
EDITORIAL
Unlocking digitally enabled research in oncology: the time is now
Extraordinary advances in cancer screening, therapeutics,
and supportive care have contributed to substantial prog-
ress in survival rates among patients with cancer over the
last 50 years.1-4 Clinical cancer research trials represent the
main avenue to foster this progress, allowing discoveries to
be translated into patient benefit.

In a recent analysis of pivotal oncology trials from 2015
to 2017, the estimated median trial cost was $31.7 million.5

Costs per patient for oncology phase III trials have increased
from an average of $3000 to $5000 in the early 1990s to up
to $125 000 in 2013.6 While these figures include both
operational and regulatory costs, Sertkaya et al., using
aggregate clinical trial budget data provided by Medidata
Solutions, found that administrative staff costs accounted
for w11%-20% and site monitoring accounted for 9%-14%
of overall study costs across phases I through III of clinical
trials ranging from 2004 to 2012.7 Global phase III trials are
often slow moving (e.g. a very successful large phase III trial
operation involving 8381 patients took almost 4 years from
trial submission to last patient inclusion)8 and time
consuming (studies usually require >200 h of work per
patient, with a third of time devoted to non-clinical tasks)9

which creates substantial burden for clinical sites and
practitioners, and concentrates clinical trials in a selected
number of equipped cancer centers. Additionally, <10% of
patients with cancer enroll in clinical trials and current
clinical trial workflows are non-inclusive; restrict participant
access; and often exclude elderly patients, patients living in
rural areas, and patients belonging to an ethnic minority or
lower socioeconomic group.10,11 For example, although
these demographic groups represent almost one-third of
the cancer patient population in the United States, only 4%-
6% of trial participants are black, and 3%-6% are Hispanic.12

The widespread use of digital technology may offer clin-
ical cancer research an opportunity to innovate and move
away from an often exceedingly expensive, slow-moving,
burdensome, and unequal research apparatus.13

Cardiology has pioneered the use of digital technology to
facilitate clinical trials. For example, a 2019 study led by the
Stanford Division of Cardiovascular Medicine was conduct-
ed to assess the use of Apple smartwatches to identify atrial
fibrillation using a fully decentralized and digitized
pathway.14 For instance, researchers used an app to obtain
consent and to educate and guide participants throughout
the study, patient monitoring occurred through the use of
the Apple Watch sensor, and patients were prompted to
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initiate a telemedicine visit directly from the app upon the
receipt of an irregular pulse notification.14 The study was
able to recruit 419 297 patients within 8 months from all 50
US states and found that among patients who received an
irregular pulse notification, 34% had atrial fibrillation and
84% had electrocardiogram (ECG) patch readings that were
concordant with atrial fibrillation.14

BENEFITS OF DIGITIZATION OF CLINICAL CANCER TRIALS

The potential benefits of comprehensive or partial digiti-
zation of clinical cancer trials can be wide-reaching and
consequential (Figure 1). Practically, digital technology can
simplify trial procedures, expedite and enhance data
collection, promote a global and more equal reach, and
foster patient empowerment and participation (Figure 2).
Simplifying clinical trial procedures

Complete or partial decentralization of the screening,
recruitment, consent, and patient follow-up processes using
digital tools is an effective way of reducing the burden,
expense, and delay associated with clinical trial procedures.

Screening and recruitment. Artificial intelligence (AI)-
developed software can be used to determine patient
eligibility using natural language processing (NLP) and ma-
chine learning techniques with relative success and accu-
racy when compared to traditional pre-screening methods.
A software can be trained to recognize eligibility re-
quirements for systemic therapy trials and also match
complex genomic characteristics for targeted therapies.15-17

For example, the use of such software in a community-
based breast cancer care unit demonstrated agreement
with manually generated eligibility assessments (>80%) and
a reduction in the time burden of eligibility assessments
from 110 min using manual review to 24 min using system-
assisted eligibility determinations.15 Recently Klein et al.
reported the use of the MatchMiner open source platform
to computationally match genomically profiled cancer pa-
tients to precision medicine clinical trials in an academic
large-volume center. In this study, patients identified by
MatchMiner consented to clinical trials 55 days earlier than
those included through traditional methods, demonstrating
the ability of these tools to simplify inclusion workflows.16

AI software can also be designed to refine selection
criteria for inclusion in clinical trials. Gustave Roussy in
France, for example, piloted a study that used NLP directed
to electronic medical records (EMRs) to automatically
identify patients who were fit for successful screening and
dose-limiting toxicity period completion (SSD) in phase I-II
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Standard research

Requires in-person visits for consent, data
collection, intervention, and follow-up.

Fragmented longitudinal PGHD collection
(PROMs at baseline, M3, M6, M12).

Mostly includes patients who live close to the primary
research site, usually urban academic centers.

Excludes many patients from low socioeconomic
backgrounds, elderly, and ethnic minorities due
to the burden of time, travel, and procedures.

Has limited patient involvement (patient participation is
limited to the completion of clinical trial requirements

such as consent and treatments).

Requires researchers to begin from scratch
with each study (recruitment and eligibility
screening must be coordinated for each

individual study).

Time Representation Reach Cost Time Representation Reach Cost

Incorporates home-based retrieval of consent,
data collection (retrieve trial endpoints such as
tumor response and AE monitoring), follow-up,

telehealth visits, and interventions when applicable.

Continuous longitudinal PGHD collection
(multimodal including ePROs, ePREMs,

and biosensors).

Telehealth enables more centers to conduct
trials and they can more easily include patients
who live in rural or remote areas relative to the

research site.

Can increase trial access to patients from lower
socioeconomic backgrounds by reducing

constraints and by providing digital navigation and
connection to digital hubs.

Able to empower patients through the entire research
lifecycle (virtual communities, encouraging feedback,

education and self-management, actively sharing
data through the personal cloud).

Patient data can be stored in decentralized trial
host sites to facilitate recruitment and pre-screening

for trial eligibility of interested patients
using eCRF captured from previous trials.

Retrieval of trial endpoints

Figure 1. Advantages of digitally enabled cancer research.
AE, adverse event; eCRF, electronic case report form; ePREMs, electronic patient-reported experience measures; ePROs, electronic patient-reported outcomes; PGHD,
patient-generated health data; PROMs, patient-reported outcome measures.
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studies. In a retrospective analysis, the model used in this
study could have reduced screen failure rates from 39.8% to
12.8% selecting patients who would benefit most from
clinical trial participation.18 Overall, clinical trial matching
algorithms are a valuable tool for facilitating and speeding
up recruitment as well as eventually reducing the admin-
istrative burden of clinical trials.15,16

Conduct of the trial (consent and follow-up). Investigators
can facilitate the digital collection of remote or on-site
consent for participation by deploying a decentralized
clinical trial platform or electronic consent (e-consent)-
specific technology.19,20 Studies have observed that
e-consent platforms have high levels of completion and low
rates of error compared to standard methods of consent (an
error rate of 0.32% for e-consent compared to 7% for
standard methods).21 Completion of e-consent can be
encouraged by text and email reminders, according to
patient preference, and patient training provided by re-
searchers to help navigate the research interface.22,23 These
same platforms and targeted technologies can also be used
to enable telehealth follow-up visits and the administration
of patient-reported outcome measures.24,25 Clinical visits
are adaptable to a digital format by respecting telemedicine
standards that are now available.26
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Oncology research protocols often involve advanced im-
aging, blood tests, biopsies, infusion therapies, and close
monitoring of treatment-related side-effects. Oral, subcu-
taneous, or intramuscular therapies with established safety
profiles, however, can be transported to patient’s homes for
self-administration and are particularly well suited for
decentralized clinical trials.27 Technology may be leveraged
for mapping and activating clinical teams close to the pa-
tient’s residency for local blood test collection and infusion
therapies.28 In addition, home-based infusions have been
successfully implemented in proof-of-concept studies for
selected indications.29 Remote patient monitoring with
electronic patient-reported outcomes (ePROs) can be acti-
vated to allow close monitoring and management of acute
adverse events of both infusion and oral therapies while the
patient is at home.30 Imaging exams may be carried out in
local centers and digitally transferred to central teams.31

Furthermore, several supportive care and care coordina-
tion interventions have proven to be successful when
delivered remotely.27,32,33 These technological opportu-
nities create opportunities for remote participation in clin-
ical trials. This is an important step to expand the reach of
clinical trials because the unavailability of a suitable
research trial at a patient’s primary care center is a barrier
to trial enrollment 55.6% of the time.11
Volume 8 - Issue 5 - 2023
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Figure 2. A decentralized clinical research pathway.
EMR, electronic medical record; PGHD, patient-generated health data; PHR, personal health record.
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Clinical research trials have many non-clinical costs associ-
ated with the execution of the clinical trial including the cost of
labor required to sufficiently screen and recruit patients, solicit
consent, record, and centralize clinical trial data.6 Paper docu-
ments often need to be manually transcribed to digital files
requiring more hours of work from research personnel and
thus more budget resources. Using an online digital research
platform to execute a study or using digital applications to send
clinical trial invitations and retrieve and store patient consent
reduces the administrative burden for researchers, ultimately
reducing the time and expense required to complete a study.
There will be less time devoted to organizing and executing in-
person tasks when the patient has the autonomy to complete
research tasks digitally. Less bureaucratic work may also
encourage amorediversified groupof health care professionals
to pursue research activities, will allow proper time for dis-
cussions during clinical encounters of the pros and cons of a
clinical trial, andmay increase patient enrollment in research as
literature demonstrates that physicianepatient rapport and
effective communication play an important role in patient
decision making.34-37

Expediting and enhancing data collection

Digital tools can also play a key role in the collection of data,
both patient-generated health data (PGHD) and clinical data
during the study conduct.

Patient-generated data. Patient-reported outcomes (PROs)
are crucial measures for researchers when evaluating a
clinical trial outcome.38 In fact, the American Society of
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Clinical Oncology (ASCO) and the European Society for
Medical Oncology (ESMO) have proposed standardized
measures to evaluate clinical trial results (the Net Health
Benefit and Magnitude of Clinical Benefit Scale, respec-
tively) which include PRO data on quality of life (QoL) and
toxicity.39 Many PRO questionnaires have been converted
into a digital format that can be electronically administered
(ePROs). Digital tools can improve the pragmatic inclusion
of ePROs in clinical trials. A 2020 meta-analysis and sys-
tematic literature review determined some advantages of
using ePROs versus paper questionnaires to be greater pa-
tient preference and acceptability, better response rates,
higher data quality, and lower overall costs.40 The PROS-
PECT trial provides a recent example of the ability of ePROs
to collect valuable PGHD. This study leveraged the use of
ePROs at baseline, during neoadjuvant treatment, and at 12
months after surgery to understand the effect of neo-
adjuvant chemotherapy with fluorouracil and oxaliplatin
(FOLFOX) versus neoadjuvant chemoradiation with fluoro-
uracil (5FUCRT) on QoL to better inform treatment de-
cisions. Out of the 1128 patients who initiated treatment,
940 contributed to the NCI Patient Reported Outcomes
version of the Common Terminology Criteria for Adverse
Events (PRO-CTCAE) data and researchers were able to
evaluate trends in QoL trajectories during and after treat-
ment. This collection of PGHD enriched the clinical trial
results beyond clinical endpoints providing researchers with
enough data to create distinctive PRO profiles for the two
treatment pathways, building the foundations for better
treatment selection and shared decision making.41
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In addition to the use of ePROs, technology may allow
researchers to capture other types of PGHD that are not
fully integrated into oncology research. There is potential
for the collection of PGHD through the use of biometric
facilities incorporated in technology used by patients in
their everyday life such as smartphones, smartwatches, and
smartscales.42 Data that can be retrieved by such devices
include mobility data (step counts, GPS location, distance
and elevation walked, but also indirect assessment of
strength, gait, and balance), vital signs (heart rate, breathing
frequency, SpO2, temperature), ECG, sleep and emotional
distress patterns (mainly retrieved by heart rate variation),
weight and body composition, UV exposition, and alcohol
and tobacco consumption.43 In addition, retrieval and link-
age with data of personal behavioral mobile apps used by
the patient may also allow for more granular data collection
of daily life health behaviors such as dietary patterns,
physical exercise, and meditation practices for example.44

All these data may help researchers to objectively assess
performance status, symptoms, and treatment-related tox-
icities, but also to investigate how daily life behaviors
interfere with cancer and its treatment and vice versa. More
innovative biosensors can also be leveraged for noninvasive
continuous assessment of specific biomarkers of interest in
oncology in human fluids such as the interstitial fluid similar
to that used for glucose monitoring in diabetes. Other ap-
plications may include home-based blood drop assessment,
smart toilets, houses, clothing, and pill dispensers.43

Technology can also facilitate equitable participation in
formative qualitative research in oncology which is partic-
ularly relevant for intervention mapping45 and imple-
mentation science46 such as exploring the multi-faceted
contexts where implementation takes place, the processes
and steps involved in implementation, as well as the
effectiveness of implementation strategies.47 Video con-
ference may be used for virtual discussion rooms which
hold a strong resemblance to traditional focus groups in
their synchronous nature but also take advantage of text-
based nonverbal communication and discussions.47

Collection of clinical data. Digital collection of research data
is not limited to PGHD, but also encompasses clinical data
from EMRs, adverse event (AE) monitoring, laboratory data,
and imaging. Clinical research trials in oncology are often
characterized by multi-site participation and manual data
collection. For clinical and treatment data, automated data
collection could substantially decrease the operational
burden of clinical trials; however, since centers operate
using different methods of data capture and storage with
distinct structures, data transmission between sites can be
difficult due to lack of interoperability, or the inability of
two systems to connect and coordinate in an efficient and
effective manner.48 In response, the FAIR principles, out-
lined to safeguard data management and stewardship,
advocate for medical data to be Findable, Accessible,
Interoperable, and Re-Usable.49

To ensure FAIR principles, interoperability standards were
created such as the Health Level 7 (HL7) Fast Healthcare
4

Interoperability Resources (FHIR) and the Observational
Medical Outcomes Partnership Common Data Model
(OMOP CDM). Standards now also exist to help select a
minimum set of variables to enable data collection ac-
cording to HL7 FHIR standards at the provider level. Ex-
amples include the Minimal Common Oncology Data
Elements (mCODE), launched by ASCO and its partners,
including a set of 90 data elements ranging from patient,
disease, laboratory, genomics, treatment, to outcomes
data50 and the OSIRIS set of data piloted by UNICANCER
network including 67 clinical and 65 omics items.51

Although initiatives advocate for upfront EMR data
structuration52,53 (and ultimately standardization within
interoperable systems which could facilitate automated
data collection), the current reality is that clinical data are
often recorded in an unstructured format and require
conversion into a structured and centralized format. A
feasible digital alternative to the standard manual struc-
turation of free-text EMRs by research personnel (as
demonstrated by the implementation of different structur-
ation systems at many centers) is the use of NLP systems.54

Hong et al. developed an advanced FHIR-based clinical
data normalization pipeline known as NLP2FHIR. NLP2FHIR’s
multiple functionalities include: a module for NLP with an
FHIR-based type system, an integrating structured data
module, and a content normalization module.55 The re-
searchers concluded that the NLP2FHIR model was
acceptable for modeling EMR data and integrating struc-
tured elements into the model using FHIR parameters.55

The success of this model is significant because it demon-
strates the ability to overcome interoperability restraints
through the use of a normalizing model and thus greatly
expands the potential use of clinical data in clinical research
trials to collect large-scale data analytics.

While the availability of NLP technology and interopera-
bility standards may vary by country, it is evident that the
structuration of EMRs may unlock large-scale data collec-
tion, sharing, and analysis within the clinical research
paradigm.56
Promoting a global and equal reach

Adesoye et al., in an analysis of clinical trials in the United
States, highlighted that 76% of participants in clinical trials
were white, 11% were Asian, 7% were black, and, when
highlighted by ethnic distribution, 13% of participants were
Hispanic or Latino.57 In terms of health care, lack of diversity
compounds the problem of poor accrual rates, confirms
mistrust in the research and medical enterprise among
certain populations, and fortifies health disparities in gen-
eral, particularly for patients suffering from rare diseases
where participating in a clinical trial may be the only
treatment option.35,57 This unequal representation of par-
ticipants harms the development of new research by pre-
venting researchers from unveiling biological processes that
are truly generalizable as the research populations do not
reflect the general population.
Volume 8 - Issue 5 - 2023
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Participants may be excluded, or exclude themselves,
from a trial for several reasons. One factor affecting many
patient participants is geography and the associated con-
straints. Traditional trials are often based at urban academic
centers and many potential participants are unwilling to
travel for many hours for a traditional study and may
withdraw if they experience long waits at trial sites.58 Po-
tential participants may be reluctant to travel because of
time and expense required to travel to the research site,
reliance on caregivers, and also the obstacle of having to
organize childcare.59 Decentralized research can address
this geographical challenge through the implementation of
aforementioned digital tools.

Patients may also be excluded because of implicit bias
from the provider who may judge the patient not well
suited for trial participation based on unfounded judgments
(too old, uninterested, too vulnerable, not educated
enough). Online training programs have been proposed to
help research teams identify and address their own implicit
biases.60 Matching algorithms, including those mentioned
earlier, can also minimize the impact of human bias in the
search for eligible clinical trial participants.61

The unequal access to digital technology, known as the
digital divide,62 represents an outstanding challenge for the
effective implementation of digitally enabled cancer
research. Even accounting for this challenge, a trial enrolling
7904 participants found that research sites implementing
video-based consent recruited more quickly and enrolled
more patients who were nonwhite, older than 75 years, and
who had lower levels of education when compared with
standard methods of obtaining consent.63 In addition, a
pragmatic clinical trial testing a remote monitoring strategy
with ePROs across 52 US centers successfully enrolled 143
patients who had never used a computer, tablet, or phone.30

Paradoxically, these patients have been flagged as the ones
most impacted by digitally enabled continuous symptom
management interventions, demonstrating the practical, yet
counterintuitive, value of decentralized research trials for
patients in older and minority demographic groups.64

Strategies that are responsive to individual digital health
literacy are highly encouraged such as using adaptive digital
interfaces or providing digital hubs where patients with
limited technological exposure and skills can receive
personalized support.65-67 Care centers must implement
digital literacy programs for both patients and health care
providers to ensure no one is left behind during digital
research transformation.68
Fostering patient empowerment and participation

In traditional clinical trials, participant retention is often
facilitated through close contact with study coordinators.
Digital technology is uniquely situated to encourage patient
empowerment by helping patients to self-advocate and act
in the course of their care. In the context of clinical trials,
patient empowerment can generate patient-centered
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hypotheses to be tested and ensure patient-centered clin-
ical trial procedures, but also increase participant engage-
ment across research conduct.

Several reproducible empowerment interventions can be
delivered entirely through digital platforms and do not
require the same time, resources, and cost burden for
providers to implement.69-71 These may include specific
internet-delivered interventions such as supportive care
strategies (pre/post-treatment-specific education targeting
self-management advice for local and systemic therapies,
cognitive behavioral therapies, adaptive physical activity,
rehabilitation, etc.). These are examples of patient
empowerment tools that can be the subject of the clinical
research trial or used to empower patients during clinical
trials investigating pharmacological agents.

In addition, technology may allow for patient and com-
munity input and engagement during early phases of clinical
trial design. This may be achieved through digital crowd-
sourcing processes or digital community advisory boards
that can inform specific research questions and help to co-
design health programs and clinical trial materials adapted
to patient’s needs.47

Engagement during the clinical trial conduct phase can be
maximized by prompting real-time feedback upon comple-
tion of clinical trial procedures and by updating patients of
recruitment status, preliminary, and final trial results.72

Furthermore, technology may also be a good tool for
providing formal research training to patients.73

Personal health records (PHRs), or a centralized cloud-
based collection of patient data, offer patients an unprec-
edented opportunity to control and share their health data
with researchers. Including both clinical data (EHRs, AE
reporting, laboratory results, imaging diagnostics) and
patient-generated data (ePROs, biosensor data, user data
from health-related apps such as meditation, exercise, or
even GPS-based air quality metrics), PHRs can offer valuable
and multi-faceted insights to researchers that are impos-
sible to achieve using only clinical data or PGHD alone.
OTHER MAJOR CHALLENGES TO DEPLOY FULLY DIGITALLY
ENABLED AND DECENTRALIZED RESEARCH

Effectively implementing fully decentralized clinical trials
comes with several other challenges that have not yet been
addressed such as74: (i) identifier protocols, cybersecurity,
and privacy concerns, including managing and authenticat-
ing identities of participants to prevent fake entries,75 and
the need for strong encryption processes and access con-
trols for data transmission and storage. According to this
challenge, cybersecurity frameworks are being produced to
provide the appropriate guidance.76 (ii) Data storage:
multimodal data will require capacity of thousands of
petabytes from internet service providers with associated
energy expenses. (iii) Data quality: there is a need to ensure
reliable digitally enabled data collection across various
geographical locations and environments with different
5
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levels of technology usage and access.74 (iv) Regulatory and
ethics concerns: regulatory bodies may be reluctant to
accept and adopt a decentralized clinical trial model.74

ACCELERATING DIGITALLY ENABLED RESEARCH IN
ONCOLOGY

The initial setup and ongoing maintenance of a digitally
enabled research decentralized infrastructure can be
extremely costly and complex, calling for the need of
organized initiatives to create federated infrastructures.

There are several commercial and academic organizations
that have launched digital initiatives that can host and
facilitate decentralized clinical trials including Medidata,
Evidation, and Eureka in the United States and Climedo in
Germany. We launched the WeSHARE program (https://
weshare.unicancer.com/), in France, in 2021. WeSHARE is a
consortium funded by the national government coordinated
by UNICANCER that aims to accelerate research digitalization
in oncology and provide all tools necessary to address
contemporary research challenges in oncology specifically
QoL and social issues. WeSHARE uses pilot studies to
continuously evolve. It currently offers researchers and pa-
tients a digital toolbox for simplifying clinical trial proced-
ures, collecting PGHD, and improving the research
experience including specific guidance on fostering inclusion
and diversity. Upcoming features include the automated
exchange of data with EMR, partnership with digital literacy
initiatives, and the empowerment of a virtual community of
citizens and researchers allowing the co-creation of research
interventions. Data generated through the WeSHARE plat-
form follow FAIR principles by storing data for subsequent
use in new research proposals and thereby expanding the
research potential of existing datasets. In the future,
WeSHARE hopes to launch interoperable exchange of data to
a next level, by directly exchanging data through our plat-
form between all stakeholders including the patient, physi-
cian, health care organizations, researchers, and industry
partners to achieve a proactive, personalized, and partici-
patory oncology care model.
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