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Recent immense breakthroughs in generative models such as in GPT4 have precipitated re-imagined 
ubiquitous usage of these models in all applications. One area that can benefit by improvements in 
artificial intelligence (AI) is healthcare. The note generation task from doctor-patient encounters, and 
its associated electronic medical record documentation, is one of the most arduous time-consuming 
tasks for physicians. It is also a natural prime potential beneficiary to advances in generative models. 
However with such advances, benchmarking is more critical than ever. Whether studying model 
weaknesses or developing new evaluation metrics, shared open datasets are an imperative part of 
understanding the current state-of-the-art. Unfortunately as clinic encounter conversations are not 
routinely recorded and are difficult to ethically share due to patient confidentiality, there are no 
sufficiently large clinic dialogue-note datasets to benchmark this task. Here we present the Ambient 
Clinical Intelligence Benchmark (aci-bench) corpus, the largest dataset to date tackling the problem of 
AI-assisted note generation from visit dialogue. We also present the benchmark performances of several 
common state-of-the-art approaches.

Background & Summary
Healthcare needs are an inescapable facet of daily life. Current patient care at the medical facilities requires 
involvement not only from a primary care provider, but also from pharmacy, billing, imagining, labs, and spe-
cialist care. For every encounter, a clinical note is created as documentation of clinician-patient discussions, 
patient medical conditions. They serve as a vital record for clinical care and communication with patients and 
other members of the care team, as well as outline future plans, tests, and treatments. Similar to typical meeting 
summaries, these documents should highlight important points while compressing itemized instances into con-
densed themes; unlike typical meeting summaries, clinical notes are purposely and technically structured into 
semi-structured documents, contain telegraphic and bullet-point phrases, use medical jargon that do not appear 
in the original conversation, and will reference outside information often from the electronic medical record, 
including prose-written content or injections of structured data.

While the widespread adoption of electronic health records (EHR’s), spurred by the HITECH Act of 2009, 
has led to greater health information availability and interoperability, it has also spawned a massive documen-
tation burden shifted to clinicians. Physicians have expressed concerns that writing notes in electronic health 
records (EHRs) takes more time than using traditional paper or dictation methods. As a result, notes may not 
be completed and accessible to other team members until long after rounds1. Furthermore, as another unin-
tended consequence of EHR use complications, electronic notes have been criticized for their poor readabil-
ity, completeness, and excessive use of copy and paste2. To save time and adequately capture details, clinicians 
may choose to write their notes during their time with a patient. This may detract from the clinicians’ atten-
tion toward the patient (e.g. in reading non-verbal cues), and may leave patients feeling a want of empathy3. 
Alternatively, some clinicians or provider systems may hire medical assistants or scribes to partake in some 
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or all of the note creation process, which has been linked with improved productivity, increased revenue, and 
improved patient-clinician interactions4. However such systems are both costly and, more importantly, often 
require a substantial investment in time from the providers in managing and training their scribes5 – a problem 
that is often multiplied by the high attrition rates in the field.

One promising solution is the use of automatic summarization to capture and draft notes, before being 
reviewed by a clinician. This technology has attracted increasing attention in the last 5 years as a result of several 
key factors: (1) the improvement of speech-to-text technology, (2) widespread adoption of electronic medical 
records in the United States, and (3) the rise of transformer models. Several works have adopted early technology 
in this area, including use of statistical machine translation methods, use of RNNs, transformers, and pre-trained 
transformer models6–11.

However, a massive bottleneck in understanding the state-of-the-art is the lack of publicly share-able data 
to train and evaluate12. This challenge is inherent in the required data’s characteristics as (1) meeting audio and 
transcripts from medical encounters are not typically recorded and saved, and (2) medical information is highly 
personal and sensitive data and cannot be easily, ethically shared publicly. Private companies may construct or 
acquire their own private datasets; however, results and algorithms cannot be systematically compared. Recent 
ground-breaking performances by large language models such as ChatGPT and GPT4 provide promising gen-
eral model solutions; however without common datasets that may be studied publicly, it would be impossible for 
the scientific community to understand strength, weaknesses, and future directions.

In this paper, we present the Ambient Clinical Intelligence Benchmark (aci-bench) corpus. The corpus, cre-
ated from domain experts, is designed to model three variations of model-assisted clinical note generation from 
doctor-patient conversations. These include conversations with (a) calls to a virtual assistant (e.g. required use of 
wake words or prefabricated, canned phrases), (b) unconstrained directions or discussions with a scribe, and (c) 
natural conversations between a doctor and patient. We also provide data to experiment between using human 
transcription and automatic speech recognition (ASR); or between ASR and corrected ASR. Table 1 shows a 
comparison of the 8 corpora described in state-of-the-art work. Only two other similar corpora are publicly 
available. MTS-dialog13 contains ~1700 samples however its focus is on on dialogue snippets rather than full 
encounters. primock5714 contains a small set of 57 full-length encounters. To our knowledge, aci-bench is the 
largest and most comprehensive corpus publicly available for model-assisted clinical note generation.

In the following sections, we provide details of the aci-bench Corpus. We (1) discuss the dataset construc-
tion and cleaning, (2) provide statistics and the corpus structure, (3) describe our content validation methods 
and comparison with real data, (4) quantify several diverse baseline summarization methods on this corpus.

Methods
Data creation. Clinical notes may be written by the physician themselves or in conjunction with a medi-
cal scribe or assistant; alternatively physicians may choose to dictate the contents of an entire note to a human 
transcriptionists or an automatic dictation tool. In cases with human intervention, scribe-assisted or transcrip-
tionist-assisted cases, physician speech may include a mixture of commands (e.g. “newline”, “add my acne tem-
plate”), free-text requiring almost word-for-word copying (e.g. “To date, the examinee is a 39 year-old golf course 
maintenance worker”)6, or free-text communication to the medical assistance (e.g. “let’s use my normal template, 
but only keep the abnormal parts”, “can you check the date and add that in?”). With trained medical scribes 
participating in the clinic visit, in addition to directions from the doctor, they are expected to listen in on the 
patient-doctor dialogue and generate clinical note text independently. To mirror this reality, the aci-bench cor-
pus consists of three subsets representing common modes of note generation from doctor-patient conversations:

Virtual assistant (virtassist). In this mode, the doctor may use explicit terms to activate a virtual assistance 
device (e.g. “Hey Dragon show me the diabetes labs”) during the visit. This necessitates some behavioral changes 
on the part of the provider.

dataset description src-len (tok/turns) target-len (tok/sent) size open

MTS-dialogue13 dialogue-note snippets where conversations 
are created using clinical note sections 142/9 48/3 1701 Y

primock5714 role-played dialogue-note pairs 1489/97 161/23 57 Y

aci-bench [this work] role-played dialogue-note pairs 1302/55 490/49 207 Y

3 M Health9 dialogue-note pairs where notes are created 
using conversations −/− −/− (hpi only) 1342 N

Abridge8 dialogue-note pairs where notes are created 
using conversations 1500/− −/27 6862 N

Augmedix11 real clinical dialogue-note pairs −/175 −/47 500 N

emr.ai6 real clinical dictation-note pairs 616/1 550/- 9875 N

Nuance7 real clinical dialogue-note pairs 972 /− 452/-1 802k N

Table 1. Comparable corpora for doctor-patient note generation from conversations. The majority of datasets 
are proprietary and unshare-able for community evaluation. (src-len = source/transcript length, target-
len = target/note length, - = unreported). 1The authors model sections of the note differently. The number of 
sources and note sections are different. Here we approximate the average note length by adding the average 
section lengths together. Average source length was approximated by averaging the sources for different 
sections.
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Virtual scribe (virtscribe). In this mode, the doctor may expect a separate scribe entity (automated or other-
wise) to help create the clinical note. This subset is characterized by pre-ambles (e.g. short patient descriptions 
prior to a visit) and after-visit dictations (e.g. used to specify non-verbal parts of the visit such as the physical 
exam or to dictate the assessment and plan). The rest of the doctor-patient conversation will be natural and 
undisturbed.

Ambient clinical intelligence (aci). This data is characterized by natural conversation between a patient and a 
doctor; without explicit calls to a virtual assistant or additional language addressed to a scribe.

Transcripts from subsets virtassist and virtscribe were created by a team of 5+ medical experts includ-
ing medical doctors, physician assistance, medical scribes, and clinical informaticians based on experience 
and studying real encounters. Subset aci was created with a certified doctor and a volunteer lay person, who 
must role-play a real doctor-patient encounter, given a list of symptom prompts. Clinical notes were generated 
using an automatic note generation system and checked and re-written by domain experts (e.g. medical scribes, 
or physicians). The virtscribe dataset includes the human transcription as well as an ASR transcript; mean-
while the virtassist and aci subsets were created with only a human transcription and ASR transcript available, 
respectively.

Data cleaning and annotation. Our final dataset was distilled from encounters originally created for mar-
keting demonstration purposes. During this initial dataset creation, imaginary EHR injections were placed within 
the note to contribute to realism, though many without basis from the conversation. Although EHR inputs, inde-
pendent from data intake from a conversation, are a critical aspect of real clinical notes, in this dataset we do not 
model EHR input or output linkages with the clinical note (e.g. smart links to structured data such as vitals values, 
structured survey data, order codes, and diagnosis codes).

In order to identify unsupported information of note text to the transcript, we created systematic annotation 
guidelines for labeling unsupported note sentences. These unsupported information included items such as rea-
soning for treatment (which may not be part of the original conversation) or could be information from imagi-
nary EHR inputs (e.g. vitals). Examples of the different types of unsupported information are included in Table 2.  
We tasked four independent annotators with medical backgrounds to complete this task. The partial span over-
lap agreement was 0.85 F1. Marked text spans were removed during automatic processing.

Because the datasets were originally created and demonstrated for a short period, as such, these notes were 
created under greater time constraints and less review. To ensure quality, four annotators identified and corrected 
note errors, such as inconsistent values. Finally, as the aci-bench dataset used ASR transcripts, there were cases 
where the note and the transcript information would conflict due to ASR errors. For example, “hydronephosis” 
in the clinical note may be wrongly automatically transcribed as “high flow nephrosis”. Another example may be a 
names; “Castillo” may be transcribed as “kastio”. As part of this annotation, we tasked annotators to identify these 
items and provide corrections. After annotation, the data was processed such that note errors were corrected and 
unsupported note sentences were removed. To study the effect of ASR errors, ASR transcripts were processed into 
two versions: (a) original and (b) ASR-corrected (ASR outputs corrected by humans). After automatic processing, 
encounters were again manually reviewed for additional misspelling and formatting issues.

type annotated example

dates (none mentioned) Y PSA 0.6 ng/mL[, 05/25/2021]

exam Y [Consitutional: Well-developed, well-nourished, in no apparent distress]

Y Neck: [Supple without thyromegaly or lymphadenopathy.] No carotid bruits appreciable.

medication context Y 1 tablet [by oral route] daily

medical reasoning Y recommended that we obtain an MRI of the right shoulder [to evaluate for a possible 
rotator cuff tear].

Y referred her to formal physical therpay [to strengthen her right shoulder]

patient acquiescence Y [All questions were answered.]

Y [The patient understands and agrees with the recommended medical treatment plan]

review of system Y Ears, Nose, Mouth and Throat: [Denies ear pain, hearing loss, or discharge.] Endorses 
nasal congestion from allergies.

vitals Y [Blood Pressure:124/82 mmHg]

dates (year kept if only month mentioned) N 03/[2022]

higher granularity problem/test/treatment N diabetes [type II]

N [3 views] of the shoulder

N MRI [of the head]

measurements N 25 [mg/dl]

patient name/age N [John Smith] is a 53-year-old male

other names N he was seen by Jane [Smith, PA-C]

Table 2. Examples of unsupported text (demarked by square brackets). In the original demo data, these items 
were added for realism without basis in the source text, the doctor-patient conversation. Some unsupported 
items were purposely left unmarked in cases where removal would lead to note quality/meaning degradation. 
After human annotated text-span level identification, these were automatically removed from the clinical note.
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Note division definition. Motivated by a need to simplify clinical note structure, improve sparsity prob-
lems, and simplify evaluation, in this section, we describe our system for segmenting a full clinical note into 
continuous divisions.

Clinical notes are semi-structural documents with hierarchical organization. Each physician, department, 
and institution may have their own set of commonly used formats. However, no universal standard exists15. The 
same content can appear in multiple forms structured under different formats. This is illustrated in the subjec-
tive portions of two side-by-side notes in Fig. 1. In this example, contextual medical history appears in their 
own sections (e.g. “current complaint (cc)” and “history of present illness (hpi)”) in the report on the left; and 
merged into one history section in the report on the right. These variations in structure pose challenges for both 
generation and evaluation. Specifically, if evaluating by fine-grained sections in the reference, it is possible that 
generated notes may include the same content in other sections. Likewise, generating with fine-grained sections 
would require sufficient samples from each section; however as not every note has every type of section – the 
sample size becomes sparser. Finally, it is important to note, current state-of-the-art pre-trained embedding 
based evaluation metrics (e.g. bertscore, bleurt, bart-score) are limited by the original trained sequence length 
which are typically shorter than our full document lengths. This is illustrated in Fig. 2, where for one system 
(Text-davinci-003) the length of the concatenated reference and system summaries will typically far exceed the 
typical pre-trained BERT-based 512 subtoken limit.

Fig. 1 Note division example. The same content in a clinical note can appear under different sections. As an 
example, in the left note, “past medical history” contents are written in the “history” portion of the note on 
the right. To separate the full note target into smaller text and minimize data sparsity problems if modeling by 
individual sections, notes are partitioned into separate subjective, objective_exam, objective_results, 
and assessment_and_plan continuous divisions. This also allows evaluation and generation at a higher 
granularity compared to a full note level.

Fig. 2 BERT subtoken lengths of concatenated gold/system summaries (test1 Text-davinci-003 system) 
for doctor-patient dialogue to clinical note generation task. As embedding-based models require encoding 
the concatenated reference and hypothesis, it would be difficult to fairly evaluate the corpus using current 
pretrained BERT models with a 512 limit.
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To simplify training and evaluation, as well as maintain larger samples of data, we partition notes and group 
multiple sections together into four divisions, as shown in Fig. 1 These divisions were inspired by the SOAP 
standard, where the subjective includes items taken during verbal exam and typically written in the chief 
complaint, history of present illness, and past social history; the objective_exam includes content from the 
physical examination on the day of the visit; the objective_results includes diagnostics taken prior to the visit, 
including laboratory or imaging results; and the assessment_and_plan includes the doctor’s diagnosis and 
planned tests and treatments16. In our dataset, the divisions are contiguous and appear in the order previously 
introduced. Another practical benefit of partitioning the note into contiguous divisions is the greater ability to 
leverage pretrained sequence-to-sequence models, typically trained with shorter sequences. Furthermore, eval-
uation at a sub-note level allows a greater resolution for assessing performances.

Data statistics. The full dataset was split into train, validation, and three test sets. Each subset was repre-
sented in the splits through randomized stratefied sampling. The test sets 1 and 2 corresponds to the test sets  
from ACL ClinicalNLP MEDIQA-Chat 2023 (https://github.com/abachaa/MEDIQA-Chat-2023) TaskB and 
TaskC, respectively. Test 3 corresponds to TaskC of CLEF MEDIQA-SUM 2023 (https://www.imageclef.org/2023/
medical/mediqa). The frequency of each data split are shown in Table 3.

Data Records
The aci-bench Corpus can be found at https://doi.org/10.6084/m9.figshare.2249460117. Code for 
pre-processing, evaluation, and running baselines can be found in https://github.com/wyim/aci-bench.

Folder and naming organization. Data used in the ACL-clinicalnlp MEDIQA-CHAT and CLEF 
MEDIQASUM challenges are located in the challenge_data folder, whereas ASR experiment data is located in the 
src_experiment_data folder. Each data split has two associated files: a metadata and a data file (further described 
below). Train, validation, test1, test2, and test3 data files are prefixed with the following names: train, valid, clin-
icalnlp_taskB_test1, clinicalnlp_taskC_test2, and clef_taskC_test3, respectively. Source experiment data files 
offer subset-specific versions of train/validation/test in which the transcript may be the alternate forms of ASR 
or ASR-corrected versions. The naming convention prefix of these is according to the pattern: {split}_{subset}_
{transcript-version}. Therefore, for example, train_virtscribe_humantrans.csv will give the training data from the 
virtscribe subset with the original human transcription version; whereas train_virtscribe_asr.csv will give the 
ASR transcription version.

Metadata files (*_metadata.csv). Metadata files include columns for the dataset name (e.g. virtassist, 
virtscribe, aci), id, encounter_id, doctor_name, patient_firstname, patient_familyname, gender, chief complaint 
(cc), and secondary complaints (2nd_complaints). Both id and encounter_id can be used to identify a unique 
encounter. The encounter_id were the identifiers used for the MEDIQA-CHAT and MEDIQASUM 2023 compe-
titions. The id unique identifier will also denote a specific subset.

Transcript/Note files (*.csv). In the source-target data files, transcript and note text are given along with the 
dataset name and id or encounter_id. This file may be joined with the metadata files using either id or encounter_id. 
encounter_id should be used for challenge data, whereas the id should be used for the source experiment data.

technical Validation
Content validation. After dataset creation and cleaning, an additional content validation step was con-
ducted to ensure medical soundness. For each encounter, medical annotators were tasked with reviewing each 
symptom, test, diagnosis and treatment from the encounter. In cases where the medical annotation specialist was 
unsure of certain facts (e.g. can drug X be prescribed at the same time as drug Y?), the encounter undergoes two 

train valid test1 test2 test3

number encounters 67 20 40 40 40

dialogue

avg number turns 56 53 52 56 58

avg length (tok) 1301 1221 1231 1382 1334

note

avg length (tok) 483 492 476 500 505

avg length (sentences) 48 49 47 50 50

# subjective 67 20 40 40 40

# objective_exam 64 19 40 39 39

# objective_results 53 18 32 29 27

# asessment_and_plan 67 20 40 40 40

subset

# virtassist 20 5 10 10 10

# virtscribe 12 4 8 8 8

# aci 35 11 22 22 22

Table 3. Corpus statistics.
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possible additional reviews. Firstly, if the phenomenon in question can be searched identified from a + 3 M store 
of propriety clinical notes–including multiple providers across the the country (which we will refer to as the con-
sult dataset)–we deemed the information credible. Alternatively, if the information is not something that could 
be identified by the first approach, the question is escalated to a clinical expert annotator. Encounters with severe 
logical or medical problems identified by a medical annotators were removed (e.g. using a medication for urinary 
tract infection for upper respiratory infection).

Comparison with real data. To study differences between the aci-bench dataset and a set of real encoun-
ters, we conduct statistical comparison with 163 randomly chosen family medicine clinical encounters (includ-
ing pairs human transcriptions and corresponding clinical notes) with in-depth alignment annotation, from the 
consult dataset. Tables 4, 5 show the statistical comparison between the 20 encounters in the validation set 
(aci-validation) and the consult encounters. In general, the aci-bench dataset had on average shorter notes, at 
492 tokens versus 683 tokens for the consult dataset. Except for the objective_results division, every division 
was longer in the consult data (Table 4). The aci-bench dataset also exhibits shorter dialogue lengths, by approx-
imately 100 tokens and 20 sentences; as well a shorter notes by approximately 100 tokens (Table 5). One reason for 
the shorter note length is our removal of unsupported note text.

We additionally annotated for alignments of data between the source and target on the validation set (20 
encounters) and consult set, similar to that of previous work18. This annotation marks associations between note 
sentences and their corresponding source transcript sentences. Unmarked note sentences indicate that a sen-
tence may be purely structural (e.g. section header) or may include unsupported content. Likewise, unmarked 
transcript sentences may indicate that the content is superfluous. Comparing the portions of annotated align-
ments in separate corpora gives indications of corpora similarity with respect to relative content transfer. Other 
useful metrics which provide measures of alignment/generation difficulty include: (a) the fraction of alignment 
crossings (whether content appear monotonically versus “out-of-order“/“crossing“)19), (b) the similarity of cor-
responding text segments, and (c) percentage of transcript speech modes. The results of these comparisons are 
shown in Table 5.

Labeled alignment annotations show that approximately the same fractions of dialogue and note sentences 
were labeled (0.34 and 0.49 transcript, 0.84 and 0.95 note for the consult and aci-bench corpus respectively); 

subjective objective_exam objective_results assessment_and_plan full

consult

avg length (tok) 393 149 19 122 683

avg length (sentences) 35 19 2 11 66

aci-validation

avg length (tok) 229 48 23 192 492

avg length (sentences) 24 8 4 16 49

Table 4. Data statistic comparing notes from aci-validation with a sample of real doctor-patient.

consult aci-corpus

dialogue

avg length (no speaker tokens) (tok) 1505 1203

avg length (sentences) 141 80

note

avg length (tok) 683 492

avg length (sentences) 66 49

annotation

fraction note sentences aligned 0.84 0.95

fraction transcript sentences aligned 0.34 0.49

fraction crossing annotations 0.67 0.75

avg alignment text similarity 0.15 0.12

avg encounter dialogue-note text similarity 0.26 0.31

% note sentences with labels

DICTATION 8 4

QA 15 43

STATEMENT 23 29

VERBALIZATION/STATEMENT2SCRIBE 17 7

Table 5. Alignment statistic comparison of aci-validation with a sample of real doctor-patient. (DICTATION: 
word-for-word copy-paste statements from the transcript, QA: question-answer conversation adjacency pairs, 
STATEMENT: conversation statements, VERBALIZATION/STATEMENT2SCRIBE: directed instructions or 
content to a external scribe).
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with a high 0.95 fraction for the aci-bench corpus, as designed by the removal of unsupported text. With 
shorter transcripts (1203 tokens in aci-bench vs 1505 tokens in the consult set), the aci-bench corpus also 
had a 15% more aligned transcript sentences. The text similarity (Jaccard unigram) of alignments were similar 
(0.15 and 0.12) as was the fraction of crossing annotations (0.67 and 0.95) for the consult and aci-bench cor-
pus respectively; though the dialogue-note document similarity was higher in the aci-bench corpus.

The percentage of note sentences annotated with different labels show across the board lower percentages in 
the consult data. This is explainable as the transcript length and thus the percentage of note sentences anno-
tated with a certain label will decrease. However, it is interesting to show that the aci-bench corpus had a higher 
percentage of note sentences coming from question-answer paired transcript sentences and conversation state-
ments rather than dictation/statement2scribe. For example while in the consult dataset, important QA makes 
up twice as much transcript sentences as in dictation (15% and 8%), in the aci-bench dataset there are ten times 
more QA labeled sentences than dictation (43% vs 4%). Meanwhile in the consult dataset, transcript sentences 
identified with an alignment using the “statement” tag was about three times that of dictation, however this was 
about seven times in the aci-bench corpus. Together, this data suggests that the aci-bench corpus may be 
slightly less challenging in terms of documents lengths and has a skew towards question-answer and statements 
information content; though the magnitudes in lengths and similarity are comparable.

Baseline experiments. In this section, we present our baseline experiments designed to benchmark the 
aci-bench Corpus. These experiments encompass various note-generation tasks and incorporate state-of-the-art 
note-generation techniques. To assess the robustness of note-generation techniques, we also examine the impact 
of different clinical doctor-patient dialogue transcript generation methods with and without human correction 
on the quality of automatically generated clinical notes derived from these transcripts.

Note generation models. The experiments on note-generation models to benchmark the aci-bench Corpus 
are listed below:

Transcript-copy-and-paste Previous research finds taking the longest sentence20 as dialogue summarization is 
a good baseline. In the spirit of this approach, we adopt several variations to generate the clinical note: (1) the 
longest speaker’s turn, (2) the longest doctor’s turn, (3) the first two and the last ten speaker’s turns, (4) the first 
two and the last ten doctors turns and (5) the entire transcript.
Retrieval-based Borrowing from retrieval-based response generation21, we pose a simple baseline that retrieves 
a relevant note in the training corpus rather than generating new text. To generate a clinical note for a new tran-
script, we employ transcript UMLS concept set similarity to retrieve the most similar transcript from the train 
set. The note that corresponds to this transcript in the training set is selected as the summarization for the new 
transcript, based on the assumption that the semantic overlap between the UMLS concepts in the two transcripts 
is a reliable indicator of their content similarity. Following the same manner, we adopt a similar retrieval-based 
method on the document embedding similarity from the spaCy English natural language process pipeline22.
BART-based We employ the SOTA transformer model, bidirectional autoregressive transformer (BART)23. We 
also include its two variants: (1) a version with continued pre-training on PubMed abstract24, aimed at learning 
domain-specific language and knowledge, and (2) a version fine-tuned on the SAMSum corpus25, designed to 
enhance the model’s performance on conversational summarization tasks. For all BART-based models, we use 
the BART-Large version. It is important to note that although BART and BioBART have the same model struc-
ture, they possess distinct tokenizers and vocabulary sizes. These differences play a significant role in determin-
ing their respective performance on the aci-bench corpus. The corresponding fine-tuning parameters can be 
found in the Supplementary Information. BART-based models have the same limit of 1,024 tokens.
LED-based We leverage the Longformer-Encoder-Decoder (LED) architecture26, which incorporates an atten-
tion mechanism that can scale up to longer sentences. LED-based models have the same limit of 16 K tokens. 
Because the transcript is long, LED overcomes the sentence length limit from BART. We also include its variant, 
which is finetuned on the Pubmed dataset27, to enhance the model’s summarization ability in the biomedical 
context. The corresponding fine-tuning parameters can be found in the Supplementary Information.
OpenAI models We experimented with the latest OpenAI models and APIs (https://platform.openai.com/docs/
models): (i) Text-davinci-002, (ii) Text-davinci-003, (iii) ChatGPT (gpt-3.5-turbo), and (iv) GPT-4. The first 
three models have the same limit of 4,097 tokens, shared between the prompt and the output/summary, whereas 
GPT-4 allows 32k tokens. We used the following prompt:
•	 Prompt: “summarize the conversation to generate a clinical note with four sections: HISTORY OF PRESENT 

ILLNESS, PHYSICAL EXAM, RESULTS, ASSESSMENT AND PLAN. The conversation is:”

To allow adequate division detection, we added some light rule-based post-processing, adding endlines 
before and after for each section header. This post-processing described in the Supplementary Information.

Full-note- vs division-based note-generation approaches. In the cases of the fine-tuned pre-trained models, we 
investigated note generation with two overall approaches: full note generation versus division-based genera-
tion and concatenation. The first approach generates a complete note from the transcript using a single model 
or approach. The latter approach is motivated by the long input and output lengths of our data – which may 
exceed that of those pre-trained models are typically trained for. To this end, full notes were divided into the 
subjective, objective_exam, objective_results, and assessment_and_plan divisions using a rule-based 
regular-expression section detection. As the notes were followed a handful of regular patterns, this section 
detection was highly performant. In cases where certain sections were missing, an EMPTY flag was used as the 
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output. Each division generation model was separately fine-tuned. The final note was created by concatenating 
the divisions.

Automatic evaluation metrics. We employ a variety of widely-used automatic evaluation metrics to eval-
uate performances in different perspectives. Specifically, we measure at least one lexical n-gram metric, an 
embedding-based similarity metric, a learned metric, and finally an information extraction metric. We evaluate 
the note generation performance both in the full note and in each division.

For the ngram-based lexical metric, we compute ROUGE28(1/2/-L), which computes unigram, bigram, 
and the longest common subsequence matches between reference and candidate clinical notes. For an 
embedding-based metric, we applied BERTScore29 which greedily matches contextual token embeddings from 
pairwise cosine similarity. BERTScore efficiently captures synonym and context information. For a model-based 
learned metric, we used BLEURT30, which is trained for scoring candidate-reference similarity. Additionally, we 
incorporate a medical concept- based evaluation metric (medcon) to gauge the accuracy and consistency of 
clinical concepts. This metric calculates the F1-score to determine the similarity between the Unified Medical 
Language System (UMLS) concept sets in both candidate and reference clinical notes. This is similar to the 
CheXpert evaluation for radiology summarization however our concepts are not restricted to 14 predetermined 
categories, and do not include weightings or assertion status31. The extraction of UMLS concepts within clin-
ical notes is performed using a string match algorithm applied to the UMLS concept database through the 
QuickUMLS package32. To ensure clinical relevance, we restrict the medcon metric to specific UMLS semantic 
groups, designated as Anatomy, Chemicals &Drugs, Device, Disorders, Genes & Molecular Sequences, Phenomena 
and Physiology. To consolidate the various evaluation metrics, we first take the average of the three ROUGE 
submetrics as ROUGE, and the average of ROUGE, BERTScore, BLEURT, and medcon scores as the final eval-
uation score. Because BERTScore and BLEURT are limited by their pre-trained embedding length, we only use 
these evaluations for the division-based evaluation.

Results. We fine-tune the models on the train set and select the best trained model based on evaluation on the 
validation set. Performances were evaluated on three test sets. Test sets 1 and 2 correspond to the test sets from 
ACL ClinicalNLP MEDIQA-Chat 2023 TaskB full-note generation and TaskC dialogue generation, respectively. 
Test 3 corresponds to CLEF MEDIQA-SUM 2023 Subtask C full-note generation. Our test 1 full note evalu-
ation results can be found in Table 6. Per-division subjective, objective_exam, objective_results, and 

Model ROUGE-1 ROUGE-2 ROUGE-L medcon

Transcript-copy-and-paste

longest spearker turn 27.84 9.32 23.44 32.37

longest doctor turn 27.47 9.23 23.20 32.33

12 speaker turns 33.16 10.60 30.01 39.68

12 doctor turns 35.88 12.44 32.72 47.79

transcript 32.84 12.53 30.61 55.65

Retrieval-based

trainUMLS 43.87 17.55 40.47 33.30

trainsent 41.59 15.50 38.20 26.17

BART-based

BART 41.76 19.20 34.70 43.38

BART (Division) 51.56 24.06 45.92 47.23

BART + FTSAMSum 40.87 18.96 34.60 41.55

BART + FTSAMSum (Division) 53.46 25.08 48.62 48.23

BioBART 39.09 17.24 33.19 42.82

BioBART (Division) 49.53 22.47 44.92 43.06

LED-based

LED 28.37 5.52 22.78 30.44

LED (Division) 34.15 8.01 29.80 32.67

LED + FTpubMed 27.19 5.30 21.80 27.44

LED + FTpubMed (Division) 30.46 6.93 26.66 32.34

OpenAI (wo FT)

Text-Davinci-002 41.08 17.27 37.46 47.39

Text-Davinci-003 47.07 22.08 43.11 57.16

ChatGPT 47.44 19.01 42.47 55.84

GPT-4 51.76 22.58 45.97 57.78

Table 6. Results of the summarization models evaluated at the full note level, test set 1. Simple retrieval-based 
methods provided strong baselines wih better out-of-the-box performances than LED models and full-note 
BART models. In general for BART and LED fine-tuned models, division-based generation worked better. 
OpenAI models with simple prompts were shown to give competitive outputs despite no additional fine-tuning 
or dynamic prompting.
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assessment_and_plan results for test 1 are accounted for in Tables 7–10. In the main body of this paper, we 
discuss the results of test 1 which was used for our first full note generation task challenge (TaskB in https://
github.com/abachaa/MEDIQA-Chat-2023). We will first provide an overview of the model performance in both 
full-note and division-based evaluations. We will then describe each model type’s performance. For reference, 
we provide the results of test 2 and test 3 in the Supplementary Information.

In the full-note evaluation, the BART + FTSAMSum (Division) model achieved the highest ROUGE scores, 
with 53.46 for ROUGE-1, 25.08 for ROUGE-2 and 48.62 for ROUGE-L. This is because when BART + FTSAMSum 
(Division) model was fine-tuned on our aci-bench training set, it learned more specific clinical jargon in the 
aci-bench corpus, such as accurate subsection headers (“CHIEF COMPLAINT”, “HISTORY OF PRESENT 
ILLNESS”,…) and physical examination results (“- Monitoring of the heart: No murmurs, gallops…”).  
On the contrary, GPT-4 demonstrated the highest medcon evaluation score of 57.78, while achieving the sec-
ond to third-best performance in ROUGE scores, with 51.76 for ROUGE-1, 22.58 for ROUGE-2 and 45.97 for 
ROUGE-L. The great performance can be attributed to the model’s gigantic size, intensive pretraining, huge 
context size, and great versatility. GPT-4 captured many relevant clinical facts and thus had the highest med-
con. However, since it was not specifically fine-tuned for the aci-bench corpus clinical note format, it exhibited 
slightly inferior performance in capturing the structured aci-bench clinical notes. An example of a note gen-
erated from different models can be found in the Supplementary Information. Interestingly, the retrieval-based 
baselines showed very competitive ROUGE performances out-of-the-box with ROUGE-L of 40.47 F1 for and 
38.20 F1 for the UMLS and sentence versions respectively. Furthermore, the simple transcript copy-and-paste 
baselines produced high starting points that out-performed untreated LED-based models. For example, simply 
copying the transcript achieved a 30.61 F1 ROUGE-L and 55.65 F1 medcon score, whereas the division based 
LED model achieved 29.80 F1 and 32.67 F1.

In division-based evaluations, we found that different models achieved the highest average score across 
different note divisions, BART + FTSAMSum (Division) scored 51.08 in the subjective division (Table 7), 
Text-davinci-003 reached 55.30, 48.90 and 46.19 in the objective_exam (Table 8), objective_results 
(Table 9), and assessment_and_plan (Table 10) divisions, respectively. These results indicate that all three 
models can be good candidates for the note-generation task. However, since BART + FTSAMSum (Division) 
required fine-tuning and Text-davinci-003 did not, the latter two models demonstrated greater potential. A few 
additional examples for Text-davinci-003 could potentially enhance their performance, by enabling the models 
to learn specific clinical jargon in each division.

In comparing the full-note and division-based note-generation approaches, our experiments demonstrated 
that, for our pretrained BART- and LED-based models, division-based note-generation methods resulted in 
significant improvements over full-note-generation methods. These improvements ranged from 1 to 14 point 
increases in both ROUGE and medcon evaluations for the full-note-based evaluation. This finding implies 
that breaking down a complex summarization problem into smaller divisions effectively captures more criti-
cal information. For division-based evaluations, the increase is not obvious for the subjective divisions, but 

Model

Evaluation score on the subjective division

ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT medcon Average

Retrieval-based

trainUMLS 41.70 23.45 31.64 72.10 39.01 23.04 41.60

trainsent 41.12 20.62 29.20 70.78 37.94 18.86 39.47

BART-based

BART 48.19 25.81 30.13 68.93 43.83 44.41 47.97

BART (Division) 47.25 26.05 31.21 70.05 43.55 44.20 48.16

BART + FTSAMSum 46.33 25.52 29.88 68.68 45.01 43.21 47.70

BART + FTSAMSum (Division) 52.44 30.44 35.83 72.41 44.51 47.84 51.08

BioBART 45.79 23.65 28.96 68.49 41.09 41.10 45.87

BioBART (Division) 46.29 25.99 32.43 70.30 42.99 41.14 47.33

LED-based

LED 24.81 5.29 11.00 55.60 30.68 20.19 30.04

LED (Division) 31.27 8.31 15.99 56.94 25.40 24.03 31.22

LED + FTpubMed 23.48 4.72 10.49 54.46 20.32 17.91 26.40

LED + FTpubMed (Division) 26.03 6.17 12.93 56.41 19.19 20.46 27.78

OpenAI (wo FT)

Text-Davinci-002 29.73 12.38 20.13 58.98 36.70 32.47 37.22

Text-Davinci-003 33.29 15.24 23.76 60.63 38.06 36.14 39.73

ChatGPT 32.70 14.05 22.69 65.14 39.48 38.21 41.49

GPT-4 41.20 19.02 26.56 63.34 43.18 44.25 44.93

Table 7. Results of the summarization models on the subjective division, test set 1. BART-based models 
generated at both full note and division levels had similar levels of performances, which were in general better 
than the other model classes. As in the full note evaluation, retrieval-based methods provided competitive 
baselines.
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Model

Evaluation score on the objective_exam division

ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT medcon Average

Retrieval-based

trainUMLS 43.43 25.77 36.74 74.63 40.96 24.63 43.88

trainsent 37.02 19.58 31.20 71.47 35.83 14.52 37.77

BART-based

BART 0.56 0.36 0.56 40.25 10.66 0.00 12.85

BART (Division) 49.77 31.63 38.92 73.75 44.19 34.80 48.21

BART + FTSAMSum 6.22 3.74 5.21 44.33 14.82 4.14 17.09

BART + FTSAMSum (Division) 47.73 29.51 36.98 73.41 42.86 35.91 47.56

BioBART 2.57 1.04 1.68 42.10 12.38 1.22 14.36

BioBART (Division) 42.51 26.15 32.19 71.57 42.18 29.55 44.23

LED-based

LED 0.00 0.00 0.00 0.00 14.87 0.00 3.72

LED (Division) 27.03 7.96 16.88 54.48 14.47 18.84 26.27

LED + FTpubMed 0.00 0.00 0.00 0.00 14.87 0.00 3.72

LED + FTpubMed (Division) 20.24 6.30 12.14 54.13 12.67 18.07 24.44

OpenAI (wo FT)

Text-Davinci-002 43.68 22.31 35.03 68.25 45.68 35.41 45.75

Text-Davinci-003 54.17 32.42 44.54 73.40 51.29 52.79 55.30

ChatGPT 49.44 27.29 38.60 71.39 49.39 48.95 52.04

GPT-4 50.11 28.20 40.43 71.79 51.11 42.59 51.27

Table 8. Results of the summarization models on the objective_exam division, test set 1. BART and LED 
full note generation models suffered a significant drop at the objective_exam. This may be attributable to the 
lower amounts of content required to be generated, the appearance of text later in the sequence, as well as the 
higher variety of structures. The OpenAI were in general better performant with BART division-based models 
as next best.

Model

Evaluation score on the objective_results division

ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT medcon Average

Retrieval-based

trainUMLS 30.26 14.89 29.87 66.24 37.25 8.91 34.35

trainsent 40.52 18.21 38.87 73.33 45.79 12.45 41.03

BART-based

BART 0.00 0.00 0.00 0.00 5.45 0.00 1.36

BART (Division) 30.48 19.16 27.80 66.64 43.07 21.56 39.27

BART + FTSAMSum 20.79 0.46 20.67 54.54 28.32 0.77 24.40

BART + FTSAMSum (Division) 29.45 18.01 26.63 66.43 40.75 20.17 38.01

BioBART 17.50 0.00 17.50 52.44 25.33 0.00 22.36

BioBART (Division) 35.38 14.33 32.79 68.40 47.63 15.69 39.81

LED-based

LED 0.00 0.00 0.00 0.00 5.45 0.00 1.36

LED (Division) 14.04 4.97 11.08 48.86 9.61 7.86 19.09

LED + FTpubMed 0.00 0.00 0.00 0.00 5.45 0.00 1.36

LED + FTpubMed (Division) 10.48 3.64 8.32 42.43 7.13 8.86 16.48

OpenAI (wo FT)

Text-Davinci-002 41.48 20.12 39.95 70.61 50.79 24.42 44.92

Text-Davinci-003 44.92 25.21 43.84 72.35 55.87 29.37 48.90

ChatGPT 34.50 17.75 30.84 66.68 48.51 22.28 41.29

GPT-4 37.65 19.94 35.73 68.33 48.50 26.73 43.67

Table 9. Results of the summarization models on the objective_results division, test set 1. Similar to 
objective_exam, BART and LED full note generation models suffered a significant drop at the objective_
results division. This may be attributable to the higher sparsity of this division, low amounts of content 
(sometimes only 2-3 sentences), and the appearance of text later in the sequence. The OpenAI were in general 
better performant with BART division-based models as next best.
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around 20 percent in the average score for objective_exam, objective_results and assessment_and_plan 
divisions. This can be attributed to the generation of the latter three divisions at the end of clinical notes, which 
often exceeds the word length of typical summarization tasks that BART-based and LED-based models are used 
for. Additionally, since some notes in the training set lack these divisions, the note-generation models struggle 
to learn the division structure during fine-tuning from the full note. As the division of clinical notes is identified 
by a rule-based division header extraction method, even when the information from a specific division is gener-
ated as a few sentences, the corresponding division information cannot be detected by the evaluation program.

Our observations on the performance for each type of model are summarized below:

Transcript-copy-and-paste models are only evaluated in the full note. It demonstrated suboptimal perfor-
mance, which is around 17 points less than the best ROUGE scores. This is primarily because transcripts from 
doctor-patient dialogues serve to facilitate doctor-patient interactions with questions, answers, and explana-
tions related to various health phenomena. In contrast, clinical notes, which are created by and intended for 
healthcare professionals, generally follow the SOAP format to convey the information concisely and accurately. 
Therefore, transcripts and notes can differ significantly in terms of terminology, degree of formality, relevance to 
clinical issues, and the organization of clinical concepts. On the other hand, the original transcript often achieves 
the fourth highest score in medcon evaluation at 55.65, owing to its ability to capture relevant UMLS concepts 
explicitly mentioned within the transcript.
Retrieval-based models have the best BERTScore in objective_exam, objective_results and assess-
ment_and_plan divisions in test 1, with around 1 to 5 points increase over the best BART-based and OpenAI 
models. They also have shown sometimes promising results with the second and first average scores in objec-
tive_results and assessment_and_plan divisions from test 3. This is because clinical notes with similar 
transcripts tend to have more similar clinical notes, especially when objective_results sections use stand-
ard phrasing and templates, or in scenarios where patients share common symptoms and health examinations 
from different medical problems. However, their performance in the medcon evaluation metric is often poor 
because of the less accurate patient-specific medical conditions. As a result, these models may perform well in 
non-medcon evaluation metrics but may not produce accurate medcon evaluations.
BART-based models demonstrated superior performance. In full-note evaluation, BART + FTSAMSum (Division) 
had the best ROUGE score performance with medcon evaluation scores only secondary to OpenAI models. 
In subjective division, BART + FTSAMSum (Division) had top performance in all scores except BLEURT. These 
findings suggest that using a model fine-tuned on a similar dataset serves as a solid foundation for summari-
zation tasks. Meanwhile, BioBART exhibits a comparatively weaker performance than BART, which could be 
attributed to the choice of vocabularies, tokenizers, and consequently, the quality of contextual embeddings. 
For BART-based models, the division-based note-generation approach improved the performance from the 
full-note-generation approach with around a 5 to 40 points increase in all division-based average scores. This 
implies that dividing the complex note-generation tasks into simpler subtasks can boost model performance.

Model

Evaluation score on the assessment_and_plan division

ROUGE-1 ROUGE-2 ROUGE-L BERTScore BLEURT medcon Average

Retrieval-based

trainUMLS 44.59 21.50 29.66 70.39 44.77 24.70 42.94

trainsent 41.28 19.73 28.02 69.48 43.18 18.79 40.28

BART-based

BART 0.00 0.00 0.00 0.00 29.05 0.00 7.26

BART (Division) 43.31 20.59 26.55 67.49 40.99 32.30 42.73

BART + FTSAMSum 1.52 0.49 0.87 35.38 19.79 1.00 14.28

BART + FTSAMSum (Division) 43.89 21.37 27.56 68.09 41.96 31.33 43.08

BioBART 0.00 0.00 0.00 0.00 29.05 0.00 7.26

BioBART (Division) 42.44 19.44 26.42 67.57 43.88 31.12 43.00

LED-based

LED 0.00 0.00 0.00 0.00 29.05 0.00 7.26

LED (Division) 28.23 6.13 12.44 55.75 27.78 21.94 30.27

LED + FTpubMed 0.00 0.00 0.00 0.00 29.05 0.00 7.26

LED + FTpubMed (Division) 28.00 5.99 13.07 55.68 20.95 25.01 29.33

OpenAI (wo FT)

Text-Davinci-002 30.90 12.27 21.44 61.01 44.98 35.04 40.64

Text-Davinci-003 35.41 14.86 25.38 63.97 49.18 46.40 46.19

ChatGPT 36.43 12.50 23.32 63.56 48.21 43.71 44.89

GPT-4 38.16 14.12 24.90 64.26 49.41 42.36 45.44

Table 10. Results of the summarization models on the assessment_and_plan division, test set 1. Similar to 
objective_exam and objective_results, BART and LED full note generation models suffered a significant 
drop at the objective_results division. This may be attributable to the appearance of text later in the 
sequence. The OpenAI were in general better performant with BART division-based models as next best.
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LED-based models were generally inferior to that of BART-based models with around 15 to 40 points lower 
scores in full-note ROUGE and medcon scores. We observed that compared with the BART-based models, the 
LED-based models generate notes with worse fluency, less essential clinical information, and poorer division 
structure. On the other hand, the effect of the division method on LED-based models was similar to that on 
BART-based models, which lead to a 1 to 9 points increase in full-note ROUGE and medcon scores and a 2 to 
25 points increase in division-based average scores.
OpenAI models exhibited good general performance and using a generic prompt, without fine-tuning. GPT4 
outperformed other OpenAI models, at around 10 ROUGE-1 F1 points in full-note evaluation. This is consistent 
as GPT4 is known to have been trained with more parameters and has had shown to have made impressive per-
formances across a variety of human tasks33,34. While Text-davinci-003 and ChatGPT were within 4 ROUGE-1 
points in test 1, there were larger 4–9 point gaps in test 2 and 3 respectively. This information combined with the 
relatively stable ROUGE-1 score for GPT4 (at around ~50 Rouge-1), suggests that the earlier models had more 
unstable performances. Assessing the division-based performances, we see the relative ranking of the OpenAI’s 
were more variable (with the exception of Text-davinci-002 consistently performing below the other models).

Effect of ASR vs human transcription and correction. In practice, automatic speech recognition (ASR) is widely 
deployed because it provides an affordable, real-time text-based transcript. However, the quality of ASR is usu-
ally worse than the human transcript, influenced by its model type, hardware, and training corpus. To study the 
effect of ASR vs human transcription on clinical note generation from dialogue, we evaluate the note-general 
model performance on transcripts generated from these two approaches. We compare the performance between 
human transcription versus ASR for the virtscribe subset of the data; and ASR versus ASR-corrected in the aci 
subet. We conduct this ablation study with one of the best models in the previous section, BART + FTSAMSum 
(Division), and compare the result on the split of the three test sets. To study the difference with human tran-
scription versus ASR for the virtscribe subset, we experiment with feeding the raw ASR transcripts instead of it’s 
original human transcription. We also fine-tune the model further to adapt to the ASR version by additionally 
learning for an additional 3 epochs with the same parameters using the ASR version of the virtscribe train 
set. To understand effects of the train/decode discrepancies, we evaluate the results of feeding in the origi-
nal human-transcription source as well as ASR versions to both the original fine-tuned model and the further 
ASR-fined tuned model. The results of the virtscribe source experiments are presented in Table 11. We observed 
that the model setup with best ROUGE-1/2/L and medcon scores are different for each test set. Namely, 
BART + FTSAMSum (Division) with transcripts generated by ASR from virtscribe dialogues do not exhibit out-
standing differences with the human transcription (when using ASR source input performance dropped to 
41.74 F1 ROUGE-L instead of 43.98 ROUGLE-L with the original model human transcript input for test1). 
Further fine-tuning BART + FTSAMSum (Division) with ASR notes in the train set also did not greatly improve 
the performance (fine-tuning improved 2 points in F1 to 43.82 F1 for an ASR transcript source, and a minimal 
drop to 43.59 when applying the original human transcription source). This indicates that ASR and the human 
transcript do not have a remarkable impact on the note-generation performance from dialogue with virtscribe.

To study the effect of ASR versus ASR-corrected, we conduct similar experiments for the aci subset by sub-
stituting the original ASR transcripts with corrected versions. The results of these experiments are shown in 
Table 12, we also observed that the model setup with best ROUGE-1/2/L and medcon scores are different for 
each test set. The ASR-corrected did not exhibit more outstanding improvement from the original ASR on the 
BART + FTSAMSum (Division)'s note generation performance (with approximately 1 F1 point difference amongst 
all the test sets and evaluation versions and metrics). Further fine-tuning BART + FTSAMSum (Division) with 
ASRcorr notes in the train set also did not substantially change performance. This indicates that those ASR 
errors corrected by humans do not have a remarkable impact on the note generation performance.

Test set Bart Fine-tuning Test Split ROUGE-1 ROUGE-2 ROUGE-L medcon

1

train ASR 48.61 18.94 41.74 42.63

+trainASR ASR 49.70 19.96 43.82 41.96

train human 48.28 20.09 43.98 46.13

+trainASR human 48.50 19.52 43.59 42.85

2

train ASR 51.29 21.31 43.76 45.21

+trainASR ASR 50.42 21.30 44.68 43.71

train human 50.11 20.80 44.44 43.35

+trainASR human 48.44 20.47 43.68 44.28

3

train ASR 50.41 20.01 43.79 49.91

+trainASR ASR 49.22 19.72 43.19 44.18

train human 50.86 19.50 44.59 45.48

+trainASR human 47.42 18.42 42.67 44.72

Table 11. Model performance on different test sets splits, comparison between virtscribe dialogues with ASR 
and human transcript. The model finetuned on the train set is the BART + FTSAMSum (Division) fine-tuned 
with 10 epochs on the original train set, as in the baseline methods. The train + trainASR model refers to the 
BART + FTSAMSum (Division) finetuned for 3 more epochs on the virtscribe with ASR split of the train set.
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In summary, our investigation of ASR versus human transcription shows that although ASR can generate 
errors in the transcript, those errors do not have a remarkable impact on the note-generation performance and 
are thus tolerable by our current model setting. However, this could be due to our automatic evaluation metrics 
evaluating the n-grams and clinical facts with uniform weights. In clinical practice, some particular medical fact 
errors from the ASR can have a non-trivial impact.

Usage Notes
Limitations and challenges. There are several limitations to this work. The data here is small and produced 
synthetically by medical annotators or patient actors in a single institution. Therefore, this dataset may not cover 
in a statistically representative way, all health topics, speech variations, and note format variations present in the 
real world. We describe below the specific context and challenges of these representation issues and how they may 
be mitigated.
Dialogue patterns and health topic variations due to limited underlying population. While the subjects in 
this dataset are fictitious persons, the creation of this dataset was accomplished by a limited number of content 
creators which influences the variations of linguistic dialogue patterns and health topics created. Specifically, 
the collections were conducted in a Nuance product demonstration studio by Nuance employees in Eastern 
Massachusetts. Thus, personas may have varying degrees of dialect and speech patterns consistent with the 
US Northeast. As Nuance hires employees from diverse backgrounds, some speakers may incidentally have 
linguistic patterns or accents consistent with their place of origin. In fact, in linguistics, it is recognized that 
speech cues including lexical, syntactic, pragmatic (e.g. what a speaker implies) and paralinguistic (e.g. pitch 
tone), can act as a social identity marker for an individual, which is an accumulation of the persons' experiences 
including age, gender, class, social identity, etc35,36. Such patterns of information exchange and dialogue may 
also affect the length of a conversation. Thus, based on either the doctor or patient, the same medical concern 
may be discussed more or less extensively (leading to different transcript lengths), using different turn-taking 
and dialogue acts, and employing particular expressions and vocabularies. One limitation in our original works 
was that content creators' age, academic achievement, place of origin, and areas/durations of schooling and 
residence were not captured. These and other factors may contribute to speech and language patterns37. On the 
other hand, social-economic status has been shown to be a factor on the types of health complaints of patient 
populations38,39.

Purposefully collecting such details and modeling personas to fit different identified characteristics would be 
a meaningful improvement in a next iteration of this type of dataset. That said, this incorporation is non-trivial. 
If such a dataset was constructed as a persona content creation task, annotators may project their own ideas 
of represented populations which may add bias. Furthermore, no absolute deterministic relationship exists 
between an identified personal characteristics and speech patterns. For example, although a patient or per-
sona may have been raised and educated outside the United States, the person’s English understanding, speech,  
and writing may be close to that of a Californian American, depending on factors such as the age of immigra-
tion, years of formal schooling, subjects’ own aptitude for recognizing pronunciations and interest in social 
activities40. Thus, even given this information, statistical significance can only be achieved if the dataset is at a 
large enough scale. At-scale production of synthetic encounters is difficult as such a dataset would require a large 
number of diverse highly qualified trained personnel, such as doctors (whose priority is their field of training, 
medicine). On the other hand, collecting, storing, and sharing a large collection of real patient data is a highly 
legally and ethically challenging endeavor.

With additional sub-population information, automatic note generation can be tuned and evaluated for dif-
ferent socio-economic categories to understand disparities in generation or evaluation performance.
Clinical note variations. In this dataset, there were only a hand full of variations in note format. For example, 
some notes contained chief complaints, but others did not; certain notes include longer history of present illness 

Test set Bart Fine-tuning Test Split ROUGE-1 ROUGE-2 ROUGE-L medcon

1

train ASR 54.03 24.19 48.09 45.97

+trainASRcorr ASR 54.10 24.47 47.92 47.17

train ASRcorr 54.04 24.35 48.19 46.00

+trainASRcorr ASRcorr 54.04 24.50 47.85 47.36

2

train ASR 51.62 23.05 46.01 45.31

+trainASRcorr ASR 53.14 24.47 47.43 45.34

train ASRcorr 51.56 23.13 45.97 45.98

+trainASRcorr ASRcorr 53.44 24.51 47.66 45.47

3

train ASR 53.07 23.53 47.73 45.27

+trainASRcorr ASR 52.53 23.14 47.06 46.38

train ASRcorr 53.13 23.48 47.63 45.52

+trainASRcorr ASRcorr 52.38 23.00 46.87 45.78

Table 12. Model performance on different test sets splits, comparison between aci dialogues with ASR and 
ASRcorr transcript. The model finetuned on the train set is the BART + FTSAMSum (Division) fine-tuned with 
10 epochs on the original train set, as in the baseline methods. The train + trainASRcorr model refers to the 
BART + FTSAMSum (Division) finetuned for 3 more epochs on the aci with ASRcorr split of the train set.
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sections, while others embed symptom context in the assessment_and_plan. The small number of note for-
mat variations was intentional for practical purposes: consistent training and demonstration of clinical note 
generation.

However, though this note structure regularity makes the task tractable, especially in a limited dataset, this 
phenomenon does not reflect reality, as even different providers practicing in the same organization and spe-
cialty may have vastly different note structure and content setup.

To address this problem, one area of expansion is to create multiple references. In fact, one of the highest 
standards of human evaluation on summarization, the pyramid41 annotation scheme, requires multiple refer-
ence summaries. In this specific case, expansion can be in two settings: (a) content variation with the same note 
structure and (b) content variation with different note structures. These multiple references can then be used for 
investigating evaluation metrics (especially for long documents and in this special case of semi-structured set-
ting) and well as be used for developing natural language generation algorithms which can control and evaluate 
for generation style42.
EMR data incorporation. Clinical notes are generated often in conjunction with structured information from 
the electronic medical record (EMR). This may include chief complaints as registered during the appointment 
creation, vitals fed directly from instruments (e.g. blood pressure), templates specific to a doctor or practice 
pre-populated prior or during note entry, or structured links to diagnoses and orders for referrals, tests, and 
treatments. Interaction with EMR functions as voice commands, “e.g. Hey Dragon”. However, the actual nature 
of this was specific to one system at a given time. This interaction will grow and change as EMR design evolves.

Incorporating structured elements along with the free text notes, such as in the EMR data (e.g. MIMIC dataset43),  
would provide another layer of problem complexity. Chiefly, the task transforms from a text-to-text generation 
task, e.g. dialogue to clinical note summarization, to a multi-modal to multi-modal generation problem, e.g. 
vitals, past tests, and dialogue to clinical note and orders. The construction of such a dataset is challenging as the 
nature of mixed free text and structured information per note varies. For example, the same sentence informa-
tion “Pain level is 3/10” may be represented as entirely free text or in a structured form inserted through a menu. 
Moreover, there are many correct forms of diagnosis codes and CPT codes per the same information. A diverse 
dataset would require acquisition of these clinical notes and their underlying mapped structures, requiring 
exportation by particular EHR. Synthetic creation of such data poses annotation software challenges and would 
require medical billing expertise.

Comparing the differences of language generation models, including and excluding, EHR inputs and outputs, 
e.g. ablation experiments with text and structured to text only versus text to text only, can provide insight into 
problems such as hallucinations and omissions. Furthermore, fine-grained, systematic definition of medical 
critical and non-critical hallucinations (invented information in the final output) and omissions (e.g. important 
source transcript content unmentioned in the final output) in evaluation is an area that can benefit from further 
study.

We hope this dataset will provide a pivotal beginning that can spark the construction and release of more 
complex future datasets in ambient clinical intelligence. We envision, combined with future work and expan-
sions, this will be one of many progressively complex datasets in the domain that can be used to benchmark 
progress in the field.

We have provided instructions in the README file in the Figshare repository describing how to process the 
aci-bench dataset. Examples of processing the data for different summarization evaluations can be found in the 
code located at the GitHub repository provided below. The data here is intended to be used for benchmarking 
methods related to clinician-patient dialogue summarization. It should not be used for training models to make 
medical diagnoses. No patient data was used or disclosed here. Names of the characters were changed (in case 
content creators used their own information). The gender balance of the entire dataset is roughly equal. Other 
demographic information was not modeled in this dataset.

Code availability
All code used to run data statistics, baseline models, and evaluation to analyze the aci-bench corpus is freely 
available at https://github.com/wyim/aci-bench.
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