 1.5 μm intervals. Following 

phenotype imaging, Alexa Fluor 594 was cleaved from disulfide-linked antibodies by 

incubating cells in 50 mM TCEP in 2X SSC for 1 hour at room temperature, followed 

by three washes with PBS-T. Finally, 11 cycles of in situ sequencing-by-synthesis were 

performed as described previously.8,15 A sequencing primer was first hybridized for 30 

minutes at 37°C (1 μM primer oSBS_CROPseq-v2 in 2X SSC). sgRNA sequences were 

read out in situ using sequencing-by-synthesis reagents from the Illumina MiSeq 500 cycle 

Nano kit (Illumina MS-103–1003). Samples were washed with incorporation buffer (Nano 

kit PR2) and incubated for 3 minutes in incorporation mix (Nano kit reagent 1) at 60°C 

on a flat-top thermocycler. Samples were then repeatedly washed with PR2 at 60°C (6 

washes for 5 minutes each) and placed in 200 ng/mL DAPI in 2x SSC for fluorescence 

imaging. Following each cycle of imaging, samples were incubated for 6 minutes at 60°C 

in Illumina cleavage mix (Nano kit reagent 4), and thoroughly washed with PR2. In parallel 

with the optical pooled screen, cells expressing the same sgRNA library were induced with 

1 μg/mL doxycycline, and then doxycycline media was refreshed every day for 2 more 

days. Cells were harvested on days 0 (pre-induction), 3, and 5 post-Cas9 induction and 

genomic DNA was extracted using PureLink (Invitrogen). sgRNA sequences were then PCR 

amplified using Q5 hotstart (NEB) with primers oDF344 and oDF112 before addition of 

index barcodes and sequencing on an Illumina HiSeq using sequencing primer oKC651. See 

Table S1 for sequence of all primers used.

Live-cell optical pooled CRISPR screen—HeLa-TetR-Cas9 cells expressing an H2B-

mCherry fusion protein (cKC556) were transduced with the live-cell screening library of 

526 sgRNA sequences in CROPseq-puro-v2. Cells were selected with 2 μg/mL puromycin 

(Thermo Fisher Scientific A1113803) for 3 days. Cas9 expression was induced with 2 

μg/mL doxycycline for 48 (day 3 time course) or 72 hours (day 4 time course) prior to 

the beginning of live-cell imaging, and cells were seeded into 6-well glass-bottom plates 

(Cellvis P06–1.5H-N) at a density of 300,000 or 350,000 cells per well (~35,000 cells/cm2) 

Funk et al. Page 18

Cell. Author manuscript; available in PMC 2023 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24 hours prior to imaging. Each time course was performed in three batches on separate 

days. Immediately before imaging, cells were washed once with PBS, and then replaced 

with imaging media consisting of phenol red-free DMEM with L-glutamine and HEPES 

(Thermo Fisher Scientific 21063029) supplemented with 10% heat-inactivated fetal bovine 

serum (Sigma F4135) and 100 U/mL penicillin-streptomycin (Thermo Fisher Scientific 

15140122). Live-cell imaging was performed using the microscope configuration described 

above and 2 z-slices spaced at either 4 or 5 μm intervals. Cells were imaged for 24 hours 

at 10 minute time intervals, immediately fixed with 4% paraformaldehyde in PBS for 30 

minutes, then processed through in situ amplification and sequencing-by-synthesis following 

the same protocol as the fixed-cell screen.

GFP immunoprecipitation and Mass-spectrometry—IP-MS experiments were 

performed as described previously.92 EGFP-C7orf26 and EGFP-LIN52 cells were 

mitotically enriched with 10μM STLC overnight, harvested and washed in PBS and 

resuspended 1:1 in 1X Lysis Buffer (50 mM HEPES, 1 mM EGTA, 1 mM MgCl2, 100 

mM KCl, 10% glycerol, pH 7.4) then frozen in liquid nitrogen. Cells were thawed after 

addition of an equal volume of 1.5X lysis buffer supplemented with 0.075% Nonidet P-40, 

1X Complete EDTA-free protease inhibitor cocktail (Roche), 1 mM phenylmethylsulfonyl 

fluoride, 20 mM beta-glycerophosphate, 1 mM sodium fluoride, and 0.4 mM sodium 

orthovanadate. Cells were then lysed by sonication and cleared by centrifugation. The 

supernatant was mixed with Protein A beads (Biorad) coupled to rabbit anti-GFP antibodies 

(Cheeseman lab) and rotated at 4°C for 1 hour. Beads were washed five times in wash buffer 

(50 mM HEPES, 1 mM EGTA, 1 mM MgCl2, 300 mM KCl, 10% glycerol, 0.05% NP-40, 

1 mM dithiothreitol, 10 μg/mL leupeptin/pepstatin/chymostatin, pH 7.4). After a final rinse 

in wash buffer without detergent, bound protein was eluted with 100 mM glycine pH 2.6. 

Eluted proteins were precipitated by addition of 1/5th volume trichloroacetic acid at 4°C 

overnight. Precipitated proteins were reduced with TCEP, alkylated with iodoacetamide, and 

digested with mass-spectrometry grade trypsin (Promega) using S-Trap (Protifi) according 

to the manufacturer’s instructions. Peptides were separated by liquid chromatography and 

analyzed on an Orbitrap Elite mass spectrometer (Exploris 480, Thermo Fisher) with FAIMS 

Pro Interface (Thermo Fisher). Data were analyzed using Proteome Discoverer Software 

(Thermo Fisher).

Western Blotting—Cells expressing individual sgRNAs were induced in 1 μg/mL 

doxycycline for 2 to 5 days before lysis in Laemmli buffer and incubation at 95°C for 5 min. 

For mitotic samples, cells were harvested by mitotic shake off and, when necessary, after 

an overnight 10 μM STLC incubation. Samples were separated by SDS-PAGE and semi-dry 

transferred to nitrocellulose. Membranes were blocked for 30 min in blocking buffer (5% 

BSA for H2A.X; for all others, milk in TBS with 0.1% Tween-20) before incubation with 

primary antibodies: anti-phospho-H2A.X (Ser139, Millipore clone JBW301; 1:1000), anti 

c-Myc (Abcam, ab32072; 1:1000), anti-CENP-A (Clone 3–19, Invitrogen; 1:2000), or anti-

“Bonsai”/NDC8093 (0.5 μg/mL). This was followed by HRP-conjugated secondary antibody 

(Kindle Biosciences) incubation at 1:1000 dilution. To detect GAPDH as a loading control, 

HRP-conjugated antibody (Abcam, ab185059) was applied at 1:20,000 dilution. Membranes 
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were imaged with a KwikQuant Imager (Kindle Biosciences) and quantified using Image 

Studio software (LI-COR).

Arrayed imaging experiments with inducible knockout cell lines—Inducible 

knockout cell lines for immunofluorescence were seeded on poly-L-lysine (Sigma-

Aldrich) coated coverslips and fixed in PHEM with 4% formaldehyde for 10 min at 

37°C (microtubule staining) or ice cold methanol. Coverslips were washed with PBS, 

permeabilized with 0.2% Triton X-100 in PBS, and blocked in Abdil buffer (20 mM 

Tris-HCl, 150 mM NaCl, 0.1% Triton X-100, 3% bovine serum albumin, 0.1% NaN3, 

pH 7.5). Anti-alpha-tubulin (DM1A, Sigma; 1:3000 dilution), anti-Centrin94 (1μg/mL), 

anti-CENP-A (Clone 3–19, Invitrogen; 1:1000 dilution) and anti- “Bonsai”/NDC8093 (1 

μg/mL) antibodies in Abdil buffer were used for primary staining. Cy2- and Cy5-conjugated 

secondary antibodies (Jackson ImmunoResearch Laboratories) were diluted 1:500 with 

1 μg/mL Hoechst-33342 (Sigma-Aldrich) in Abdil for subsequent staining. Slides were 

mounted with ProLong Gold Antifade (Invitrogen) prior to imaging using the microscope 

configuration described above.

For quantifications of Ndc80 and CENP-A kinetochore stain intensity, sections of cells 

were maximum intensity projected and cropped in Fiji.95 Integrated fluorescence intensity 

of mitotic kinetochores was measured with a custom pipeline in CellProfiler.96 The median 

intensity of a 5-pixel wide region surrounding each kinetochore was used to background 

subtract each measurement.

For live analysis of individual knockout and RNPC3 rescue cell lines, cells were induced 

with 1 μg/mL doxycycline for 3 days, refreshing doxycycline media each day. On day 3 or 

4 post-Cas9 induction, cells were moved to CO2-independent media (Gibco) supplemented 

with 10% FBS, 100 U/mL penicillin and streptomycin, and 2 mM L-glutamine before 

imaging using the microscope configuration described above in 12-well polymer-bottomed 

plates (Cellvis). For the hyperosmotic stress experiments, polyethylene Glycol (PEG) 300 

(TCI) was applied to the media at the indicated concentrations (w/v%) and incubated for 6 

h prior to imaging. For imaging of active mitochondria with intact membrane potential in 

Figure S5F, MitoTracker Orange CMTMRos (Invitrogen) was applied at 25 nM for 30 min 

before imaging. For MitoTracker image analysis, nuclei were segmented using the CellPose 

segmentation algorithm97 with a Hoechst stain, then a cytoplasmic ring was defined by 

morphologically dilating the nuclei by 10 pixels. The stain was then quantified by taking the 

mean intensity within the ring area, normalized by the mean intensity of the nucleus for each 

cell.

RNA-sequencing—Inducible knockout cells were seeded in 1 μg/mL doxycycline, and 

doxycycline media was refreshed each day for 3 days before harvest of a mitotically-

enriched cell population by shake-off on day 5. Control and ZNF335 knockout cells were 

additionally treated with 10 μM STLC for 12 h prior to harvest. Cells were washed in PBS 

before snap-freezing pellets of 500,000 cells in liquid nitrogen. RNA was purified using 

TRIzol reagent (Life Technologies) according to manufacturer’s instructions. 2ug of purified 

total RNA was mixed with 0.7 pg and 1.3 pg polyadenylated Nano luciferase and Firefly 

luciferase spike-in mRNA, respectively. KAPA mRNA HyperPrep kit with poly(A) selection 
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was used to prepare libraries. Libraries were sequenced with the Illumina NovaSeq 6000 

platform, 100×100 bp paired-end reads.

Reverse transcription and qPCR—Total RNA was purified as described for RNA-

sequencing. 1 μg of total RNA was used in a cDNA synthesis reaction with the Maxima First 

Strand cDNA synthesis kit (Thermo Scientific) according to the manufacturer’s protocol. 

The cDNA was subjected to qPCR using the PowerUP SYBR Green Master Mix (Thermo 

Fisher) according to the manufacturer’s protocol or end point PCR using 2x Q5 polymerase 

mix (NEB). For qPCR, a standard curve was used for quantitative assessment of mRNA 

levels and normalized to GAPDH mRNA. See key resource table for sequences of qPCR 

primers used.

Quantification and statistical analysis

Screening image analysis—In situ sequencing spots were identified and barcode 

sequences extracted using our previously described workflow.8,15,98 Briefly, sequencing 

reads were detected by applying a Laplacian-of-Gaussian linear filter (kernel width σ = 

1 pixel) with sequencing spots identified by finding the local minima of the per-pixel 

standard deviation over sequencing cycles. A linear transformation was estimated and 

applied to the extracted per-channel spot intensities to correct for fluorescence cross-talk 

between sequencing channels. Finally, each base was called according to the sequencing 

channel with maximum corrected intensity in a given cycle of sequencing. In addition, 

phenotype images were acquired at a higher magnification than in situ sequencing images, 

and thus the datasets were computationally aligned to match cell identities. This alignment 

was completed by computing the Delaunay triangulation of nuclei centroids for each 

phenotype and sequencing image tile, and then computationally comparing triangulations 

between images from the two datasets to find matching tiles and cell identities. Overall, 

approximately 60% of all segmented cells were included in the final dataset (Figure S1C), 

with remaining cells unused due to no in situ sequencing spots matching a designed sgRNA 

sequence, sequencing reads mapping to multiple gene targets, or an inability to match cell 

identities between the sequencing and phenotype images.

Phenotype images from both screens were first maximum intensity projected to compress z-

slices into a single plane, and then a retrospective flat-field correction was applied to reduce 

effects from uneven illumination.99 Nuclei were semantically segmented by applying a 

local intensity threshold to the DAPI channel and then performing morphological operations 

to remove aberrant holes and particles. Individual nucleus instances were then segmented 

using the watershed algorithm. In the fixed-cell phenotype data, semantic segmentation 

of cytoplasmic foreground was achieved by thresholding a Gaussian-filtered copy of the 

phalloidin (actin) channel (sigma of 3 pixels), followed by morphological operations. Cell 

instances were identified by applying the watershed algorithm with nuclear segmentations 

as seeds. Phenotype parameters were extracted from nuclear and cellular segmentations for 

each channel by implementing image features derived from CellProfiler,96 scikit-image,100 

and mahotas101 as Python functions operating on scikit-image RegionProperties objects 

(Table S2). Image segmentation, phenotype feature extraction, and in situ sequencing 
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analysis were performed in parallel on a per-image tile basis using the Snakemake workflow 

manager.102

Fixed-cell screen phenotype analysis—After aligning the phenotype and sequencing 

datasets, a subset of features were transformed to approximate normal distributions (Table 

S2). All features for each cell were then normalized using the median and median absolute 

deviation of the population of cells carrying non-targeting sgRNAs within the same well 

(robust z-score). This internal control procedure was used to reduce batch effects between 

wells and plates that may be caused by intensity differences or cell density effects. 

Mitotic and interphase cells were identified using a support vector classifier (scikit-learn103 

svm.SVC implementation, default parameters) trained with 2,514 annotated cells on a 

subset of 182 features that demonstrated the highest average difference between annotated 

mitotic and interphase cells (Figure S1D; Table S2). Cell-level measurements were then 

re-normalized from the raw data as before, but within interphase and mitotic cells separately.

Summary phenotype measurements were computed for each gene target by taking the 

median of z-scored parameters for all cells targeted by a single sgRNA sequence, then 

aggregating to the gene level by taking the median across sgRNAs targeting the same 

gene. Raw p-values for a subset of summary parameters were computed by comparing 

gene scores to null distributions of corresponding bootstrapped summary scores from cells 

expressing non-targeting sgRNAs, a nonparametric approach that does not depend on strong 

assumptions concerning the underlying distributions of the data. Separate null distributions 

were defined for each gene target by first performing 100,000 cell sampling repetitions to 

produce a distribution of bootstrapped non-targeting sgRNA scores for each cell sample 

size of the targeting sgRNAs. Cell sample sizes for each gene are reported in Table S2. 

These guide-level null distributions were then correspondingly sampled 100,000 times for 

each group of sgRNAs targeting the same gene and aggregated to produce gene-level null 

distributions with matched cell and guide sample sizes. The Benjamini-Hochberg procedure 

was applied to obtain the reported FDR q-values. As indicated in the figure legends, an 

FDR threshold of 0.05 was used for defining significance for all parameters. This process 

was modified for the mean nuclear γH2AX intensity measurements (Figure 1D), as the non-

targeting cells do not provide an adequate null population for this phenotype given the lack 

of Cas9-induced DNA breaks. In this case, bootstrapped null distributions were generated 

by sampling from all cells expressing any targeting sgRNA, as indicated in the figure 

legend, resulting in the center of the volcano plot being offset from 0 as robust z-scores 

(x-axis) are calculated relative to the non-targeting sgRNA cell population. This approach, 

combined with an effect size threshold at the 2.5 and 97.5 percentiles of the non-targeting 

sgRNA scores, resulted in a conservative identification of mean nuclear γH2AX intensity 

phenotypes beyond baseline DNA damage resulting from Cas9 nuclease activity.

For the high-dimensional analysis, features with a Pearson correlation greater than 0.9 

with another feature were iteratively excluded, and additional features with low variance 

or only a few unique discrete values across the dataset were removed. This resulted in 

a set of 475 features for the interphase dataset and 884 features for the mitotic dataset, 

selected independently from the full list of 1,084 extracted features (Table S2). Further 

feature redundancies were reduced by applying principal component analysis (PCA) and 
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retaining the components that explain 95% of the variance in the datasets (103 components 

for the interphase data, 530 components for the mitotic data). The PHATE manifold learning 

and visualization algorithm43 was then used to produce two-dimensional representations 

of the phenotypic landscape of gene targets from the PCA-projected feature profiles 

(default parameters except n_pca=None). For a summary score of phenotype strength, the 

PHATE potential distance matrix was used to calculate the average distances between 

each gene phenotype profile and non-targeting control sgRNAs profiles, which were then 

min-max normalized between 0 and 1. To cluster knockout phenotypes, the diffusion 

operator local affinity graph produced as an intermediate of PHATE was supplied as 

input to the Leiden algorithm, a standard and well-developed clustering approach that 

optimizes cluster modularity.44 The Leiden resolution parameter was chosen by analyzing 

the robustness of clustering solutions to the subsampling of gene-level data with varying 

resolution (robustness plateaued at resolution = 10 for the interphase profiles, resolution 

= 9 for the mitotic profiles). Cluster annotations in Fig. 3B represent manually-identified 

groups of Leiden clusters corresponding to broad functional categories, as indicated in the 

legend. In cases where hierarchical sub-clustering is used as a straightforward approach 

to identify phenotype relationships between individual gene targets (e.g., Figure 4C), 

this was performed using average linkage (UPGMA) of the Pearson correlation between 

PCA-projected phenotype profiles. For visualization of differences between phenotype 

profiles and corresponding clusters in the presented heatmaps (Figures 3D and 3F, etc.), 

we first selected clusters to highlight based on the presence of known functional groups 

of genes, then iteratively selected a minimal set of phenotype parameters that together 

discriminated the various clusters. Features with clear explanation were prioritized to 

enable interpretability, resulting in 16 interphase and 16 mitotic phenotype features (Table 

S2). Feature values in all heatmaps are presented as z-scores from the distribution of non-

targeting sgRNAs, visualized on a symmetric log scale (linear between −1 and 1). In parallel 

with the computational phenotype analysis, two individuals independently scored mitotic 

phenotypes from the primary screen by visually inspecting montages of mitotic cells from 

each gene target and assigning a phenotype severity score from 1 to 9 (Figures S6A–B). 

During this process, the scoring individuals were blinded to the gene identities associated 

with each montage of cells.

Comparisons to external data—To compare our interphase phenotype profile 

similarities to existing datasets of co-functional genes (Figures S4H and S5A–D), we used 

the CORUM 3.0 core set of protein complexes,47 BioPlex 3.0 HEK293T interactions,45 

co-essential gene pairs defined in Wainberg et al.,46 KEGG pathways (accessed March 30, 

2022),48 STRING v11.5 protein links,49 and data from the recent large-scale Perturb-seq 

screen.5 In all analyses of KEGG pathways, pathways categorized under “Organismal 

Systems,” “Human Diseases,” or “Drug Development” were excluded. For CORUM and 

KEGG, all possible pairs of genes within the same complex were considered as co-

functional. For the Perturb-seq cluster comparison, we included both the annotated genes 

associated with each cluster as well as “nearest neighbor” genes listed in the supplemental 

data of Replogle et al.5 In each dataset, all present annotated co-functional gene pairs 

were included for Figure S4H, and correlations were computed between phenotype profiles 

in the same form as the input to PHATE (first 103 principal components). For cluster 
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enrichment of CORUM complexes, complexes were included that contained at least 3 genes 

from the screening library with at least 2/3 of the full complex represented (Table S3). 

Cluster enrichment for KEGG and CORUM annotations for Figure S5A and Table S3 was 

determined using Fisher’s exact test for each annotation and cluster, with the background set 

as all genes targeted in the screen. The Benjamini-Hochberg procedure was applied across 

tested annotation sets for each cluster individually, with an FDR cut-off of 0.05. Enrichment 

of BioPlex, co-essentiality, and STRING associations within each cluster was determined 

using a permutation test. 10,000 repetitions of cluster label permutations were performed to 

generate null distributions of intra-cluster associations, and a p-value threshold of 0.05 was 

applied to determine significance.

For the CORUM correspondence analysis (Figure S5B), a subset of minimal CORUM 

complexes were selected that contained limited overlap with other complexes (defined as 

containing at least 3 genes from the screening library with at least 2/3 of the full complex 

represented, and removing the largest complexes that share more than 10% of gene-pairs 

with smaller CORUM complexes; see Table S3), resulting in 9,781 gene pairs included 

across 292 annotated complexes. Precision and recall of correspondence were defined as 

indicated in Figure S5B, with the Leiden clustering resolution parameter varied between 0.1 

and 1000 to generate curves. When restricting this comparison to varying overall phenotype 

strengths, the indicated quantiles were used as thresholds on the interphase PHATE mean 

potential distance to non-targeting sgRNAs (as also presented in Fig. S4G), only evaluating 

pairs of genes where both members met the given threshold. For comparisons to the 

DepMap-based co-essentiality clusters46 and the Perturb-seq clusters,5 due to the nature 

of the available date we conducted qualitative comparisons of the genes present in each 

cluster.

For the comparison to MitoCheck, all genes identified in at least one of the four main 

phenotype categories (“mitotic arrest/delay,” “binuclear,” “polylobed,” and “grape”) were 

considered as exhibiting mitotic phenotypes. These genes were compared to those in our 

fixed-cell screen demonstrating strong image-based mitotic phenotype profiles (using the 

mean PHATE potential distance to non-targeting sgRNAs with mitotic profiles analogously 

to Figure 5A, selecting gene targets above the 95th percentile of non-targeting sgRNAs) or 

significantly altered mitotic index (P<0.05 by permutation test with 10,000 permutations of 

sgRNA-gene assignments; Figure S6C; Table S3).

Live-cell screen phenotype analysis—Following nuclear segmentation of the time 

lapse data, cells were tracked across frames using the TrackMate implementation of 

the linear assignment problem approach to tracking.104,105 The cost of linking nuclei in 

consecutive frames was set as the squared distance between centroids, with maximum 

linking distance set to 60 pixels (~18 μm). Track gaps up to 2 frames were allowed, in 

addition to track merges and splits. Tracked cell lineages that did not last for the full 24 hour 

time-course were excluded from analysis.

The sgRNA assigned to each tracked cell lineage in the phenotype data was determined by 

matching cell identities between the in situ sequencing images and the final time point of 

the time course. Similar to the fixed-cell screen, individual cell feature measurements were 
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normalized using the median and median absolute deviation of the non-targeting control 

cell population from the same well and time point to reduce batch effects and correct 

for temporal intensity variations. Interphase, mitotic, and apoptotic cells were classified 

using a support vector machine (scikit-learn svm.SVC, linear kernel) with 2,514 annotated 

cells using 81 features selected from the full set of 116 extracted features by iteratively 

removing features with Pearson correlation >0.9 with another feature (Figure S6E; Table 

S4). However, due to the difficulty of separating mitotic and apoptotic cells based on 

H2B-mCherry fluorescence alone, these categories were later combined into a single, broad 

“mitotic” bin. Cell division events were defined as a contiguous sequence of at least 2 

frames of mitotic-classified cells immediately followed by a split in the track into 2 daughter 

cells. Also included as cell division events were continuous sequences of mitotic cells that 

start in the first frame or reach the end of the acquired time course, if the observed mitotic 

duration was at least as long as the average mitotic duration of non-targeting control cells in 

the same well. Mitotic duration was measured as the time difference between the first and 

last frame of the cell division event. The fraction of cells entering mitosis was calculated 

as the fraction of tracked lineages containing at least one cell division event as defined 

above. Both measurements were aggregated to the gene level by taking the average of 

sgRNAs targeting the same gene. Since many genes exhibited a stronger phenotype at either 

the Day 3 or Day 4 time point, likely due to differences in protein depletion timing, the 

strongest phenotype was selected for plotting in Figure 6B by selecting the time course with 

the highest absolute difference in mitotic duration compared to the mean of non-targeting 

sgRNAs. Sample sizes for each gene are reported in Table S4.

RNA-sequencing analysis of inducible knockout cell lines—RNA-sequencing 

reads were trimmed to remove any poly(A) sequences using Cutadapt106 (v3.7) with the 

parameters “--minimumlength 1 -a A{25}”. Reads were mapped to the human genome 

(Gencode v25) using STAR107 v2.7.1a with the parameters “--runMode alignReads --

outFilterMultimapNmax 1 --outFilterType BySJout --outSAMattributes All --outSAMtype 

BAM SortedByCoordinate”. Aligned reads were quantified using htseq-count108 (0.11.0). A 

read cutoff of at least 20 reads for each gene sample was applied before further analysis. 

Differential expression analysis was performed using DESeq2.109 Differentially-expressed 

genes are defined as log2 effect size > 0.5 and FDR < 0.01. For the Clp1 RNA-seq 

data, the relative abundance of spike-in mRNAs was used as the sizeFactor for DESeq2 

instead of median normalization due to 3’ end processing defects resulting in global mRNA 

downregulation. The Minor Intron Database110 (v1.2) was used to reference minor intron 

containing genes.

ShinyGO111 v0.75 was used to identify enriched GO terms from the GO Biological Process 

database. Enrichment analysis was performed within the downregulated genes from LIN52 

knockout cells; genes that surpassed the 20 read cutoff and did not show differential 

expression were used as the background set.

Clp1 and RNPC3 meta plots were generated using the deepTools v3.5 package.112 

The aligned reads were converted to RPKM-normalized coverage using bamCoverage 

with the parameters “--outFileFormat bigwig --normalizeUsing RPKM --binSize 1”. For 

analysis of transcription termination, 500bp upstream of the transcription termination site 
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from longest isoform per gene was used for the annotation file for meta plots and the 

following parameters were used for computeMatrix “--binSize 1 --regionBodyLength 300 

--downstream 1000” to generate a matrix of coverages. For analysis of minor introns, the 

following parameters were used for computeMatrix “--binSize 1 --regionBodyLength 100 

--upstream 100 --downstream 100” with the minor intron annotation file from Minor Intron 

Database v1.2.110 Normalized coverage per bin was obtained using plotProfile with the 

parameter “--averageType mean” and the average coverage of two biological replicates was 

plotted. For minor intron analysis, the RPKM-normalized coverage in all bins was further 

normalized to the summed flanking exon coverage to correct for the decreased mRNA 

abundance of minor intron containing genes in RNPC3 knockouts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Large-scale image-based pooled CRISPR screen identifies essential genes with roles in 
genome integrity.
(A) Workflow for image-based pooled CRISPR screen (also see STAR Methods). (B) 

Histogram showing the number of cells analyzed for each gene target with image and single 

sgRNA sequence mapped. (C) Example image from the pooled screen showing the indicated 

stains together with fluorescent in situ sequencing (Laplacian-of-Gaussian filtered) and 

cell segmentation. Scale bar, 25 μm. (D) Volcano plot for mean nuclear γH2AX intensity 

across gene targets and selected images to highlight specific targets whose knockout results 

in increased (green) or decreased (magenta) γH2AX relative to random samples of cells 

expressing targeting sgRNAs (orange; FDR<0.05; STAR Methods). The median robust 

z-score is calculated relative to cells expressing non-targeting sgRNAs and is plotted on 

a symmetric log scale (linear between −1 and 1). Scale bar, 10 μm. (E) Volcano plot 

Funk et al. Page 34

Cell. Author manuscript; available in PMC 2023 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and selected images as in (D) for changes in integrated nuclear DAPI intensity relative 

to random samples of cells expressing non-targeting sgRNAs (STAR Methods). Scale bar, 

10 μm. (F) Scatter plot comparing the relationship between DNA damage and content. 

Labeled genes are colored by functional category. Example images show tubulin (green) 

and DNA (magenta) to highlight multinucleated cells. Scale bar, 10 μm. (G) Western blot 

(top) and quantification (bottom) confirming the presence of increased DNA damage in 

individual knockout cell lines targeting either the indicated genes or a single copy locus 

control. Blue data points indicate independent replicates. For each sample, γH2AX intensity 

was referenced to its GAPDH loading control and normalized by negative control γH2AX 

relative intensity. Error bars indicate SD.
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Figure 2. Identification of essential genes regulating cytoskeletal structures and cellular 
organization.
(A) Selected images and volcano plot for mean cellular F-actin (phalloidin) intensity 

highlighting gene targets that result in increased (green) or decreased (magenta) actin levels 

relative to non-targeting control cells (orange; FDR<0.05; STAR Methods). (B) Selected 

images and volcano plot as in (A) for mean cellular tubulin intensity. (C) Scatter plot 

comparing the relationship between actin and tubulin intensity highlighting targets that 

selectively affect one cytoskeletal element (see also Figures S3B–D). Labeled genes are 

colored by functional category. (D) Scatter plot comparing median cellular and nuclear area 

across gene targets. These morphological features are highly correlated across conditions (r 

= 0.96). Orthogonal regression was performed to identify targets resulting in an altered 

nuclear:cytoplasmic area ratio (dotted line). Labeled genes are also highlighted in the 
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distribution of regression residuals (inset). Example images display DNA (magenta) and 

tubulin (green) staining for gene targets that result in altered cell and nuclear size. Scale 

bars, 10 μm.
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Figure 3. Clustering of multi-dimensional interphase phenotypes reveals co-functional essential 
genes.
(A) Analysis workflow overview. 1,084 phenotype parameters were extracted from raw 

cell images and aggregated into profiles for each of the 5,072 genes. The relationships 

between profiles were visualized using PHATE43 and grouped by similarity using the 

Leiden clustering algorithm.44 In select cases, hierarchical sub-clustering was performed 

to identify gene-level phenotype similarities (STAR Methods). (B) Two-dimensional PHATE 

representation of the interphase phenotype gene profiles from the primary screen. Colors 

correspond to manually-annotated Leiden clusters containing the labeled functional gene 

categories. (C) Individual clusters related to translation from (B) identify fine-grained 

functional sub-categories of genes. Functional descriptions are based on manual annotations. 

(D) Heat map of interphase knockout phenotypes corresponding to the translation clusters 
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in (C) for a manually-selected subset of phenotype parameters (STAR Methods). All genes 

from each cluster are listed. (E) Individual clusters of genes related to transcription from 

(B). (F) Heat map as in (D) corresponding to the clusters in (E) highlighting the phenotypic 

similarities that define each cluster of genes with transcriptional functions.
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Figure 4. Phenotypic clustering relationships predict gene function.
(A) Heat map of interphase phenotypes for clusters containing transcriptional regulators 

(STAR Methods). (B) Western blot (see Figure S5G) and mRNA quantification of 

MYC mRNA and protein expression following knockout of selected genes from cluster 

121. *P<0.05 by two-tailed independent T-test relative to corresponding controls. (C) 

Phenotype heat maps of interphase clusters 37 and 217 as in (A), demonstrating the 

phenotypic similarity between C7orf26 knockouts with those of Integrator complex subunits. 

Hierarchical clustering (top) within cluster 37 using the Pearson correlation of PCA-

projected phenotype profiles (STAR Methods). (D) GFP-C7orf26 localizes to the nucleus 

consistent with Integrator complex function. Scale bar, 10 μm. (E) Mass spectrometry from 

an immunoprecipitation of GFP-C7orf26 from human cells relative to controls.
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Figure 5. Mitotic phenotypes uncover essential genes required for cell division.
(A) Scatter plot of mitotic index for each gene target compared to a summary score of 

image-based mitotic phenotype strength computed by PHATE43 (STAR Methods). (B) Two-

dimensional representation of the mitotic phenotype visualized using PHATE, clustered to 

form groups with similar phenotypes (STAR Methods). Each dot represents a single gene, 

colored corresponding to the indicated cluster. Functional descriptions correspond to manual 

annotations. (C) Selected screen images and heat map of mitotic phenotypes corresponding 

to the clusters in (B) for a manually-selected subset of parameters (STAR Methods). Scale 

bar, 10 μm. All gene targets from selected clusters are listed. (D) Left, immunofluorescence 

images of cell lines stably expressing a sgRNA targeting ZNF335 or control. Right, bar 

plot of the corresponding fraction of mitotic cells with monopolar spindles; each data point 
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represents one experiment with >100 cells. Images are deconvolved maximum intensity 

projections of fixed cells stained for microtubules (anti-alpha-tubulin) and DNA (Hoechst). 

(E) Example images (left) of DNA (Hoechst, magenta) and Centrin (grayscale) stains of 

monopolar ZNF335 knockout cells along with quantification of reduced centriole numbers 

(right) compared to monopolar control cells generated by STLC treatment (n>88 cells 

per condition). Insets show magnified regions. Scale bars, 10 μm. Error bars indicate SD. 

(F) Volcano plot of differential gene expression in ZNF335 knockout. Yellow data points 

represent genes co-clustering with ZNF335 in mitotic cluster 109. 296 genes, including 

PSMD1 and TUBGCP6, are downregulated (magenta) and 177 genes are upregulated 

(green) in ZNF335 KO cells (FDR < 0.01, log2 effect size > 0.5).
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Figure 6. A pooled live-cell screen identifies gene targets required for mitotic progression.
(A) Experimental workflow for the live-cell, image-based pooled CRISPR screen using 

a cell line expressing an H2B-mCherry fusion (STAR Methods). (B) Left, scatter plot 

comparing the fraction of cells that enter mitosis within the 24 hour time course and the 

mitotic duration of observed cell division events. Plotted values represent the mean of 

sgRNAs targeting the same gene. Right, example images of H2B-mCherry fluorescence 

at the indicated time points after mitotic entry for knockouts of established cell division 

components. (C) Example time course montages as in (B) demonstrating mitotic delay 

and mitotic defects for selected target genes. (D) Immunofluorescence images showing 

individual cell lines stably expressing a single sgRNA targeting the indicated genes (see 

also Figure S7A). Images are deconvolved maximum intensity projections of fixed cells 
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stained for microtubules (anti-alpha-tubulin) and DNA (Hoechst). Scale bars, 10 μm. (E) 

Example images and (F) mitotic duration from time-lapse imaging of control, AQP7, and 

ATP1A1 inducible knockout cells incubated with varying PEG300 concentrations to induce 

hyperosmotic stress. n>50 cells per datapoint. Error bars indicate SD.
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Figure 7. Lin52, Clp1 and RNPC3 functions to promote proper kinetochore assembly and 
chromosome segregation.
(A) Bar plot showing total protein levels (blue) and kinetochore-localized intensity (red) 

of the outer kinetochore microtubule-binding protein NDC80 in the indicated inducible 

knockout cell lines relative to a control sgRNA. N=2 biological replicates for total protein 

levels, which were normalized to GAPDH. N=2–10 biological replicates for kinetochore 

measurements, each replicate represents the median kinetochore signal from >10 cells. 

Both measurements were further normalized relative to controls from the same experiment. 

*P<0.05, **P<0.01 by two-tailed independent T-test relative to corresponding control 

samples. ND, no data. Error bars indicate SD. (B) Bar plot as in (A) showing total 

protein level (blue) and kinetochore-localized intensity for the inner kinetochore centromere-

specific histone CENP-A in the indicated inducible knockout cell lines relative to a control 
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sgRNA. Experimental design and statistical tests as in (A). (C) Phenotype heat map and 

hierarchical clustering for a subset of primary screen interphase cluster 46 genes (STAR 

Methods). (D) Volcano plot of LIN52 knockout differential expression based on RNA-seq. 

Genes involved in cell division processes are indicated in purple. Significance threshold 

FDR < 0.01, log2 effect size > 0.5 for up- (green) and down-regulated genes (magenta). 

Inset, GO term analysis of LIN52 downregulated genes shows a significant enrichment 

of mitotic genes. (E) Heat map of primary screen interphase cluster 204 phenotypes as 

in (C), demonstrating an association of knockout phenotypes for the pre-mRNA cleavage 

complex II factors CLP1 and PCF11, and the transcriptional termination factor ZC3H4. 

(F) Volcano plot of differential expression as in (D) following CLP1 knockout, identifying 

a global decrease in mRNA abundance in these cells including for SPC24 and SPC25, 

identified by normalizing to library spike-in control RNA (brown). (G) Heat map of 

a subset of primary screen interphase cluster 39 phenotypes as in (C), demonstrating 

tight clustering of minor spliceosome components including RNPC3. (H) Volcano plot 

of differential gene expression as in (D) after RNPC3 knockout, with the SPC24 outer 

kinetochore component significantly downregulated. (I) Cumulative distributions of mRNA 

fold change from RNPC3 knockout cells for transcripts containing at least 1 minor intron 

(orange) are significantly downregulated compared to transcripts with no minor introns 

(purple). Statistical significance between cumulative distributions was assessed using the 

Mann-Whitney U test. Inset, minor introns are retained in RNPC3 knockout cells (green), 

including the minor introns in SPC24 (dotted lines). (J) Left, representative images of 

H2B-mCherry (DNA) and transgene localization for live RNPC3 knockout cells expressing 

Tag only or GFP-SPC24. Right, bar plot showing fraction of mitotic RNPC3 knockout cells 

displaying chromosome alignment defects (n>100 cells) or arrest in mitosis (>2 hours in 

mitosis; n>45 cells) when expressing Tag only or GFP-SPC24. Error bars indicate SD.

Funk et al. Page 46

Cell. Author manuscript; available in PMC 2023 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Funk et al. Page 47

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-gamma H2A.X (phospho S139) Abcam Cat#ab81299

Anti-alpha-tubulin-FITC antibody Sigma Cat#F2168

Goat anti-rabbit antibody disulfide-linked to
Alexa Fluor 594 (custom conjugation)

Invitrogen;
Thermo Fisher Scientific

Cat#21212;
Cat#A10270

Rabbit anti-GFP Cheeseman Lab N/A

Mouse anti-gamma H2A.X (phospho S139) Millipore Cat#05636

Rabbit anti c-Myc Abcam Cat#ab32072

Rabbit anti-“Bonsai”/NDC80 Schmidt et al., 201293 N/A

HRP Anti-GAPDH antibody Abcam Cat#Ab185059

Mouse Anti-alpha-tubulin Sigma Cat#T6199

Rabbit anti-centrin Backer et al., 201294 N/A

Mouse anti-CENPA Invitrogen Cat#MA1–20832

Chemicals, peptides, and recombinant proteins

Alexa Fluor Plus 750 Phalloidin Thermo Fisher Scientific Cat#A30105

Critical commercial assays

RevertAid H minus Reverse Transcriptase Thermo Fisher Scientific Cat#EP0452

Ribolock RNase inhibitor Thermo Fisher Scientific Cat#EO0384

RNase H Enzymatics Cat#Y9220L

TaqIT DNA polymerase Enzymatics Cat#P7620L

Ampligase Lucigen Cat#A3210K

Phi29 DNA polymerase Thermo Fisher Scientific Cat#EP0091

MiSeq Reagent Nano Kit v2 with PR2 buffer Illumina Cat#MS-103–1003

MitoTracker Orange CMTMRos Invitrogen Cat#M7510

Deposited data

Processed images and data This paper https://vesuvius.wi.mit.edu

Processed single-cell phenotype measurements This paper Harvard Dataverse https://doi.org/
10.7910/DVN/VYKTI5

Raw image data This paper BioImage Archive S-BIAD394

RNA-sequencing data This paper Gene Expression Omnibus: GSE199901

Experimental Models: Cell lines

All cell lines used in this study, see Table S5 This study N/A

Oligonucleotides

All oligonucleotides used in this study, see Table S1 This study N/A

Recombinant DNA

CROPseq-puro-v2 Feldman et al., 20198 #127458 (Addgene)

sgOPTI Fulco et al., 201688 #85681(Addgene)

pBABE H2B-mCherry (pKC96) This paper Undergoing submission (Addgene)
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REAGENT or RESOURCE SOURCE IDENTIFIER

pBABE GFP-SPC24 (pKG422) Gascoigne et al., 201187 Undergoing submission (Addgene)

pBABE EGFP-LIN52 (pKC518) This paper Undergoing submission (Addgene)

pBABE EGFP-ZNF335 (pKC530) This paper Undergoing submission (Addgene)

Software and algorithms

General repository used for processing optical pooled screening 
data

Feldman et al., 202215 https://github.com/feldman4/
OpticalPooledScreens
(https://doi.org/10.5281/zenodo.5002684)

Application-specific tools for the screens presented in this 
paper

This paper https://github.com/lukebfunk/
OpticalPooledScreens
(https://doi.org/10.5281/zenodo.7155628)
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