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Highlights Impact and Implications

� ILC2s played critical roles in IL-33-mediated hep-

atoprotection in IRI mice.

� IL-13 induction of anti-inflammatory Mu and IL-5
elevation of eosinophils mediate the protective
effect of ILC2s in vivo.

� Human ILC2s protected against hepatic IRI in NSG
mice, supporting their therapeutic potential in
humans.
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We report that type 2 innate lymphoid cells (ILC2s)
are important regulators in a mouse model of liver
ischaemia/reperfusion injury (IRI). Through manipu-
lation of macrophage and eosinophil phenotypes,
ILC2s mitigate liver inflammation and injury during
liver IRI. We propose that ILC2s have the potential to
serve as a therapeutic tool for protecting against acute
liver injury and lay the foundation for translation of
ILC2 therapy to human liver disease.
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Background and Aims: Although type 2 innate lymphoid cells (ILC2s) were originally found to be liver-resident lymphocytes,
the role and importance of ILC2 in liver injury remains poorly understood. In the current study, we sought to determine
whether ILC2 is an important regulator of hepatic ischaemia/reperfusion injury (IRI).
Methods: ILC2-deficient mice (ICOS-T or NSG) and genetically modified ILC2s were used to investigate the role of ILC2s in
murine hepatic IRI. Interactions between ILC2s and eosinophils or macrophages were studied in coculture. The role of human
ILC2s was assessed in an immunocompromised mouse model of hepatic IRI.
Results: Administration of IL-33 prevented hepatic IRI in association with reduction of neutrophil infiltration and inflam-
matory mediators in the liver. IL-33-treated mice had elevated numbers of ILC2s, eosinophils, and regulatory T cells. Eosin-
ophils, but not regulatory T cells, were required for IL-33-mediated hepatoprotection in IRI mice. Depletion of ILC2s
substantially abolished the protective effect of IL-33 in hepatic IRI, indicating that ILC2s play critical roles in IL-33-mediated
liver protection. Adoptive transfer of ex vivo-expanded ILC2s improved liver function and attenuated histologic damage in
mice subjected to IRI. Mechanistic studies combining genetic and adoptive transfer approaches identified a protective role of
ILC2s through promoting IL-13-dependent induction of anti-inflammatory macrophages and IL-5-dependent elevation of
eosinophils in IRI. Furthermore, in vivo expansion of human ILC2s by IL-33 or transfer of ex vivo-expanded human ILC2s
ameliorated hepatic IRI in an immunocompromised mouse model of hepatic IRI.
Conclusions: This study provides insight into the mechanisms of ILC2-mediated liver protection that could serve as thera-
peutic targets to treat acute liver injury.
Impact and Implications: We report that type 2 innate lymphoid cells (ILC2s) are important regulators in a mouse model of
liver ischaemia/reperfusion injury (IRI). Through manipulation of macrophage and eosinophil phenotypes, ILC2s mitigate liver
inflammation and injury during liver IRI. We propose that ILC2s have the potential to serve as a therapeutic tool for protecting
against acute liver injury and lay the foundation for translation of ILC2 therapy to human liver disease.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Hepatic ischaemia/reperfusion injury (IRI) occurs in many clin-
ical settings, such as liver surgery, trauma, and liver trans-
plantation, and is often triggered by transient exposure of the
liver to hypoxia followed by reperfusion with oxygenated blood.1
Keywords: Innate lymphoid cells; Hepatic ischaemia/reperfusion injury; IL-33; Eo-
sinophils; Macrophages.
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IRI can cause acute liver tissue damage resulting in significantly
increased patient mortality and morbidity. In hepatic IRI, innate
immune cells, such as neutrophils, macrophages, and natural
killer (NK) cells, infiltrate the liver following reperfusion and
produce inflammatory mediators, leading to hepatocyte death
and necrosis, and ultimately organ failure.2,3

In recent years, a new group of innate immune cells, called
innate lymphoid cells (ILCs) have gained much attention in in-
flammatory diseases.4,5 ILCs can be classified into three sub-
groups by their lineage-defining transcription factors and
effector cytokines, termed ILC1, ILC2, and ILC3, which are
distributed broadly in non-barrier organs, including the liver,
kidney, and nervous system.6 Hepatic ILCs exert important
functions in balancing inflammatory and reparative responses
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during tissue injury.7,8 In chronic hepatitis B, liver ILC1s have a
pro-inflammatory function, whereas in acute liver injury
induced by carbon tetrachloride, they are involved in the repair
process and promote survival of damaged hepatocytes through
ILC1-derived interferon-c (IFN-c).9,10 A larger number of ILC3s
are present in the liver and play a profibrotic role in the carbon
tetrachloride-induced liver fibrosis model.11 As ILC2 is the most
abundant ILC subset in human and mouse liver tissue, its role
under disease conditions has attracted increasing attention.
Interestingly, ILC2s in the liver exhibit opposing effects in
different hepatic injuries. One study showed that ILC2s protect
against liver injury at the immune contraction stage of lym-
phocytic choriomeningitis virus infection-induced viral hepati-
tis.12 By contrast, liver-resident ILC2s aggravated inflammation
and tissue damage in concanavalin A (ConA)-induced hepatitis.13

The underlying mechanism, however, is not clear. Meanwhile, IL-
33, an ‘alarmin’ protein released from damaged hepatic paren-
chymal cells, can activate ILC2s in response to inflammation or
damage.14–16 Previous studies have shown that IL-33 was
involved in a variety of acute liver diseases, but whether IL-33
promotes or inhibits disease progression in liver injury remains
controversial. As a pathogenic factor, IL-33 released by necrotic
hepatocytes promotes liver injury by neutrophil infiltration in
acetaminophen-induced liver injury.16 By contrast, IL-33 has a
protective role in hepatic IRI and Con A-induced acute hepatitis
by inducing anti-apoptotic effects on hepatocytes and increasing
liver regulatory T cells (Tregs), respectively.14,15 Given these
contradictory results, further study is needed to better under-
stand the importance of IL-33/ILC2-mediated immune responses
in liver injury and to elucidate the mechanisms for these
discrepancies.

In the current study, we uncovered the critical role of the IL-
33–ILC2 pathway in protection against hepatic IRI. We revealed
that ILC2s exert hepatoprotection against IRI by promoting IL-13-
dependent induction of anti-inflammatory macrophages and IL-
5-dependent elevation of eosinophils. Importantly, we demon-
strated that ex vivo-expanded human ILC2s attenuated hepatic
IRI in NSG mice. Therefore, manipulating IL-33–ILC2 responses
may be a novel therapeutic strategy in the prevention and
treatment of acute liver injury.
Materials and methods
Mice
BALB/c, C57BL/6 (CD45.2+), congenic C57BL/6 (CD45.1+), and
NOD-scid IL2rcnull (NSG) mice were purchased from the
Australian BioResources (Sydney, Australia). ICOS-T (Icosdtr/+

Cd4cre/+) mice and depletion of regulatory T cells (DEREG)
(C57BL/6-Tg23.2Spar/Mmjax) mice were bred at Westmead
Hospital Animal House and Australian BioResources (Sydney,
Australia). For all studies, adult (8–12 weeks of age) male mice
were used in accordance with the animal care and use protocol
approved by the Animal Ethics Committee of Western Sydney
Local Health District.

Hepatic IRI murine model and IL-33 administration
Partial hepatic ischaemia was induced as previously described.17

In brief, fasted mice were anaesthetised with a ketamine/xyla-
zine mixture. After a midline laparotomy, mice were injected
with heparin, and an atraumatic clip (Roboz, Gaithersburg, MD,
USA) was placed across the portal vein and hepatic artery to
interrupt blood supply to the left lateral/median lobes (70%) of
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the liver. The mice were placed on a heating pad to maintain
body temperature at 37 �C and kept well hydrated with warm
saline. After 60 min of partial hepatic ischaemia, the clip was
removed to initiate reperfusion. Sham-operated mice underwent
the same surgical procedure without vascular occlusion. Mice
were euthanised at indicated time points after reperfusion to
collect blood and tissues for further analysis.

For IL-33 treatment, C57BL/6 (male, 8–12 weeks of age) mice
were administered 0.4-lg mouse recombinant IL-33 (BioLegend,
San Diego, CA, USA) i.p. daily for 5 consecutive days before IRI
surgery. The dose and duration were selected according to pre-
vious published studies.18–20 Control animals received PBS only.
To deplete Tregs or ILC2, DEREG or ICOS-T mice were injected i.p.
with diphtheria toxin (DT; 30 mg/kg, Sigma Aldrich, Castle Hill,
NSW, Australia) at Days -5, -3, and -1 before ischaemia. Deple-
tion of Tregs and ILC2s was verified using flow cytometry. For
eosinophil depletion, mice were injected i.p. with anti-C–C motif
chemokine receptor 3 (CCR3) antibody (350 lg/mouse, clone
6S2-19-4) or control IgG three times before ischaemia.21 Mice
were humanely culled at the indicated time points. Blood and
tissues were harvested for analysis. Serum alanine aminotrans-
ferase (ALT) levels were measured using an ALT kit (Thermo
Fisher, North Ryde, NSW, Australia) according to the manufac-
turer’s instructions.

Murine ILC2 cell expansion and adoptive transfer to IRI mice
ILC2s were isolated from the liver of C57BL/6 or BALB/c mice
treated with IL-33 daily for 5 consecutive days. ILC2s were
cultured in Royal Park Memorial Institute (RPMI) 1640 medium,
supplemented with 10% FBS, penicillin (100 U/ml), and strepto-
mycin (100 lg/ml), plus IL-2 (20 ng/ml), IL-7 (20 ng/ml), and IL-
33 (50 ng/ml) for 14 days. Cell-free supernatants were assessed
for IL-5 and IL-13 cytokine production by ELISA.

For ILC2 treatment, 5 × 106 ILC2s were transferred into C57BL/
6 mice by a single tail-vein injection 1 day before ischaemia.
Mice received recombinant murine IL-13 (1 lg; BioLegend) via
the lateral tail vein 1 day before ischaemia. M2 macrophage
depletion was induced by administration of GW2580 (BioVision,
Waltham, MA, USA) once daily at a dose of 160 mg/kg by oral
gavage for 2 consecutive days before ischaemia. For eosinophil
depletion, mice were injected i.p. anti-CCR3 antibody (350 lg/
mouse, clone 6S2-19-4) or control IgG for 2 consecutive days
before ischaemia. In parallel, 5-(and 6)-carboxyfluorescein diac-
etate succinimidyl ester (CFSE)-labelled ILC2s (5 × 106) were
transfused into C57BL/6 mice 1 day before sham or IRI surgery.
All mice were euthanised at Day 1 after IRI surgery. The distri-
bution of CFSE-labelled ILC2s was analysed in liver sections by
fluorescence microscopy. The number of transfused ILC2s was
quantitated in 8–10 nonoverlapping high-power fields. For
in vivo expansion of ILC2s, NSG mice were injected with 0.5 × 106

ILC2s isolated from BALB/c mice at Day -5 before ischaemia and
were administered mouse recombinant IL-33 (0.4 lg/mouse) i.p.
daily for 5 consecutive days. Mice were humanely culled at the
indicated time point.

Human ILC2 cell expansion and adoptive transfer to NSG mice
Human ILC2s isolated from donor peripheral blood mononuclear
cells were cultured in RPMI 1640 medium containing 100 U/ml
penicillin–streptomycin, supplemented with 10% human AB
serum, plus IL-2 (20 ng/ml), IL-7 (20 ng/ml), and IL-33 (50 ng/ml)
for 14 days. Cell-free supernatants were assessed for IL-5 and IL-
13 production by ELISA (R&D Systems, Minneapolis, MN, USA).
2vol. 5 j 100837



For ILC2 treatment, 5 × 106 human ILC2s were transferred into
NSG mice by a single tail-vein injection 1 day before hepatic
ischaemia. In parallel, 0.5 × 106 human ILC2s were transfused
into NSG mice 5 days before IRI surgery, and then human re-
combinant IL-33 (0.4 lg/mouse; BioLegend) was administered
i.p. daily for 5 consecutive days. NSG mice were humanely culled
at Day 1 after IRI surgery. Serum ALT levels were measured using
an ALT kit (Thermo Fisher) according to the manufacturer’s
instructions.

Cell suspension preparation
Spleen and liver draining lymph nodes were isolated, minced,
and digested for 30 min at 37 �C in RPMI 1640 medium con-
taining 1 mg/ml collagenase D (Roche, Basel, Switzerland) and
100 lg/ml DNase I (Roche). The digested cell suspension was
then passed through a 70-lm cell strainer. Liver was perfused
with saline before removal and digested with collagenase and
DNase as previously described.22,23 The ischaemic lobes were cut
into small pieces and digested in DMEM containing 1 mg/ml
collagenase IV (Sigma Aldrich), and 100 lg/ml DNase I (Roche)
for 30 min at 37 �C with intermittent agitation. Then, the mixture
was dissociated using a gentle-MACS Dissociator (Miltenyi Bio-
tec, Macquarie Park, NSW, Australia). The digested cell suspen-
sion was then filtered through a 70-lm cell strainer. F4/80+

macrophages were sorted from the liver by FACS. Sorted mac-
rophages were used for real-time PCR analyses to detect
macrophage phenotypes.

Flow cytometry and cell sorting
For FACS analysis of mouse cells, single-cell suspensions were
stained with Fc block/anti-CD16/32 (2.4G2) and antibodies to
CD45.2 (104), ST2 (RMST2-2), CD127 (A7R34), GATA3 (TWAJ),
KLRG1 (2F1), CD90.2 (30-H12), and CD25 (PC61), as well as with
antibodies to T cell, B cell, NK cell, monocyte/macrophage, den-
dritic cell, eosinophil, neutrophil, and erythroid cell lineages
(referred to hereafter as ‘lin’): CD3 (145-2C11), CD5 (53-7.3),
TCRb (H57-597), TCRcd (eBioGL3), CD19 (1D3), B220 (RA3-6B2),
CD49b (DX5), CD11b (M1/70), CD11c (N418), FcεRIa (MAR-1), Gr-
1 (RB6-8C5), and Ter-119. Other antibodies used in this study
include CD4 (GK1.5), Foxp3 (FJK-16s), F4/80 (BM8), and Siglec-F
(1RNM44N), as well as corresponding isotype controls, all pur-
chased from eBioscience (North Ryde, NSW, Australia) or Bio-
Legend. Cells were analysed on an LSRFortessa flow cytometer
(BD Biosciences, Macquarie Park, NSW, AU). For intracellular
cytokine analysis, liver leucocytes were pre-enriched by anti-
CD45 microbeads (Miltenyi Biotec) and were then incubated
with 500 ng/ml of ionomycin and 50 ng/ml of phorbol myristate
acetate at 37 �C for 2 h. Brefeldin A (3 mg/ml) was then added to
the wells and incubated for 3 h. Intracellular staining with an-
tibodies against IL-13 (eBio13A) and IFN-c (XMG1.2) was per-
formed and analysed by flow cytometry. For FACS, single-cell
suspensions were pregated on haematopoietic cells using anti-
CD45.2 antibody; then, lineage markers were used to exclude
immune cells, and DAPI was used to exclude dead cells. Mouse
ILC2 cells (CD45+Lin-CD127+ST2+CD90+) were sorted using a
FACSAria II (BD Biosciences). After sorting, cells were used for
phenotypic and functional assays.

For FACS analysis or sorting of human ILC2s, single-cell
suspensions were stained with antibodies to CD45 (HI30),
CD127 (A019D5), CRTH2 (BM16), CD161 (HP-3G10), KLRG1
(13F12F2), and ST2 (HB12), as well as with antibodies to T cell,
B cell, NK cell, monocyte/macrophage, dendritic cell,
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eosinophil, neutrophil, and erythroid cell lineages (referred to
hereafter as ‘lin’): CD3 (UCHT1), TCRab (IP26), CD19 (HIB19),
CD20 (2H7), CD14 (M5E2), CD16 (3G8), CD11b (ICRF44), CD11c
(BU15), CD123 (6H6), CD56 (HCD56), and FcεRIa (AER-37), all
purchased from BioLegend or BD Biosciences. Human ILC2 cells
(CD45+Lin-CD127+CRTH2+CD161+) were sorted using a FACSAria
II (BD Biosciences). After sorting, cells were used for pheno-
typic and functional assays. The transfused human ILC2s
(CD45+CD127+CRTH2+) in the liver of NSG mice was analysed
on an LSR Fortessa flow cytometer (BD Biosciences).

CRISPR-Cas9 transfection
ILC2s were transfected with clustered regularly interspaced
short palindromic repeats (CRISPR)–CRISPR-associated 9 (Cas9)
plasmid or its control (Santa Cruz, CA, USA) in accordance with
the manufacturer’s instructions. In brief, ILC2s were transfected
with IL-5 (sc-421112), or IL-13 (sc-421086) CRISPR-Cas9 plasmid
or its control (sc-418922) and incubated for 24 h. Media were
replaced 24 h post transfection. Puromycin antibiotic (2 lg/ml)
was added to allow for positive selection of transfected cells. IL-5
or IL-13 was measured in culture supernatant of ILC2 via ELISA.

ILC2 coculture with macrophages or eosinophils
Macrophages (CD45+F4/80+CD11b+) isolated from the liver by
flow cytometry were cultured in RPMI 1640 medium, supple-
mented with 10% FBS, penicillin (100 U/ml), and streptomycin
(100 lg/ml), plus 10 ng/ml macrophage colony-stimulating
factor for 2 days. CRISPR-Cas9 plasmid transfected ILC2s (ILC2-
C or ILC2–IL-13; 4 × 105 cells/well) were cocultured with liver
macrophages (2 × 105 cells/well) for 6 h. Macrophage pheno-
type was examined by quantitative PCR (qPCR). Eosinophils
(CD45+CD11b+Siglec-F+) were freshly isolated from the bone
marrow. CRISPR-Cas9 plasmid-transfected ILC2s (ILC2-C or
ILC2–IL-5; 2 × 105 cells/well) were cocultured with eosinophils
(2 × 105 cells/well) in fresh medium without recombinant
mouse IL-5 for 24 h. IL-13 expression in eosinophils was
examined by flow cytometry. ILC2s (2 × 105 cells/well) were
cultured with IL-5 or eosinophils (2 × 105 cells/well) for 24 h.
The expression of IL-13 in ILC2s was measured by qPCR.

Primary culture of hepatocytes and simulated ischaemia
Mouse hepatocytes were isolated from the liver by in situ
collagenase perfusion through the portal vein.14 In brief, mice
were anaesthetised with inhalation anaesthesia, and livers were
perfused in situ with Liver Perfusion Medium (Life Technologies,
Carlsbad, CA, USA) followed by Liver Digest Medium (Life Tech-
nologies). Then, the liver was minced and strained through a
sterile 100-lm nylon mesh. Hepatocytes were separated by
Percoll gradient centrifugation followed by low-speed centrifu-
gation. Hepatocytes were cultured with complete William’s E
Medium plus maintenance supplement (Thermo Fisher) on a
collagen-coated plate. To simulate IRI in vitro, hepatocytes were
cultured with serum-free DMEM/F12 medium in a modular
incubator chamber (BioSpherix, Parish, NY, USA) gassed with 1%
O2, 5% CO2, and 94% N2. After incubating under hypoxia for
60 min, cells were incubated under normoxic conditions with
95% air and 5% CO2. ILC2 cells were cocultured with ischaemic
hepatocytes for 12 h. The medium and cells were collected for
further analysis. Apoptosis of hepatocytes at 12 h after the
coculture was measured by staining with 7-AAD and Annexin V
following the manufacturer’s protocol (BD Biosciences).
3vol. 5 j 100837
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ELISA of cytokines
IL-4, IL-5, and IL-13 levels in sera and culture supernatants were
assayed using an ELISA kit (eBioscience). ELISA was performed
according to the manufacturer’s protocol.

Quantitative PCR
Total RNAwas isolated from tissue or cells using the RNeasy Mini
Kit (Qiagen, Clayton, VIC, Australia) and then reverse-transcribed
into cDNA using the First Strand cDNA Synthesis Kit (Invitrogen,
Riverstone, NSW, Australia). Real-time PCR was performed on
the CFX96 Touch Real-Time PCR Detection System (Bio-Rad,
South Granville, NSW, Australia) using the SYBR mastermix
(Invitrogen). The data were normalised to housekeeping gene
expression and quantified using the 2-DDCt method. The primer
sequences of the target genes are shown in Table S1.

Histology and immunofluorescence
Liver sections (5 lm) were stained with H&E for necrotic area
examination and Sirius Red for determination of collagen
deposition. All slides were blindly quantified in 10–12 high-
power fields, where the percent necrosis or fibrosis was calcu-
lated from the total area of the tissue section. The data were then
averaged to calculate the necrotic area or fibrosis for each mouse.
To avoid selection bias, the areas to be viewed for morphometric
analysis were anatomically identical for each section and were
positioned before microscopic visualisation.

For immunofluorescence staining of ILC2s, frozen sections
were stained with rabbit anti-mouse CD127 (1140A), polyclonal
goat anti-mouse GATA3 (R&D Systems), and rat anti-mouse CD3e
(17A2) antibodies, and then incubated with the secondary anti-
bodies, namely, AF488 donkey anti-rabbit IgG, AF546 donkey
anti-goat IgG, and AF647 donkey anti-rat IgG. For immunofluo-
rescence staining of haem oxygenase-1 (HO-1)+ macrophages,
rat anti-mouse F4/80 (BM8) and polyclonal rabbit anti-mouse
HO-1 (ADI-SPA-894; Enzo Life Sciences, Farmingdale, NY, USA)
were used as the primary antibodies and AF546 goat anti-rat IgG
and AF488 goat anti-rabbit IgG as the secondary antibodies. For
immunofluorescence staining of eosinophils, rat anti-mouse
Siglec-F (1RNM44N) was used as the primary antibody and
AF546 goat anti-rat IgG as the secondary antibody. Control rat,
rabbit, and goat IgG to primary antibodies were included in
staining. The sections were viewed under an FV1000 microscope
(Olympus, Macquarie Park, NSW, Australia). The numbers of
ILC2s [CD3(-)CD127+GATA3+], M2 macrophages [F4/80+/HO-1+],
and Siglec-F+ eosinophils were quantitated in 8–10 nonoverlap-
ping high-power fields of the liver sections.

Statistics
Statistical tests included unpaired, two-tailed Student’s t test
using Welch’s correction for unequal variances and one-way
ANOVA with Tukey’s multiple comparison test. Statistical ana-
lyses were performed using Prism (version 8, GraphPad, San
Diego, CA, USA). Results are expressed as the mean ± SEM. A p
<0.05 was considered statistically significant.

Results
IL-33 protected against hepatic IRI
We recently demonstrated that short-term IL-33 administration
attenuated renal IRI.18 To determine whether IL-33 could
modulate acute liver injury, we treated C57BL/6 mice with re-
combinant mouse IL-33 (0.4 lg/mouse/day, i.p.) for 5
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consecutive days before hepatic IRI (Fig. 1A). IL-33-treated mice
developed much milder liver injury at 24 h compared with PBS-
treated mice, as demonstrated by marked decrease in serum
levels of ALT and areas of hepatocyte necrosis (Fig. 1B and C).
Hepatic IRI in wild-type (WT) mice led to significantly
increased recruitment of neutrophils compared with sham
mice, whereas Gr-1+/CD11b+ neutrophil accumulation in liver
was significantly reduced in IRI mice treated with IL-33
(Fig. 1D). Sterile inflammation is a hallmark of hepatic IRI.2

Therefore, we examined the inflammatory response in IRI
mice with IL-33 treatment. IL-33 treatment significantly
reduced the production of serum pro-inflammatory cytokines/
chemokines, including tumour necrosis factor-a, IL-1b, IL-6,
monocyte chemoattractant protein-1 (MCP-1), and CXC motif
chemokine ligand 1 (CXCL1), and mRNA levels of these cyto-
kines/chemokines in the livers compared with those of PBS-
treated IRI mice (Fig. 1E and F). In addition, IL-33 treatment
also enhanced serum levels of the Th2-associated cytokines IL-
4, IL-5, and IL-13 and the expression of hepatic IL-4, IL-5, and IL-
13 (Fig. 1G and H). Collectively, these data demonstrate that IL-
33 markedly attenuated liver inflammation and acute liver
injury in IRI mice.

IL-33 induced ILC2s, eosinophils, and Tregs in IRI mice
To better understand the hepatoprotective function of IL-33, we
performed a detailed analysis of the cellular immune response
milieu in IL-33-treated mice with IRI. IL-33-mediated ILC2
expansion has been demonstrated in multiple anatomical sites
where they regulate inflammation and promote repair.18–20 Flow
cytometric analysis of leucocytes isolated from the liver of naïve
C57BL/6 mice revealed a population of Lin-CD127+GATA3+ST2+

ILC2s that comprised around 60% of CD45+Lin-CD127+ ILCs
(Fig. 2A). Lin-CD127+GATA3+ST2+ cells in liver expressed CD90,
KLRG1, and CD25 (Fig. 2B), a phenotype of ILC2 similar to that of
the mouse lung and kidney.22,24 IL-33-treated IRI mice exhibited
a massive increase in GATA3+ST2+ ILC2 frequencies and numbers
(40-fold) as compared with PBS-treated controls (Fig. 2C and D).
However, we did not observe an increase of total ILCs or ILC2s in
the peripheral blood or liver of IRI mice in comparisonwith sham
mice (Fig. S1). Immunofluorescence staining for CD3, CD127, and
GATA-3 clearly identified CD3-GATA-3+CD127+ ILC2s in the
interstitial and intravascular compartments of the livers of sham
and PBS-treated IRI mice and IL-33-treated IRI mice. Quantitative
analyses confirmed a marked expansion of ILC2s in the liver of
the IL-33-treated group (Fig. 2F and G). ILC2 accumulation was
accompanied by a significant increase in IL-5 and IL-13 mRNA
expression in the livers of IL-33-treated mice (Fig. 1G and H). We
also observed a significant increase of eosinophils, which have
been shown to promote tissue repair and resolution of inflam-
mation (Fig. 2G).25,26 As compared with ILC2s and eosinophils,
Treg populations in the liver and liver draining lymph nodes
were only modestly increased in response to IL-33 treatment
(Fig. 2H and I). Therefore, these data indicate that IL-33 elicits the
ILC2, eosinophil, and Treg response in the liver, which may drive
IL-33-mediated hepatoprotection.

Eosinophils, but not Tregs, are required for IL-33-mediated
hepatoprotection in IRI mice
Eosinophils are known to be cytotoxic cells involved in host
defence against parasitic infections and pathogenesis of allergic
diseases.27 However, recent studies have shown that eosinophils
also play a protective function during acute liver injury.25,26 To
4vol. 5 j 100837
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Fig. 1. IL-33 protected against liver injury in IRI mice. (A) C57BL/6 mice were administered mouse recombinant IL-33 daily for 5 consecutive days before
hepatic ischaemia. (B) Liver injury was assessed by serum levels of ALT. (C) Representative histological H&E staining images and statistics showing necrotic areas
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investigate the role of eosinophils in protection against hepatic
IRI through delivery of IL-33, we depleted these cells by i.p. in-
jection of an anti-CCR3 antibody as previously reported
(Fig. 3A).21 Eosinophil depletion by anti-CCR3 antibody in IL-33-
treated C57BL/6 mice was confirmed in the liver by flow
cytometry and immunofluorescence staining (Fig. 3B and C).
Eosinophil depletion worsened liver histological and functional
injury in IRI mice with IL-33 treatment. However, the protective
effect of IL-33 was only mildly reversed in eosinophil-depleted
JHEP Reports 2023
IRI mice (Fig. 3D–F). Next, we examined whether Tregs
contributed to IL-33-mediated hepatoprotection in IRI mice.
Transgenic DEREG mice were administered DT to selectively
deplete Tregs during IL-33 administration (Fig. S2A). Tregs were
effectively depleted from the liver of IRI mice (Fig. S2B and C).
However, Treg depletion did not affect IL-33-mediated hep-
atoprotection in IRI, indicating that Tregs are unlikely to be
important in IL-33-mediated protection against hepatic IRI
(Fig. S2D–F).
5vol. 5 j 100837
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ILC2s played critical roles in the hepatoprotective effect of IL-
33 in IRI mice
ILC2s play important roles in tissue repair and immunoregula-
tion.28,29 IL-33-mediated renoprotection in renal IRI is depen-
dent on ILC2s. The potential contribution of ILC2 to IL-33-
mediated protection of hepatic IRI was assessed in ICOS-T
mice, in which administration of DT leads to selective
JHEP Reports 2023
depletion of ILC2s (Fig. 4A). Flow cytometric analyses confirmed
that CD45+Lin-ST2+ ILC2s were effectively depleted from the liver
of IRI mice with IL-33 treatment (Fig. 4B and C). Notably, the
protective effect of IL-33 on liver histological and functional
injury was significantly abolished in ILC2-depleted IRI mice,
pointing towards a critical role for ILC2 in IL-33-mediated pro-
tection of liver injury following IRI (Fig. 4D–F). To further
6vol. 5 j 100837
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determine whether ILC2s are required for IL-33-mediated hep-
atoprotection, we injected IL-33 and ILC2s into NSG mice before
IRI surgery; these NSG mice lack ILC2 as well as T cells, B cells,
and functional NK cells (Fig. 4G). As expected, the proportion of
ILC2s in the liver was not increased in response to daily doses of
IL-33, but IL-33 induced a marked expansion of ILC2s in NSG
mice reconstituted with ILC2s before IL-33 administration
(Fig. 4H). In terms of outcome, IL-33-treated NSG mice were not
protected from IRI-induced liver injury accompanied by no in-
crease in the number of ILC2s in the liver. However, reconstitu-
tion with ILC2s in NSG mice (lacking ILC2s) restored the
protective effect of IL-33 in hepatic IRI (Fig. 4I–K), suggesting that
IL-33 prevents liver injury through induction of ILC2 expansion
JHEP Reports 2023
in NSG mice. We also found that eosinophils were significantly
reduced in NSG mice compared with WT mice, and there was no
increase of eosinophils in the livers of NSG mice treated with IL-
33 and ILC2 (Fig. S3). These data identify ILC2s as key targets of
IL-33 and further demonstrate that IL-33-expanded ILC2s play a
major role in protecting against acute liver injury in IRI mice.

ILC2s protected against hepatic IRI predominantly through IL-
13 production and induction of anti-inflammatory
macrophages
We then investigated the mechanism by which ILC2s protect
mice against hepatic IRI in more detail. It is known that ILC2s
produce IL-13, which has been shown to play a protective role
7vol. 5 j 100837
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in hepatic IRI.30 Therefore, we investigated whether IL-13 may
confer the hepatoprotective effects of ILC2s during IRI. ILC2s
isolated from livers after daily injections of IL-33 produced
progressively increased amounts of IL-13 but not IFN-c in vitro
(Fig. 5A and B). Furthermore, ILC2s separated from C57BL/6
mice with IL-33 treatment were expanded in culture with IL-2/
IL-7/IL-33 for 14 days (Fig. 5C). The cultured ILC2s maintained
their expression of key markers, including ST2, GATA3, and
CD90 (data now shown), and produced a large amount of IL-13
JHEP Reports 2023
(Fig. 5D). To confirm the importance of IL-13 in ILC2-mediated
protection of IRI, we deleted IL-13 in ILC2s using CRISPR-Cas9.
ILC2s transfected with control empty vector produced a large
amount of IL-13 in the supernatant, whereas ILC2s transfected
with IL-13 CRISPR-Cas9 did not produce IL-13 (Fig. 5D). A
greater number of transfused ILC2s were found in the IRI liver
than in the sham liver, indicating that ILC2s tend to migrate to
the damaged liver undergoing inflammatory response (Fig. S4).
ILC2-treated hepatic IRI mice developed much milder liver
8vol. 5 j 100837
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injury than PBS-treated mice accompanied by a significant in-
crease in IL-13 in the peripheral blood and liver (Fig. S5). IL-13
depletion in ILC2s markedly impaired their protective effect on
hepatic IRI, suggesting a protective role for ILC2-derived IL-13
(Fig. 5E–H).

Macrophages play a critical role in the pathophysiology of
liver IRI.3,31 Liver macrophages are very plastic and display var-
iable functions in different hepatic microenvironments.32

GW2580, a cellular feline McDonough sarcoma kinase inhibitor,
has been used to selectively deplete anti-inflammatory (M2)
macrophages in vivo.33,34 Here, we found that M2 macrophage
depletion by administration of GW2580 partially reversed the
protective function of transfused ILC2s in IRI mice, suggesting
that liver M2 macrophages play an important role in the pro-
tective function of ILC2s during hepatic IRI (Fig. 5F–H). Moreover,
adoptive transfer of ILC2s, but not IL-13-deleted ILC2s, elevated
the expression of M2 macrophage markers (mannose receptor
[MR], arginase, HO-1, Retnla resistin like alpha (FIZZ1), and IL-10)
in liver macrophages (Fig. 5I). Immunofluorescence staining of
HO-1+ macrophages in liver sections confirmed their increased
accumulation in mice treated with ILC2s, which did not occur
when the mice were treated with IL-13-deleted ILC2s (Fig. 5J and
K). In addition, confirming our previous findings, liver macro-
phages, when cocultured with ILC2s, had increased expression of
M2 macrophage markers, and the expression of these markers
was reduced when cocultured with IL-13-deleted ILC2s (Fig. S6).
ILC2s or IL-13 alone exhibits a mild protection in macrophage-
depleted IRI mice, further confirming the importance of macro-
phages in ILC2-mediated hepatoprotection (Fig. S7). Therefore,
IL-13 mediates the protective effects of ILC2s, and the IL-13/M2
macrophage axis is necessary in promoting the protective func-
tion of ILC2s, leading to our hypothesis that IL-13 produced by
ILC2s induces M2 macrophages, which protect against liver
injury. Of note, apoptosis of ischaemic hepatocytes was signifi-
cantly reduced when cocultured with ILC2s, but not with IL-13-
deleted ILC2s, indicating the direct protective role of ILC2-
derived IL-13 in ischaemic hepatocyte damage (Fig. S8).

ILC2 protected against hepatic IRI partially through IL-5-
dependent activation of eosinophils
To further study whether eosinophils are required for the pro-
tective function of ILC2s in IRI mice, we performed eosinophil
depletion in WT mice by administration of anti-CCR3 antibody.
ILC2s were adoptively transferred into eosinophil-depleted WT
mice that were then subjected to liver IRI (Fig. 6A). We observed
a significant increase of eosinophils in WT mice treated with
ILC2s, which was prevented by injection of anti-CCR3 antibody
(Fig. 6B). Eosinophil depletion partially impaired the protective
effect of ILC2s in hepatic IRI mice, as demonstrated by the sig-
nificant increase in ALT and hepatocyte necrosis (Fig. 6C–E). We
also observed a significant increase of neutrophils in eosinophil-
depleted mice (Fig. S9). IL-5 was significantly increased in the
peripheral blood and liver of IRI mice treated with ILC2s
(Fig. S10). To determine whether the increase of eosinophils and
reduced liver IRI in mice were related to ILC2-derived IL-5, we
deleted IL-5 in ILC2 using CRISPR-Cas9 (Fig. 6F). IL-5 depletion in
ILC2s was confirmed in the supernatant by ELISA (Fig. 6F). IL-5
depletion in ILC2s impaired eosinophil accumulation in the
liver (Fig. 6G) and partially reversed ILC2s-mediated protection
in hepatic IRI, evident from increased values of ALT, and wors-
ened histology, suggesting a protective role for ILC2-derived IL-5
JHEP Reports 2023
(Fig. 6H–J). In vitro, eosinophils that were freshly isolated from
the bone marrow, when cocultured with ILC2, had increased
expression of IL-13, and the expression of IL-13 in eosinophils
was reduced when cocultured with IL-5-deleted ILC2s (Fig. 6K
and L). However, the expression of IL-13 in ILC2s was not
increased when cocultured with IL-5 or eosinophils (Fig. S11).
Taken together, these data show that the beneficial effects of ILC2
treatment in hepatic IRI can be partially attributed to IL-5-
dependent accumulation and activation of eosinophils.
ILC2 were protective post IRI
For future translation, it is important to assess whether ILC2s are
protective after liver injury has been initiated. ILC2s were
administered 6 h after hepatic IRI surgery (Fig. S12A). The
accumulation of infused ILC2s in the liver was only maintained at
a high level for up to 7 days and significantly reduced by Day 14,
indicating that the ILC2 increase was transient in the liver
(Fig. S12B). As expected, ILC2 treatment attenuated IRI-induced
liver injury, evident from decreased values of ALT and areas of
hepatocyte necrosis at different time points after IRI (Fig. S12C
and D). The effect of ILC2s on liver fibrosis was also assessed
fromWeek 1 to Week 8 after IRI. Histological staining with Sirius
Red revealed that ILC2 treatment significantly reduced liver
fibrosis in the post-ischaemic liver of IRI mice (Fig. S12E and F).
Treatment with ILC2 also reduced gene expression of fibrogenic
markers a-smooth muscle actin and collagen-1a1 (Fig. S12G).
Human ILC2s reduced hepatic IRI in NSG mice
In the light of potential therapeutic applications, we next eval-
uated whether human ILC2s could be used to prevent hepatic IRI
in NSG mice. Human ILC2s separated from peripheral blood
mononuclear cells were effectively expanded in in vitro culture
with IL-2/IL-7/IL-33 for 14 days (Fig. 7A), a method that has been
established in our group.18 The ex vivo-expanded human ILC2s
maintained their expression of key markers, including prosta-
glandin D2 receptor 2 (CRTH2), interleukin 1 receptor-like 1
(ST2), and killer cell lectin like receptor G1 (KRLG1) (Fig. 7B), and
produced large amounts of IL-5 and IL-13 (Fig. 7C). The in vivo
function of ex vivo-expanded human ILC2s or human ILC2s
expanded in vivo by administration of human recombinant IL-33
was examined in NSG mice with hepatic IRI (Fig. 7D and E). The
transfused human ILC2 cells were identified in livers of NSG mice
with IRI by flow cytometry (Fig. 7F). There was a greater per-
centage of human ILC2s in the CD45+ leucocyte compartment
from the livers of NSG mice that received short-term human IL-
33 treatment (Fig. 7G). Human IL-5 and IL-13 were significantly
increased in the peripheral blood of IRI mice transfused with
human ILC2s (Fig. S13). Treatment with either ex vivo-expanded
human ILC2s or in vivo IL-33-expanded human ILC2s signifi-
cantly attenuated liver injury in NSG mice with IRI, indicating
that human ILC2s can effectively prevent IRI. Human IL-33/ILC2-
treated mice (20% of human ILC2s) developed much milder liver
injury compared with human ILC2-treated mice (10% of human
ILC2s), suggesting a dose-dependent protective effect of ILC2s in
hepatic IRI (Fig. 7H–J). In addition, macrophages isolated from
the liver of NSG IRI mice with human ILC2 or IL-33/ILC2 treat-
ment had enhanced expression of M2 macrophage markers,
including MR, arginase, HO-1, and FIZZ1 (Fig. 7K). These findings
further supported our hypothesis that human ILC2s can effec-
tively prevent hepatic IRI.
10vol. 5 j 100837
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Discussion
The role of IL-33/ILC2s in liver injury has been examined in very
few studies with conflicting results. A study of ConA-induced
hepatitis in mice demonstrated that ILC2 depletion by an anti-
CD90.2 antibody reduced liver injury, suggesting a pathologic
role of ILC2s in this context.13 However, this finding is
contradictory to the protective role of the IL-33/ST2 axis in
ConA-induced hepatitis.15 Two other studies showed that ILC2s
protect against liver injury in adenovirus- and lymphocytic
choriomeningitis virus-induced viral hepatitis.12,35 Our experi-
ments using genetic models of ILC2 deficiency (ICOS-T or NSG
JHEP Reports 2023
mice) or adoptive transfer of genetically modified ILC2s (IL-5- or
IL-13-deficient ILC2s) revealed a critical protective role for ILC2s
and their underlying mechanisms in murine hepatic IRI.
Furthermore, our data also showed that ex vivo-expanded hu-
man ILC2s protected against hepatic IRI in NSG mice, supporting
their therapeutic potential in humans.

Our earlier studies showed that exogenous IL-33, adminis-
tered before reperfusion, induced the expansion of ILC2s
and subsequently prevented renal IRI via induction of
anti-inflammatory macrophages.18 Anti-inflammatory macro-
phages have been shown to play a HO-1 pathway-dependent
11vol. 5 j 100837
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protective role during ischaemic-induced liver injury.36,37 Based
on these studies, we hypothesised that ILC2-derived IL-13 may
alleviate hepatic IRI through modulating macrophage pheno-
type. Our experiments using adoptive transfer of IL-13-/- ILC2s
and depletion of macrophages showed that the ILC2 effect, at
least in large part, can be attributed to production of IL-13 and
induction of M2 macrophages. These results are supported by
recent work demonstrating that ILC2s appear to regulate the
polarisation of macrophages to alleviate hepatic IRI after IL-33
administration.38 Although this study did not investigate the
JHEP Reports 2023
underlying mechanisms, we have demonstrated a critical role for
ILC2–IL-13–macrophage pathways in mediating this protection.
Moreover, our work suggests that IL-13 may possess an
additional protective role in other cells. We demonstrated
that ILC2-derived IL-13 acted directly on ischaemic hepatocytes
to prevent apoptosis, which is consistent with previous
work showing that endogenous IL-13 protected hepatocytes
from hydrogen peroxide-induced cytotoxicity.30 We also
demonstrated decreased neutrophil infiltration in IL-33-treated
IRI mice, which could attribute to reduction of pro-
12vol. 5 j 100837



inflammatory cytokines/chemokines in the peripheral blood and
liver. IL-13 has been shown to suppress neutrophil accumulation
in an injured liver by regulating neutrophil transendothelial
migration,12,30 suggesting that ILC2-derived IL-13 may contribute
to this reduction in our model.

There is emerging evidence supporting the finding that the
eosinophil is an important regulator of local immunity and
tissue repair rather than a simple proinflammatory cell
type.25,26,39 Indeed, recent studies have shown that eosinophils
play a protective role during acute liver injury and acute lung
injury.25,26,40 Here, we demonstrated that eosinophils are
required for both IL-33- and ILC2-mediated hepatoprotection in
hepatic IRI. ILC2s are important regulators of eosinophil
recruitment.41 A previous study has shown that ILC2s promote
the persistence of airway eosinophilia in patients with severe
asthma through localised production of type 2 cytokine IL-5.42

To better understand how ILC2s work and whether they regu-
late eosinophil phenotypes via secretion of IL-5, we went on to
analyse the interaction between ILC2s and eosinophils in vivo
and in vitro. Of note, our data revealed that ILC2s produced the
high levels of IL-5, promoting eosinophil accumulation and
leading to protection against hepatic IRI. Our finding that eo-
sinophils accumulate within 24 h after ILC2 injection strongly
suggests that ILC2s drive eosinophil recruitment to the liver.
In vitro, we further demonstrated that ILC2s activate eosino-
phils via IL-5, evident from upregulation of IL-13 expression on
eosinophils. Eosinophil-derived IL-13 could further attenuate
hepatic IRI by inhibiting neutrophil infiltration.26 Eosinophils
are a major cellular source of IL-4. One study found that the
eosinophil–ILC2 interplay resulted in the activation of ILC2s in
an IL-4-dependent manner.43 Therefore, the crosstalk between
ILC2s and eosinophils might be critical to enhance the protec-
tive effect of ILC2s in hepatic IRI. Although the role of ILC2 in
promoting eosinophil accumulation has been reported,41,42 our
study is the first to demonstrate that ILC2s protect against liver
IRI through acting on eosinophils and initiate their accumula-
tion and activation via production of IL-5.

IRI is a common clinically significant problem in many
different organ systems, including the liver, kidney, brain, heart,
and lung. In response to IRI, numerous studies have indeed
described how ILC2s become licensed to protect against injury in
various organs through suppressing the onset of immune re-
sponses or enhancing tissue regeneration.18,22,38,44 We recently
demonstrated for the first time that the ILC2-activating cytokine
IL-25, IL-33, or ex vivo-expanded ILC2s could reduce tubular cell
injury and improve kidney function in renal IRI.18,22 In the
context of hepatic IRI, and consistent with our results, other
groups have shown that ILC2s play a protective role by modu-
lating macrophage polarisation.38 Furthermore, ILC2s demon-
strated a direct and protective role in the recovery of
experimental myocardial infarction,44 a condition similar to IRI,
via ILC2-derived IL-5 and reparative heart macrophages. Until
now, the direct role of ILC2-derived IL-5 and IL-13 (and
JHEP Reports 2023
downstream pathways) was not clear. Our study clearly identi-
fied two main signature pathways of ILC2-mediated protection
in hepatic IRI: ILC2/IL-13/macrophage and ILC2/IL-5/eosinophil.
To date, therapies targeting individual mechanisms of IRI pa-
thology (e.g. N-acetylcysteine for reactive oxygen species [ROS]45

or prostaglandin E1 as a hepatoprotective agent46) have been
largely ineffective. Successful therapies to alleviate IRI must
therefore act on many of the mechanisms by which IRI causes
organ rejection, parenchymal cell death, ROS, inflammatory
cytokine induction, and immune activation. As intrinsic media-
tors of protective and regenerative responses in many tissues,
ILC2s possess the ability to significantly reduce IRI by acting on
parenchymal and immune cell populations alike. Herein, we
have shown that ILC2s reduce necrotic area, inflammatory
cytokine expression, and influx of ROS-producing neutrophil
populations while shifting the hepatic milieu towards an anti-
inflammatory phenotype. Moreover, we have shown that hu-
man ILC2s can be expanded in vitro, facilitating their use as an
autologous cell therapy for patients undergoing liver transplant
or resection. Although no human ILC-based cell therapy studies
have been conducted to date, adoptive cell transfers have been
conducted using other innate cell populations such as NK cells,47

supporting their feasibility for clinical use. The clinical utility of
ILC2s is supported by our data herein, demonstrating that
adoptive transfer of human ILC2s ameliorated liver injury in NSG
mice with hepatic IRI, which is consistent with our previous
study showing the protective function of human ILC2s in
humanised mice with renal IRI.18

A concern regarding ILC2s as a therapeutic approach is that
they may cause organ fibrosis.48,49 Hepatic resident ILC2s have
been shown to mediate chronic liver fibrosis via IL-4Ra and
STAT6-dependent signalling pathways.48 Our data demonstrated
that adoptive transfer of ILC2s post hepatic IRI reduced the
development of liver fibrosis, which could be explained by ILC2s
attenuating early liver inflammation and injury, and subse-
quently reducing fibrosis in the late stage of IRI. Importantly, the
number of transfused ILC2s dropped significantly by 14 days post
cell transfer, suggesting that they do not persist long-termwithin
the hepatic microenvironment. Therefore, our data suggest that
ILC2 therapy will not exacerbate the development of fibrosis
following chronic insults.

The present study uncovered a highly protective function
of ILC2s in hepatic IRI and provides novel insights into the mo-
lecular and cellular mechanisms underlying ILC2-medicated
hepatoprotection. Specifically, the data revealed that IL-13-
dependent induction of anti-inflammatory macrophages and
IL-5-dependent elevation of eosinophils mediated the protective
effect of ILC2s. Furthermore, human ILC2 effectively reduced
liver injury in an immunocompromised mouse model of hepatic
IRI. These findings suggest that strategies to promote ILC2
recruitment and/or adoptive transfer of ILC2s may represent a
novel cell-based therapeutic approach to improve the outcomes
of liver surgery and transplantation.
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