Skip to main content
. 2023 Mar 6;30(4):1294–1322. doi: 10.3758/s13423-022-02241-7
Model Parameter Population Parameters
Exponential kGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Hyperbolic kGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Double ωBeta(A,B) LUniform(0,1) SGamma(1,20)
Exponential ΘGamma(A,B) ANormal+(0,1) BNormal+(0,1)
δGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Generalized kGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Hyperbolic sGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Hyperboloid kGamma(A,B) ANormal+(0,1) BNormal+(0,1)
sGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Generalized αGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Hyperbola ΘGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Constant αGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Sensitivity βGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Additive αBeta(A,B) LUniform(0,1) SGamma(1,20)
Utility βBeta(A,B) LUniform(0,1) SGamma(1,20)
λGamma(A,B) ANormal+(0,1) BNormal+(0,1)
σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
Proportional δNormal(L,S) LNormal(0,1) SNormal+(0,1)
Difference σGamma(A,B) ANormal+(0,1) BNormal+(0,1)
ITCH β1Normal(L,S) LNormal(0,1) SNormal+(0,1)
βxANormal+(L,S) LNormal+(0,1) SNormal+(0,1)
βxRNormal+(L,S) LNormal+(0,1) SNormal+(0,1)
βtANormal(L,S) LNormal(0,1) SNormal+(0,1)
βtRNormal(L,S) LNormal(0,1) SNormal+(0,1)
Tradeoff γGamma(A,B) ANormal+(0,1) BNormal+(0,1)
τGamma(A,B) ANormal+(0,1) BNormal+(0,1)
ΘGamma(A,B) ANormal+(0,1) BNormal+(0,1)
κGamma(A,B) ANormal+(0,1) BNormal+(0,1)
αGamma(A,B) ANormal+(0,1) BNormal+(0,1)
𝜖Gamma(A,B) ANormal+(0,1) BNormal+(0,1)

Note: Normal+(L,S) represents a truncated normal distribution with mean L, standard deviation S, a lower bound of 0, and no upper bound. Normal represents a truncated normal distribution with an upper bound of 0 and no lower bound. Gamma(A,B) represents a gamma distribution with shape A and scale B. Certain models were reparameterized for efficiency reasons and/or in order to enforce parameter constraints. In the double exponential model, β = Θ + δ. In the generalized hyperbola model, the parameter β = Θ × α. For the additive utility and double exponential models, A = L × S and B = (1 − L) × S. For the tradeoff model, 𝜃 = Θ + 1