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Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature
of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular
process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is
crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail,
from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of
kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-
cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the
centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal
abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor
prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how
different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing
number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases
inhibitors are worth exploiting as an effective therapeutic strategy.
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FACTS

● G1 to S phase transition has been largely investigated to
define the activation pattern of CDK4/6 and CDK2.
However, a unifying model of how these kinases act to
overcome the restriction point is still missing, mostly
because of cell type-to-cell type variability as well as due
to the employment of different reporters to monitor these
dynamics.

● Therapeutical targeting of CDKs has recently gained major
attention after successful clinical employment of CDK4/6
inhibitors in breast cancer. Nevertheless, very little is known
about the effect these inhibitors have in reshaping
phosphatase activities, and how this could contribute to
tumor resistance.

● Despite having demonstrated promising results in vitro, DDR
inhibitors still struggle to prove their therapeutic value in
clinical trials, mostly as a consequence of burdensome
side effects on patients. With DDR being so indispensable
also for healthy tissues, it is tempting to speculate that
these inhibitors will demonstrate their efficacy only in
combinatorial treatments with compounds that enhance
replication stress.

OPEN QUESTIONS

● The promiscuity of cyclins binding to CDKs suggests a
plasticity in cell cycle rewiring that has been long overlooked,
especially in the context of cancer therapy. How do cyclins
behave when their respective CDKs are inhibited? Do they
contribute to activating alternative CDKs to bypass the
inhibition and promote tumor resistance?

● Multiple phospho-proteomic screenings have expanded the
known set of proteins targeted by DNA damage response (DDR)
kinases, suggesting connections with many other cellular
pathways, such as E3 ligases, splicing, and chromatin remodel-
ing regulation. An attractive future line of research in system
biology might focus on how this interplay occurs and whether it
is necessary for functional checkpoints. Additionally, it might
also be worth investigating whether or not the broad range of
targets can explain the poor success of DDR inhibitors in clinics.

● Similar to all kinases, cell cycle kinases use ATP as a substrate for
phosphorylating their targets. Despite the evident interplay
between cell cycle and energy production, very few studies have
addressed this connection in cancer ontogenesis. Does meta-
bolic rewiring influence the cell cycle through ATP biosynthesis,
or is it instead influenced by the cell cycle transitions?
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INTRODUCTION
In eukaryotic cells, two processes—the replication of genomic
DNA and the ensuing segregation into daughter cells—occur
across different cell cycle phases. These two processes are the core
focus of cell cycle control. It is frequently believed that cancer cells
move through the cell cycle uncontrollably and that the majority
—if not all—cell cycle checkpoints must be altered for a cell to
develop into cancer. A significant body of recent research,
however, has produced compelling evidence that just particular
parts of cell cycle control must be compromised for cancer cells to
continue to proliferate. According to this research, the most
relevant phase that needs to be altered for cancer cells to
continue their uncontrolled division is their capacity to exit cell
cycle [1–4]. Importantly, this also implies that most cell cycle
regulatory mechanisms are necessary for the survival of cancer
cells. These results highlight the essential distinction between the
DNA damage checkpoint and RS checkpoint responses, which are
designed, respectively, to inhibit the expansion and spread of DNA
damage and replication of stress-induced DNA damage. Indeed,
cancer cells frequently have a defective DNA damage checkpoint,
allowing continued cell division despite the accumulation of
genetic mistakes. Contrarily, genes implicated in the RS check-
point are rarely altered in cancer cells, as many malignancies
become increasingly reliant on checkpoint function to endure
high levels of RS.
In this multifaceted context, cell cycle-related kinases represent

the master regulators that provide swift and precise control, and
their activity is typically dysregulated in cancer cells that
proliferate too quickly. Multiple molecules that target these
kinases have been successfully designed to control the prolifera-
tion and avoid karyotypic abnormalities of malignant cells; among

them, a growing number have been clinically approved and many
others are under clinical trial scrutiny.
In this Review, we provide a brief overview of cell cycle control

pathways, and we explore in depth the current knowledge on
how cell cycle regulatory kinases exert their roles in the numerous
cell cycle checkpoints. Also, we highlight the elements of cell cycle
control that cancer cells commonly lose control over, to continue
dividing. Finally, we discuss our considerations and the general
opinion for therapeutically targeting such kinases, in order to
address these dependencies in cell cycle control and checkpoint
mechanisms. The complexity of these processes makes it
impossible to discuss all of them with high detail; rather, we will
focus on just a few of them, while discussing about the others in
general terms and guiding the reader to recently released reviews
and articles.

THE CELL CYCLE
Cell division in unicellular and multicellular eukaryotes is governed
by a sophisticated network of regulatory systems and balances to
ensure that no errors occur before a cell is permitted to enter and
advance through the cell cycle. The timely and precise duplication
and segregation of the genomic DNA is the single objective of the
intricate network of regulatory components that makes up the cell
cycle (Fig. 1).
Almost seventy years ago, Alma Howard and Stephen Pelc

(1953) attributed, for the first time, defined time windows to cell
division, and proposed two main separate phases of the mitotic
cell cycle: the interphase and the M phase. The former is further
subdivided into the S-phase (a period of DNA synthesis), the G1 or
Gap1 - which occurs before the S-phase—and the G2 or Gap2,

Fig. 1 Cell cycle-associated kinases inhibitors in clinical trials. A significant number of inhibitors have been developed to specifically target
kinases involved in cell cycle regulation and DNA replication. In each box, the active compounds that target cells undergoing the different cell
cycle phases currently subjected to clinical trials (see Table 1). Figure created with BioRender.com.
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which takes place before the mitotic period. Gap phases were
given names for the interphase intervals that separate the S phase
from the M phase based on the obvious observation that these
intervals exist between the two primary events, DNA duplication
and segregation. In these two stages, the crucial choices to begin
the cell cycle and to start the process that results in chromosomal
segregation are made. Additionally, during G1, cells can leave the
cell cycle and enter quiescence, or G0, a non-proliferative state.
Canonically, mitogen stimulation from the extracellular space

perceived by cells in G0 induces the transcriptional increase of
D-type Cyclins levels (D1, D2, D3), which in turn, stimulate their
catalytic binding partners, Cyclin-Dependent Kinase 4 or 6 (CDK4
or CDK6). Contrarily, the progression is physiologically inhibited by
growth factors withdrawal, replicative senescence, DNA damage
and oncogene-induced stress that positively regulate the INK4
family of inhibitors (p16INK4A, p15INKB, p18INK4C, p19INK4D).
The stability of Cyclin D-CDK4/6 is highly dependent on KIP/CIP
proteins (p21, p27, p57), which serve as scaffold proteins for their
interaction [5–9]. Simultaneously, KIP/CIP proteins are inhibitors of
CDK2 and CDK1 activity [10]. Cyclin D-CDK4/6 kinases phosphor-
ylate multiple cellular targets, the most important being the
retinoblastoma protein (RB1) [11]. When hyperphosphorylated,
RB1 is inhibited, releasing E2F transcriptional activity on genes
that promote G1 to S phase transition. Among E2F transcribed
genes, the two E-type Cyclins (E1 and E2) bind and activate CDK2,
amplifying RB1 phosphorylation, thereby promoting the down-
stream E2F transcriptional activity [12]. Additionally, a systematic
screen for substrates of cyclin D1-CDK4 and cyclin D3-CDK6
identified the Forkhead Box M1 (FOXM1) transcription factor as a
shared target. CDK4 and 6 stabilize and trigger FOXM1 activity,
shielding cancer cells from senescence [13].
This stage, also known as Restriction Point, is crucial since

changes in the key regulators of the G1 to the S phase transition
could allow cells to proliferate independently of mitogenic stimuli,
unleashing tumorigenic growth.
During the transition, a part of the synthesized proteins

contributes to the assembly of the replicon molecular machinery,
composed of ORC1–6, CDC6, CDT1, and MCM2–7 DNA helicase. The
consecutive series of phosphorylations primed by Cyclin E-CDK2
promotes the formation of the CMG complex (cdc45-MCM2–7-GIMS)
that unwinds the DNA double-strand with its helicase activity.
Subsequently, Cyclin A replaces Cyclin E as the catalytic binding
partner of CDK2 and further stimulates DNA replication through the
phosphorylation of targets such as cdc6. Interestingly, Cyclin A can
trigger both CDK2 and CDK1, enabling the transition from S to G2-M
phase and fostering Cyclin B1-CDK1 mitotic activity [14, 15]. When
DNA damage occurs, the kinases ataxia telangiectasia mutated
(ATM), ataxia telangiectasia and RAD3-related protein (ATR), and
their downstream effectors checkpoint kinase 1 (CHK1) and
checkpoint kinase 2 (CHK2) get triggered to promptly interrupt the
cell cycle and enable the activity of the DNA damage repair
machinery. Given their roles in preserving genomic integrity,
mutations in the ATM-ATR cascade genes favor cancer development.
Beginning simultaneously with DNA replication, the centrosome

cycle consists of duplication and maturation of the organelles that
operate as the major microtubule-organizing center (MTOC). Once
the mitosis started, the duplicated centrosomes support the
formation of the mitotic spindle poles. Then, the maturation of
each centrosome leads to the formation of its own aster of active
microtubules originating from both poles of the mitotic spindle. In
this dynamic context, serine-threonine protein kinases such as
aurora A and polo-like kinase 1 (PLK1) [16] as well as CDK1 and
CDK2, provide key regulatory activity.
When cells move from the G2 phase to the M, CDK1 is rapidly

activated in combination with Cyclin A to speed up the start of
mitosis via controlling chromosomal condensation and micro-
tubule dynamics. Subsequently, Cyclin A degradation during
nuclear envelope collapse allows the formation of Cyclin B-CDK1

complexes, indispensable for progressing through the M phase,
supporting events such as cytoskeleton reorganization, centro-
some maturation, spindle assembly, and chromosome separation
[17]. Once chromosomal condensation in the late prophase took
place, the ensuing equal segregation at the two spindle poles
during anaphase allows both sister chromatids of each duplicated
chromosome pair to be connected through their kinetochores to
the MTOC. Should a chromosome be improperly linked to the
mitotic spindle, the spindle assembly checkpoint (SAC) mediates
the arrest at the anaphase. Specifically, the SAC, also known as the
mitotic checkpoint, is a molecular hub that includes the mitotic
arrest deficient protein 1 (MAD1), MAD2, monopolar spindle 1
(MPS1), budding uninhibited by benzimidazole 1 (BUB1), BUB3,
and BUB1 homolog beta, mediates arrest (BUB1B), and aurora B.
Altogether, they provide a signaling cascade that halts the activity
of the APC complex, therefore inhibiting the mitotic progression.
Restricted activity of the SAC leads to premature separation of the
sister chromatids resulting in chromosomal instability. Last,
cytokinesis requires the anaphase-promoting complex (APC/C)
to degrade Cyclin B via the proteasome [18].

CYCLIN-DEPENDENT-KINASES OVERVIEW
Cell cycle is a tightly coordinated process controlled by the
oscillating activities of Cyclin-Dependent Kinases (CDKs). Their
activity is positively modulated by Cyclins and inhibited by CDK
inhibitors (CKIs) and fluctuation in their activation state can be
regulated by transcriptional and post-translational modifications
(typically phosphorylation), as well as the swift cyclic degradation
of Cyclins and CKIs by the ubiquitin-proteasome system. While
phosphorylation or association with CKIs ensures swift reversible
variations during the process, ubiquitin-mediated degradation of
key components of the cell cycle machinery provides direction-
ality and irreversibility to cell cycle progression.
Historically, CDKs have been characterized by genetic and

biochemical approaches in Saccharomyces pombe [19–21] in the
late 80’s by the pioneering work of Nobel laureate Paul Nurse. His
research proved the relevance of CDKs in facilitating cell cycle
transitions and demonstrated that CDKs must associate with a
regulatory subunit, named Cyclin, to exert their enzymatic
function. In contrast with the promiscuous Cdc28, the central
coordinator of the yeast cell cycle, mammalian CDKs display
selectivity with one or few Cyclins acting as the regulatory subunit.
The extraordinary degree of evolutionary divergence and specia-
lization of the CDK family in mammals resulted in the division of
CDKs into three cell-cycle-related subfamilies (CDK1, CDK4, and
CDK5) and six transcriptional subfamilies (CDK7, CDK8, CDK9,
CDK11, CDK12 and CDK20). Among the three cell-cycle-related
subfamilies only the first two, CDK1 and CDK4, including
respectively CDK1, −2, and −3 for the former and CDK4 and −6
for the latter, are known to directly participate in the cell division,
while the other subfamily - CDK5 - participates in many different
pathways, such as Wnt-dependent signaling or signal transduction
in the primary cilium, therefore affecting cell cycle progression
only secondarily. Being cell cycle kinases the distinct spotlight of
this review, we will discuss only those CDKs that have been tightly
linked to the core of cell cycle regulation. For other transcriptional
subfamilies, as well as the CDK5 subfamily, we refer to more
comprehensive reviews [22, 23].
Based on the sequence homology of the catalytic domain, CDKs

belong to the CMGC superfamily, a group of kinases that also
includes glycogen synthase kinase-3 (GSKs), members of the dual-
specificity tyrosine-regulated kinase (DYRK) family, MAP kinases
and CDK-like kinases. As other members of the CMGC group, CDKs
are proline-directed serine/threonine-protein kinases that prefer-
entially target the S/T-P-X-K/R sequence, due to the presence of a
hydrophobic pocket close to the catalytic site that can accom-
modate the proline (position +1) [24].
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The CDKs have a variable size ranging from 250 to more than
1500 amino acid residues. From a structural point of view, they
have a two-lobed structure, with the amino-terminal lobe rich in
beta-sheets, the carboxy-terminal one containing multiple α-
helices, and the active site located in between. The N-terminal is
characterized by a G-loop inhibitory element and a C-helix
(containing the PSTAIRE sequence in CDK1), while the C-terminal
includes a partially disordered activation domain, which extends
from the DFG to the APE motifs and contains the phosphorylation-
sensitive residue (e.g., T160 in CDK2) in the so-called T-loop. When
bound to the respective Cyclin, different CDKs display partially
non-redundant behaviors. For instance, CDK2 undergoes a
conformational rearrangement that displaces the T-loop and
exposes the catalytic cleft, making the threonine accessible for
activating phosphorylation by CAK. Once phosphorylated, the
heterodimer is stabilized, with this triggering its enzymatic activity
[25]. Conversely, the Cyclin D binding to CDK4/6 does not force
the kinase into an active conformation since the ATP-binding site
of CDK4 is still inaccessible to its substrates. Interestingly, the
contact site between CDK2 and Cyclin A comprises both the
N-term and C-term lobes, while the contacts between CDK4 and
Cyclin D are limited to the N-lobe [25, 26].
Physiologically, the prototypical mammalian cell cycle begins

when growth-dependent CDKs activity (D-type Cyclin–CDK4/6)
creates a decision timeframe, during which the cell can commit to
initiate replication and begin a new cell cycle. However, the exact
molecular mechanism, through which Rb is inhibited to promote
G1 to S phase transition, is still a matter of debate. Different
models could possibly explain how CDKs activity releases E2F
transcriptional activity [27] (Fig. 2). Canonically, CDK4/6 first
phosphorylates Rb on Ser807 and Ser811, priming it for
subsequent phosphorylation of CDK2 to fully trigger E2F. This
model is sustained by multiple evidence: the timing of cyclin
expression through G1, with Cyclin D being expressed earlier than
Cyclin E [28]; experiments of individual or combined functional
inactivation of CDK4/6 and CDK2 activity[29]; and, finally, the E2F-
dependent expression of Cyclin E, implying that it could be
expressed if CDK4/6 phosphorylation partially inactivated Rb [30].
To add a degree of complexity to this pattern, Cyclins levels are
periodically degraded through the proteasome to prevent CDKs/
Cyclin holoenzymes hyperactivation. For instance, the E3-ligase
substrate receptor, tumor suppressor and autophagy regulator
AMBRA1 was recently found to be essential for Cyclin D
degradation through CUL4-DDB1 E3 ligase complex [31–33].
Similarly, Cyclin E is recognized and ubiquitinated by SCF(FBXW7)
[34], while Cyclin A and Cyclin B levels fluctuate according to APC/
C activity [35].
This modular and sequential activity was recently disputed by

multiple pieces of evidence that sustain two alternative models.
The former stems from the observation made by Nakashima et al.
[36], that in synchronized cellsRb phosphorylation follows peculiar
patterns, and that CDK4/6-Cyclin D activity provides only Rb
mono-phosphorylation, whereas Rb hyperphosphorylation is
coincident with the onset of CDK2 activity. Additionally, E2F
transcriptional activity did not increase until the rise of CDK2
activity, suggesting that CDK4/6 are necessary for, but not
sufficient to providing Rb inactivation, and that the sole CDK2 is
responsible for E2F triggering. This model is further corroborated
by the evidence that increasing the abundance of CDK4/6-Cyclin
D complexes leads to CDK2 activation by sequestering its
inhibitors p21 and p27. As a matter of fact, it was recently
demonstrated that the CDK4/6 inhibitor palbociclib exerts its
function not by directly inhibiting CDK4/6 activity toward Rb, but
by increasing the abundance of p27 available to inhibit CDK2-
Cyclin E complexes [37]. This may explain why the E2F-dependent
Cyclin E expression, primarily regulated by Cyclin D/CDK4–6, is not
necessary to induce Rb inhibition as in the first model. Finally, the
latter disputes the conclusion that CDK2-Cyclin E plays any

substantial role in inhibiting Rb during G1 [38, 39] and rather
proposes that CDK4/6-Cyclin D is exclusively responsible for E2F
activation. Indeed, by means of kinase-activity fluorescent
reporters, the authors demonstrated that CDK4/6 activity precedes
CDK2 activity and that once entered the S phase, cells require
CDK2 function to maintain Rb inhibition [39]. Further expanding
the complexity of this intricated network, a recent breakthrough
discovery from the Cappell lab demonstrates that the choice to
proliferate is totally reversible even beyond G1/S restriction point,
at variance with previous knowledge. Also, the absence of
mitogens along the entire interphase triggers cell cycle
exit depending on CDK4/6 impairment, which is required for
Cyclin A2/CDK2 activity at all stages of the cell cycle, not only in
G1 [40].
Despite the crucial role CDK4/6 play in these contexts (Fig. 3),

seminal genetic works established that cells could proliferate even
without CDK4/6 activity [41]. Combined Cdk4 and Cdk6 ablation in
mice, however, is embryonically lethal during the late stages of
organogenesis despite displaying normal cell proliferation and
apoptosis in most cell types. The main deficiencies are limited to
the compromised maturation of different hematopoietic lineages.
Supporting these observations, multiple non-consensus bindings
between CDKs and cyclins occur to compensate for the absence of
one of them. For instance, when Cdk4 and Cdk6 are absent, Cdk2
can bind D-type Cyclins. Another plausible explanation was
provided only recently when the sequence of molecular events
that support cell proliferation in their absence has been
elucidated. Specifically, it was demonstrated that, when CDK4/6
are acutely inhibited, Cyclin E-CDK2 activation is delayed and
heterogeneous within the same population, leading to a less
effective G1/S transition than in the CDK4/6-initiated path.
Additionally, CDK2 activity reaches its peak more slowly, and it
is more susceptible to fluctuations, with this implying that CDK4/6
may also provide persistence to Cyclin E-CDK2 activity [42]. This
was further explored recently by Arora et al., who demonstrated
that acute inhibition of CDK2 forces CDK4/6 activity beyond G1,
driving Cyclin A expression via Rb-E2F axis and enabling re-
activation of CDK2 [43].
The intricacy of the CDKs network also affects the precise way

cells perceive commitment to cell division. Historically, the
restriction point in mammalian cells has been defined as the
irreversible point of commitment to division, whose traversal
makes growth factors unnecessary for the progression of the cell
[44–46]. Indeed, while normal cells show conventional G1
restriction point, immortalized and transformed cell lines do not
[47]. Interestingly, many of them are insensitive to the absence of
mitogens even before completing mitosis in the preceding cell
cycle [48]. A plausible explanation for this has been provided by
Moser and colleagues, who demonstrated that only a subset of
cells that possess high CDK2 activity is insensitive to growth
factors and RS in the subsequent generation [49]. It is worth
noting that another crucial contribution to this mother-to-
daughter legacy is the DNA damage accumulated during the
previous replication. This can lead to a p21-dependent entry of
daughter cells into quiescence immediately after mitosis [50–52].
Beyond the restriction point, Cyclin E-CDK2 activity becomes

predominant. Once the pre-replication complexes are formed
upon DNA replication origins, CDK2 is thought to provide, in
concert with the kinase CDC7, the signal that triggers origin firing.
Very recently, this notion has been radically revisited by Suski and
colleagues. They demonstrated that CDK1 is also active during G1/
S transition and phosphorylates MCM proteins within pre-
replication complex on CDC7-independent sites. Remarkably, they
also found that, during S-phase entry, CDK1 associates with Cyclin
B, and that these CDK1–Cyclin B complexes are catalytically active,
demonstrating that this complex physiologically regulates two
distinct transitions during the cell division cycle, and questioning
the importance of CDK2 in this process [53]. This work reinforces

G. Milletti et al.

2038

Cell Death & Differentiation (2023) 30:2035 – 2052



previous observations made from genetic ablation studies, that
revealed how mouse embryos lacking interphase Cdks (Cdk2,
Cdk3, Cdk4 and Cdk6) undergo organogenesis and develop until
midgestation. Nonetheless, proteomic screenings for CDK2
phosphorylation substrates revealed a diversified landscape [54],
that not only affects cell cycle- related proteins but also histone
modifiers (LSD1, DOT1L) [54], DDR regulators (CtIP, RAD54, XRCC1)
[54, 55], RNA metabolism, Smad3 transcriptional activity [56]
(Fig. 3).
Interestingly, CDK1 also shows promiscuity being able to bind

all the G1/S phase transition Cyclins forming atypical active
complexes [57]. Another milestone that proves how intricated and
cryptic this field still is, also came from the lab of P. Nurse. By
means of phosphoproteomic assays of in vivo CDK activity in
fission yeast, they showed that S-CDK (S-phase) and M-CDK
(mitotic phase) have redundant activities on similar substrates and
that, in peculiar conditions, S-CDK can also drive mitosis [58]. In
the context of M-CDK, ground-breaking quantitative mass
spectrometry combined with small-molecule chemical inhibition
of Cdk1 identified over 300 potential Cdk1 targets in yeast [59],
underlying the plethora of processes in which this kinase takes
part, ranging from DNA replication and repair [60] to mitotic

spindle assembly. In contrast with its role in yeast, Cdk1 seems to
be indispensable for the mammalian cell cycle, as its genetic
substitution by Cdk2 leads to embryonic lethality and loss of
meiotic function of Cdk2 [61].
In humans, at the interface between S and G2 phases CDK1 and

CDK2 phosphorylate the tumor suppressor BRCA2 to control its
interaction with RAD51, hence stimulating homologous
recombination-dependent DNA repair. At the onset of mitosis,
CDK1 inhibits both CHK1 and WEE1 kinases to prevent their
activity and drive cells through prophase [62, 63]. Once entered
mitosis, CDK1, in a complex with Cyclin A or B, triggers
centrosome separation, nuclear envelope breakdown, and chro-
mosome condensation [64]. During metaphase, the separation of
the sister chromatids requires CDK1 activity to be switched off, to
allow a large cysteine endopeptidase, called separase, to be
activated [65]. The mechanism of CDK1-Cyclin B inhibition of
separase was recently described and consists of the employment
of pseudo-substrate motifs from intrinsically-disordered loops in
the separase itself [66]. Additionally, prolonged inactivation of
CDK1 is needed for chromosome decondensation, to regenerate
the nuclear envelope, and for cytokinesis [67]. During anaphase,
the E3 ubiquitin ligase APC/C, initially triggered by CDK1,

Fig. 2 Molecular overview of G1/S transition. The decision of a cell to enter the replicative phase is governed by a multifactorial network that
controls faithfully the timing of the transition. The multiple processes involved converge all together on the de-repression of the E2F
transcription factor, inducing the expression of S-phase related genes. Figure created with BioRender.com.
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promotes Cyclin B degradation to eventually turn off CDK1 activity
and allow the mother cells to exit the cell cycle (Fig. 3). The ability
of CDK1 to switch the order and timing of the phosphorylations
on its multiple targets is dictated by Cks1, a phospho-adaptor
subunit of the Cyclin- CDK1 complex. Interestingly, in contrast
with the current consensus model of CDK1 as an exclusively
proline-directed kinase, it has been recently shown that Cyclin A
and Cks1 enhance non-proline-directed phosphorylation, prefer-
ably on sites with a +3 lysine residue [68].
As summarized above, despite initially being reputed essential

for driving the cell cycle phases, interphase CDKs are only essential
for the proliferation of specific cell types. On the other hand,
tumors often display cell cycle defects that are likely to be
mediated by unrestrained CDKs activity, which contributes to
unscheduled proliferation as well as genomic instability. Among
the interphase CDKs, a miscoding mutation (R24C) in CDK4 is
present in a small set of melanoma patients, hindering the binding
of Ink4 inhibitors. Furthermore, CDK4 amplifications are present in
a number of malignant solid-tumor patients such as malignant
gliomas, liposarcoma, non-small cell lung carcinoma, soft tissue
sarcoma, lung adenocarcinoma and osteosarcoma [69]. Interest-
ingly, genetically-engineered mouse models having R24C gain-of-
function mutation induce endocrine neoplasia (insulinomas, and
Leydig cell and pituitary tumors), epithelial hyperplasia (of the
liver, gut and breast) and sarcomas [70, 71].
Although rarely mutated, sporadic cases with chromosomal

translocation involving CDK6 were identified in some leukemias
because of nearby translocations. Additionally, CDK6 is mutated in
medulloblastoma, anaplastic ependymoma, high-grade gliomas,
germ cell tumor and breast carcinoma, and esophageal carcinoma
patients [69].
Even less frequent, CDK2 amplification is present in just 0.06%

of AACR GENIE cases, with gastric adenocarcinoma, conventional
glioblastoma multiforme, de-differentiated liposarcoma, lung
adenocarcinoma, and with lung pleomorphic carcinoma having
the greatest prevalence [69]. Recently, a comparative proteoge-
nomic analysis has identified distinctive features of GBMs and
LGGs, indicating CDK2 inhibitor might serve as a promising drug
target for GBMs [72].
Despite being universally considered as potential oncogenes,

the causal link between these mutations and tumor transforma-
tion is still missing, mostly because these mutations typically

co-occur with other oncogenes/onco-suppressors dysregulation,
and it is difficult to assess their actual contribution (see MDM2 or
p53) to the oncogenesis process [73]. Nonetheless, the connection
between CDKs activity and cancer is even more solid, taking into
account mutations that directly contribute to CDK4/6 and CDK2
activation, such as overexpression of Cyclins (mainly D1 and E1), as
well as loss of CKI (mainly INK4A, INK4B and KIP1). All together,
these data highlight the relevance of CDKs in cancer ontogenesis
and solidly argue for selective CDK inhibition as a therapeutic
strategy against a plethora of malignant neoplasias (Fig. 4).

CELL CYCLE CHECKPOINT KINASES
G1/S, S and G2/M checkpoints
During cell cycle progression, DNA is constantly exposed to both
endogenous and exogenous insults (i.e., oxidative stress, RS,
inflammation, chemicals and radiation exposure), which can
compromise DNA integrity, leading to chromosomes replication
and segregation errors, DNA damage and eventually cancer
transformation. In this context, eukaryotic cells have evolved a
system of proteins, known as cell cycle checkpoint kinases, which
participate in the so-called DNA damage response (DDR). The DDR
pathway consists of a network of proteins including DNA damage
sensors, transducers, mediators and effectors, which overall
safeguards the integrity of the genome. Indeed, once the DNA
damage signal is recognized by sensor proteins (such as γH2AX,
PARP1 and the MRN complex), cell cycle checkpoint kinases
transduce the signal, either arresting the cell cycle and promoting
DNA repair, or in case of unrepairable damage leading to cell
death. These kinases include the Ataxia Telangiectasia Mutated
(ATM) kinase, the Ataxia Telangiectasia and Rad-3 related (ATR)
kinase, the DNA-dependent protein kinase (DNA-PK), the Check-
point Kinase 1 (CHK1), the Checkpoint Kinase 2 (CHK2) and the
mitosis inhibitor protein kinase WEE1. ATM, ATR and DNA-PK
belong to the family of the phosphatidylinositol 3-kinase related
kinase (PIKK), and they all share a similar structure. In all cases,
they have a catalytic domain at the C-terminal, flanked upstream
by the FAT (FRAP-ATM-TRRAP) and the HEAT-repeats domains,
and downstream by the PRD (PIKK regulatory domain) and the
FATC (FAT C-terminal) domains. Moreover, the PIKKs preferentially
phosphorylate a serine or threonine residue followed by a
glutamine (S/T-Q) and they also contain S/T-Q motifs, reflecting

Fig. 3 Relevant CDKs phosphorylation targets throughout cell cycle. Upon cell cycle entry, CDK4 and CDK6 kinases are activated
allosterically by binding Cyclins D. Their catalitic activity mainly targets RB, in order to release E2F transcriptional activity and FOXM1 to
suppress senescence. At the onset of the decision window between G1 and S phases, CDK2 activity arises and positively regulates multiple
targets involved in DNA replication, repair and epigenetic control, while inhibiting SMAD3 transcriptional activity. Last, at the interface
between G2 and M phase, CDK1 is activated and supports the mitotic process from the commitment to the completion, by phoshorylating -
among others, targets such as CHK1, Bora, Cdc25, Wee1 and APC/C.
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their capacity of auto-phosphorylation. Conversely, CHK1, CHK2
and WEE1 are structurally different, although they all belong to
the broader family of serine/threonine (Ser/Thr) protein kinases.
Given their pivotal role in genome surveillance and cell

proliferation, the cell cycle checkpoint kinases are rarely deregu-
lated in cancer, representing a survival advantage for cancer cells,
and leading often to chemotherapy resistance. In contrast, when
deregulated in precancerous lesions, these kinases may promote
cancer transformation. Moreover, loss of ATM, ATR or CHK1
activity leads to early embryonic lethality in mice [74–76],
revealing their essential role also in physiological conditions.
Conversely, DNA-PK or CHK2 null mice show normal size at birth,
with severe immunodeficiency in the case of DNA-PK loss [77] and
associated radio-resistance in CHK2 defective mice [78], suggest-
ing that these pathways might be somehow redundant or

overlapping during embryonic development. In addition, it is well
shown that mutations in any of the cell cycle checkpoint kinases
dramatically increase the susceptibility to cancer transformation,
and/or are very often associated with severe genetic disorders
[79].
Depending on the type of damage and at which phase of the

cell cycle it occurs, different pathways are activated, with the ATM/
CHK2 axis regulating the G1/S checkpoint in response to DNA
double-strand breaks (DSBs) or the ATR/CHK1/WEE1 axis control-
ling the S and the G2/M checkpoints upon RS and DNA single-
strand breaks (SSBs). Instead, DNA-PK activation is less specific,
being mainly triggered by DSBs, but also involved in theRS
[80, 81]. While each kinase plays a specific role in cell cycle
checkpoint activation, their interconnection is also crucial for the
maintenance of genetic stability in response to DNA damage, as

Fig. 4 Cell cycle-associated kinases activity waves and their related tumors. Cell division in unicellular and multicellular eukaryotes is
governed by a sophisticated network of regulatory systems and balances to ensure that no errors occur before a cell is permitted to enter and
advance through the cell cycle. Cell cycle is divided into mitosis and interphase (inner circle), and within each of these cellular states multiple
subphases are present. The timely and precise duplication and segregation of the genomic DNA is granted by multiple kinases activity (outer
waves and inner circle boxes), that when deregulated contributes to the onset of several cancer types (in the figure the type of cancer is
related by proximity to the respective kinase wave). Figure created with BioRender.com.
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recently revealed by phosphoproteomics analysis [82]. Here we
provide a summary of the main roles of the principal drivers of
DDR, ATM, ATR and DNA-PK.
ATM has been first discovered in a patient affected by Ataxia

Telangiectasia (AT) in 1995, and was found to encode a large
protein of approximately 350 kDa [83]. AT is a severe genetic
disorder characterized by cerebellar degeneration, immunodefi-
ciency and cancer predisposition. Since then, many studies
focused mainly on the role of ATM in AT pathogenesis and on
DDR; however, new roles in redox homeostasis, proteostasis and
mitochondrial metabolism have been also discovered.
In undamaged conditions, ATM exists as inactive dimers and it

is canonically activated by DSBs through the interaction with the
MRN (Mre11, Rad50 and Nbs1) complex, which induces ATM
autophosphorylations and monomerization [84]. Ser 1981 is the
first site autophosphorylated by ATM straight after DNA damage.
However, autophosphorylation at other sites including Ser367,
Ser1893 and Ser2996 has been reported in response to DSBs [85].
Upon activation, ATM elicits a cascade of reactions which includes
phosphorylation and stabilization of p53 and CHK2, leading
respectively to p21 activation and CDC25A inhibition, resulting in
the arrest of the cell cycle at the G1/S transition. Indeed, on the
one hand, p21 activation inhibits Cyclin A/CDK2 and Cyclin E/
CDK2 complexes and, on the other hand, CDC25A inhibition
prevents the removal of inhibitory phosphates on CDK2. In this
scenario, DNA repair by homologous recombination (HR) can
occur before DNA duplication in the S phase, in order to avoid
genetic instability. In the past decades, a number of ATM
substrates have been identified, including γH2AX, KAP1, BRCA1,
ATF2, MDMX, RAD9A, CHK1 and many others, all together
coordinating cell cycle arrest, DNA repair or apoptosis, as reviewed
elsewhere [86–88] suggesting the central role of ATM in the DDR
and as a tumor suppressor.
However, being ATM mutated in approximately 5% of all cancer,

it might represent an advantage for those cancer cells carrying the
wild-type form when exposed to DNA damage agents. In contrast,
cancer patients where ATM mutation results in loss of function
may benefit from PARP and ATR/CHK1 inhibitors co-treatments,
such as in mantle cell lymphoma (MCL) or small cells lung cancer
(SCLC), where ATM is mutated in 40 and 20% of the cases,
respectively [89–95]. Indeed, in these contexts, cell cycle
checkpoints might be overridden, resulting in DNA damage
accumulation and cell death. Nevertheless, ATM mutation is not
always predictive of higher sensitivity to the treatments men-
tioned above, as recently shown in neuroblastoma models [96].
In addition to its wide role in DDR, ATM is also crucial in the

control of redox homeostasis, as shown in different in vivo and
in vitro ATM-deficient models, as well as AT patients’ plasma,
which has been shown to exhibit excessive accumulation of ROS
[97–100]. In 2010, two seminal papers demonstrated ATM
activation through the formation of disulfide bonds between its
two monomers in response to oxidative stress. Indeed, in ATM-
proficient cells, exposure to ROS directly activates ATM in the
absence of DNA damage and the MRN complex, leading to the
activation of TSC2 via the LKB1/AMPK pathway. This, in turn,
causes the inhibition of the mTOR pathway and the induction of
autophagy, contributing to the clearance of ROS-oxidized
organelles and proteins [101, 102]. These and further studies
clearly established ATM cytosolic functions, also showing its
localization on peroxisomes and mitochondria where, in response
to ROS, ATM induces pexophagy and mitophagy, respectively
[102–105]. Importantly, ATM is also activated by hypoxia in an
MRN complex-independent manner [106]. Under hypoxia condi-
tions, ATM has been shown to phosphorylate mono-ubiquitinated
H2AX (mUb-H2AX) by TRAF6, inducing HIF1α nuclear retention
and stability and leading to the transcription of genes involved in
glycolysis, cell survival, proliferation, and invasion, in different
tumor contexts [107]. All together these studies outline the central

role of ATM in sensing and coping with different types of stress,
such as DNA damage and metabolic stress. As a tumor suppressor,
ATM activity is beneficial during development and at early cancer
stages, while it may promote cancer cells resistance to radio-
therapy and chemotherapy at later stages. Thus, the evaluation of
mono or combinatory treatments by using molecules targeting
ATM should be carefully considered and adapted to the specific
cancer context (Fig. 4).
ATR has been identified in 1996, as the human homolog of the

fission yeast Mec1 and Rad3 proteins [108, 109]. Being active
across the S and the G2/M checkpoints, ATR has the critical
function of preserving DNA integrity during replication and before
segregation. Therefore, any condition that perturbs the progres-
sion of the DNA replication fork causes activation of ATR, which in
turn coordinates a cascade of reactions known as RS response.
Regardless of the exogenous and endogenous stimuli that trigger
RS, ATR is recruited to Replication Protein A (RPA)-coated single
strand DNA (ssDNA), by its stable binding partner ATRIP (ATR
interacting protein). However, to be fully activated, ATR requires
further interaction with TopBP1 or ETAA1 proteins. Both contain
an ATR activation domain that stimulates ATR enzymatic activity,
but TopB1 interacts also with ATRIP [110], while ETAA1 directly
binds RPA-coated ssDNA [111–114] suggesting that they can
activate ATR in response to different sources of RS. Once activated,
ATR phosphorylates CHK1 on Ser317 and Ser345, which in turn
leads to the proteasomal degradation of CDC25A, a CDKs-specific
phosphatase involved in the removal of inhibitory phosphates
[115, 116]. Thus, CHK1 activation slows down or arrests cell cycle
progression allowing DNA repair or, if the damage is too extensive,
leads to senescence or programmed cell death. In response to RS,
ATR activation safeguards DNA integrity in both S-phase and G2/
M transition. In S-phase, ATR activation prevents fork collapse into
DSBs by at least two distinct mechanisms: inhibiting new origin
firing and regulating key fork remodeling enzymes. Indeed, ATR
activation leads to the inhibition of CDK2, which is crucial for the
loading of Cdc45 origin binding factor and the DNA polymerase
recruitment on chromatin [117], therefore limiting new origin
firing. This, in turn, prevents RPA exhaustion and contributes to
the DNA replication fork stability [118]. Furthermore, ATR
activation directly targets the SMARCAL1 helicase and promotes
FANCD2 interaction with MCM helicase, suppressing fork collapse
[119–121]. The importance of ATR in the intra-S checkpoint is
emphasized in many studies, where it is shown that in ATR
inhibition or ATR-deficiency contexts, cells fail to cope with RS,
leading to fork collapse and DSBs [122–124]. Moreover, ATR plays
a key role in the dNTP biosynthesis, regulating the expression of
ribonucleoside-diphosphate reductase subunit M2 (RRM2), and in
the sensing of nucleotide imbalance during unperturbed S-phase
[125, 126]. On the other hand, in response to DNA damage, ATR
mediates cyclin F degradation, thus preventing RRM2 degradation
via SCF(cyclin F) [127].
To prevent DNA missegregation, ATR also controls the so-called

G2/M checkpoint through its direct target CHK1, which phosphor-
ylates CDC25C leading to inhibition of CDK1 and mitosis entry
[76, 128]. Importantly, ATR activity is shown to be crucial not only
upon DNA damage but also during embryonic development, in
case of re-replication and stochastically in an unperturbed cell
cycle, highlighting once again its central role in preserving
genome integrity [74, 129–131]. Finally, ATR has been also
described as the coordinator of an S/G2 checkpoint, controlling
the phosphorylation status of the mitosis transcription factor
FOXM1, although recent observations have pointed out the
existence of an ATR-independent S/G2 checkpoint [132, 133].
As mentioned above, in addition to its best-characterized target

CHK1, many different substrates of ATR have been discovered
over the years. Most ATR substrates are proteins involved in DNA
damage signaling, DNA replication and DNA repair, and many of
them are shared with ATM [134], establishing a crosstalk between
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the two pathways. However, by large proteomic analysis, unique
ATR substrates are identified, including 53BP1, NuMa1, Smc1, Pnk1
and others, as reported by Stokes and colleagues [135]. Moreover,
a specific map of ATR signaling has been described in mouse
testes, discovering that ATR controls CDK2 localization on meiotic
chromosomes during spermatogenesis [136].
As described for ATM, also ATR is essential for proliferating cells,

and its loss leads to E7.5-E8.5 embryonic lethality in mice [137].
Hypomorphic mutations of ATR, leading to low expression levels
of the protein, are associated with the Seckel syndrome
characterized by craniofacial abnormalities, microcephaly, and
growth retardation [138]. However, in contrast to other DDR
syndromes, Seckel syndrome is not associated with an increase in
cancer predisposition. More in general, ATR is rarely mutated in
cancer (2.7% of all cancer cases, as reported by the cBioportal), its
activity being critical mainly for the survival of Myc- or Cyclin
E-deregulated tumors, associated with oncogene-induced RS [139]
(Fig. 4). For this reason, over the last two decades, many studies
have explored the use of ATR inhibitors as a potential sensitizer of
conventional cancer therapy, as nicely reviewed by Barnieh and
colleagues [140].
The existence of the DNA-PK was first discovered by accident in

1985, as a kinase activated by dsDNA, and purified later by three
different groups [141–143]. DNA-PK has a large catalytic subunit
and is a crucial sensor of DSBs, recruited on the site of damage by
the Ku heterodimer, a basket-shaped structure composed of the
Ku70 and Ku80 subunits, in which dsDNA ends are accommo-
dated. Once activated by DNA damage, DNA-PK promotes DNA
repair by non-homologous end joining (NHEJ) throughout cell
cycle. However, NHEJ is more active in G1 phase, where it is
preferred to HR, since no homologous templates for recombina-
tion are available. In addition, it has been recently demonstrated
an active role of DNA-PK in controlling replication fork dynamics,
not only in the restart of stalled replication fork [144], but also in
promoting fork reversal [145]. Furthermore, DNA-PK has also
important functions in RNA processing, transcription regulation
and inflammation [146–148] indicating a prominent role of this
kinase in the surveillance of cell homeostasis.
Instead of other PIKKs, the main phosphorylation substrate of

DNA-PK is itself. In fact, in its DNA-binding domain, it has two
clusters of phosphorylation sites, the PQR and the ABCDE cluster,
containing key residues that, when auto-phosphorylated, deter-
mine the activity of DNA-PK on the coordination of NHEJ. The
most frequent sites of auto-phosphorylation are T2609 and S2056
residues, which are on the ABCDE and the PQR cluster,
respectively. The phosphorylation of the first site has an important
role in DNA end protection and in the recruitment of the nuclease
Artemis, while the second leads to DNA-PK disassembly to allow
end processing by other NEHJ factors [149, 150]. However, recent
cryo-EM structural studies revealed the existence of a phosphor-
ylation/dephosphorylation balance, especially in the ABCDE
cluster, which is crucial for the shift between an inactive and an
active conformation of DNA-PK, providing a new model of NHEJ
regulation. While activated DNA-PK phosphorylates different NHEJ
factors, such as Ku70, Ku80, Artemis, XLF, XRCC4 and PNKP, it is
dephosphorylated by the phosphatase PP6, which provides new
sites of phosphorylation keeping DNA-PK active [151]. Taken
together, these studies demonstrate a tight autoregulation of
DNA-PK in response to DNA damage, that contributes to the
maintenance of genome stability and cell survival. However, it is
worth noting that NHEJ is an error-prone DNA repair mechanism,
which when it fails is bypassed by HR thanks to an elegant
interconnection between DNA-PK, ATM and ATR.
As opposed to ATM and ATR, DNA-PK catalytic subunit loss does

not result in embryonic lethality in mice [77], but as ATM and ATR,
it is rarely mutated in cancer (4% of all cancer, as reported by the
cBioportal), representing a possible advantage for tumor cells.
Indeed, it has been shown that in ATM-deficient cells, DNA-PK

plays a key role in preventing mitotic aberration and cell death,
possibly compensating for ATM functions [152, 153]. Moreover,
DNA-PK has been recently identified as a crucial regulator of the
stemness properties of glioblastoma [154]. In contrast, DNA-PK
dysregulation has been linked to a higher sensitivity to DNA-
damaging agents, particularly to ionizing radiation (IR), making
this kinase a strong therapeutic candidate for the treatment of
tumor malignancies. Despite the sophisticated structure of the
DNA-PK complex, many small-molecule inhibitors have been
discovered over the years, some of which are currently under-
going clinical trials as single agents or in combination with
chemotherapeutic drugs, as reviewed elsewhere [155].
Although DNA-PK has been mostly studied for its critical role

in DDR, non-canonical functions are also emerging. DNA-PK is
also found to be involved in aging and energy metabolism. One
of the first hints of a DNA-PK role in aging, comes from the
observation that it contributes to telomere maintenance and
capping [156, 157]. Moreover, aging is characterized by meta-
bolic and fitness decline, which can cause DNA breaks and
activate DNA-PK. In this context, Park and colleagues have
demonstrated that DNA-PK prevents the activation of the AMPK
pathway, leading to dysfunctional mitochondrial biogenesis and
energy metabolism, and to obesity and diabetes [158]. Other
studies report additional DNA-PK roles, which are important for
cellular homeostasis in both cancer and physiological condition,
as nicely reviewed by Goodwin and Knudsen [159] (Fig. 4).
Altogether, these findings indicate that our understanding of the
multiple roles of DNA-PK is far from being complete and should
foster our attention also on less explored angles, which might
have important implication not only in cancer but also in aging-
related diseases.
WEE1 kinase family is composed by three serine/threonine

kinase members: PKMYT1 (membrane-associated tyrosine- and
threonine-specific cdc2-inhibitory kinase) and two WEE1 kinases
(WEE1 and WEE1B). Despite the considerable conservation of their
molecular structures, only PKMYT1 and WEE1 display a relevant
role in eukaryotic somatic cell cycle regulation, while WEE1B
activity is restricted to the maintenance of the meiotic arrest in
oocytes during the germinal vesicle stage. Accordingly, the
following section will discuss the first two, and therefore we refer
the author to more detailed references for the third one [160, 161].
The structure of WEE1 kinases is comparable to other known
kinases structures, with two lobes connected by a flexible hinge
region. The N-terminal lobe is composed of five standard β-sheets
and one α-helix, adjacent to the ATP-binding cleft. Also, at the N-
terminal, a Glycin-rich loop, also known as P-loop, assumes
different conformation depending on the bound ligand and the
enzymatic activity of the kinase. The activation loop and the
catalytic cleft are instead localized within the C-terminal domain.
The catalytic cleft is separated into a front and back cleft, involving
respectively the ATP-binding pocket, and the crucial residues for
kinase regulation. Interestingly, it was proposed that WEE kinases
do not need to be phosphorylated on the activation loop for their
activation, since the residue that precedes the catalytic aspartate
(WEE1: Asp426, PKMYT1: Asp233) is a nonpolar one (WEE1:
Met425, PKMYT1: Leu232), instead of the typical arginine [162].
Both WEE1 and PKMYT1 target CDK1 to maintain it inhibited

until the cell approaches mitosis.
WEE1 acts specifically to phosphorylate Tyr15, while PKMYT1

possesses a dual specificity for Tyr15 and Thr14 [163]. The reasons
for such different specificity resides into a single differing residue
in their P-loop controlling the Thr kinase activity of PKMYT1.
Indeed, WEE1 possesses a Glu309 at the apex of this loop
(substituted by the less bulky Ser120 in PKMYT1) that may impede
a closer approach to CDK1 through steric hindrance [164].
WEE1 kinases also differ in their subcellular localization. While

WEE1 localizes into the nucleus, PKMYT1 is manly associated to
the endoplasmic reticulum and Golgi apparatus [165, 166].
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Along the cell cycle, WEE1 family physiological roles span from
the regulation of replication dynamics during S-phase (intra
S-phase checkpoint) to the checkpoint function at the G2/M
boundary. Indeed, similarly to CDK1, WEE1, but not PKMYT1 [165],
exerts its activity also on Tyr15 of CDK2 [167, 168], therefore
modulating S-phase dynamics. Additionally, across S-phase, WEE1
is also implicated in maintaining genome integrity by regulating
Mus81-Eme1 endonuclease activity. Mus81 nuclease is constitu-
tively active throughout the cell cycle, but can efficiently target its
substrates only upon SLX4 association. To prevent unwanted
processing of replicating chromosomes, WEE1 kinase restrains
CDK1 and PLK1-mediated MUS81-SLX4 assembly during S phase
[169, 170]. In late S-phase, WEE1 was also demonstrated to have
an evolutionarily conserved epigenetic function by providing H2B
Tyr37 phosphorylation. Such histone modification inhibits the
transcription of multiple histone genes, therefore reducing the
burden on the histone mRNA turnover machinery [171].
In the presence of DNA damage, ATM or ATR kinase pathways

are differentially activated depending on the source of genotoxic
stress. As previously discussed, while ATM is activated in response
to DSBs, ATR is triggered by a broad range of genotoxic stresses
that result in SSBs. ATR activation stimulates CHK1 activity that in
turn phosphorylates WEE1 resulting in cell cycle arrest via CDK1
inactivation.
Then, at the onset of mitosis, through a negative feedback loop,

CDK1 phosphorylates both WEE1 and PKMYT1, priming them for
PLK1 and CK2 kinase-mediated phosphorylation. All together, they
generate an unconventional phospho-degron that can be
recognized by the ubiquitin ligase SCFβ-TrCP [172–174]. Once
the mitotic process is completed, WEE1 is again activated
by the FCP1 phosphatase [175] that is responsible for its
dephosphorylation.
Being gatekeepers of G2 arrest, WEE1 and PKMYT1 are rarely

mutated in cancer patients, and little is known about the
functional consequences of such mutations. However, to sustain
cancer cell proliferation despite the high genomic instability,
WEE1 is expressed at high levels in various cancer types including
breast cancers [176], leukemia [177, 178], melanoma [179], and
adult and pediatric brain tumors [180–183], where it has been
correlated with a worse prognosis in patients (Fig. 4). At variance
with that, a number of studies have reported an opposite
relationship between WEE1 expression and prognosis in non-
small cell lung cancer (NSCLC) and colon cancer [184, 185].

Mitotic checkpoint kinases
PLK1 (Polo-like kinase 1) is a Ser/Thr kinase belonging to the Polo-
Like Kinase family, which has been first identified by genetic
screens in yeast and Drosophila, as a family of five crucial mitotic
regulators [186, 187]. PLKs share a similar structure containing an
N-terminal kinase domain (KD) and two C-terminal Polo-box
domains (PBD), which are important for the kinase subcellular
localization. Importantly, the KD and the PBD can interact and
inhibit each other. PLK1 is the founder of the family, and it
controls a variety of processes throughout the cell cycle, including
mitotic entry, centrosome maturation, chromosome segregation
and cytokinesis [188–194]. Therefore, unlike other cell cycle
checkpoint kinases, PLK1 is inhibited rather than activated during
DDR, in order to prevent cell division in the presence of
unresolved DNA damage. Indeed, both ATM and ATR have been
shown to inhibit PLK1 in response to DNA damage by direct
phosphorylation, or indirectly promoting PLK1 dephosphorylation
by PP2A [195–197]. These data and other observations highlight
once again the existence of a fine interplay among various cell
cycle kinases, in which each plays a delicate role in safeguarding
the genome. However, due to the redundancy of some functions,
both normal and cancer cells have evolved the ability to survive
also when deficient in one of these regulators, showing an
extraordinary adaptive and flexible behavior.

In this regard, PLK1 is activated by other kinases only when the
DNA has been properly replicated and/or the DNA damage has
been repaired. The crucial residues for such activation are Thr210
and Ser137, both localized on the kinase domain of PLK1 [198].
While the dynamics of the former phosphorylation are largely
elucidated, the function of the latter is still not completely clear.
Indeed, two contrasting studies report that PLK1 is phosphory-
lated on Ser137 in late mitosis or prior mitosis [198, 199] opening
the question of whether this phosphorylation has other mitosis-
independent functions not yet discovered. However, these studies
demonstrated that when both sites are phosphorylated, the
catalytic activity is enhanced. By contrast, different studies
consistently suggest a detailed model, by which Thr210 phos-
phorylation is mediated by the kinase AuroraA and its cofactor
Bora, with this representing a crucial step for mitosis onset.
According to this model, Bora is activated by CDK1/Cyclin A in G2
phase, and binds to PLK1 in the cytosol, where PLK1 is kept in an
inactive conformation by the interaction of its PBD and KD
domains. Bora binding leads to a conformational change, which
exposes a nuclear localization sequence (NLS) of PLK1 and induces
its translocation to the nucleus. Importantly, NLS disruption leads
to G2 arrest, indicating that PLK1 nucleus translocation is crucial
for mitosis onset. At the G2/M transition, AuroraA phosphorylates
PLK1 at Thr210, inducing mitosis entry, while Bora is degraded
through phosphorylation by PLK1 [17, 200–203]. Recently, this
model has been further detailed by the observation that Bora
activation triggers PLK1 dimerization in G2, inducing a conforma-
tional change that makes accessible the Thr210 for AuroraA-
dependent phosphorylation, in late G2. Thr210 phosphorylation
leads in turn to the dissociation of the dimer and the exposure of
the NLS, which allows PLK1 nuclear translocation, supporting
mitosis entry [204]. Once activated, PLK1 sustains CDK1/Cyclin B
activation by degrading the mitotic inhibitor WEE1 and inhibiting
the kinasePKMYT1, which both catalyze inhibitory phosphoryla-
tion of CDK1. Moreover, PLK1 directly phosphorylates Cyclin B and
CDC25C promoting their translocation to the nucleus and thus
further supporting CDK1 activity [17, 173, 174, 200, 205]. Although
we have here summarized the role of PLK1 in the entry into
mitosis, it is important to note that its function does not end with
the initiation of mitosis, but its activity is rather required in every
mitotic stage up to cytokinesis, as well as during S phase. Indeed, a
variety of phosphoproteomic studies demonstrated that PLK1 can
phosphorylate thousands of sites on hundreds of proteins, hence
regulating a plethora of biological processes and pathways
[206–210].
As mentioned above, PLK1 regulates centrosome maturation by

directly targeting CEP192 and Cenexin, both involved in the
recruitment of pericentriolar material, including the γ-Tubulin Ring
Complex (γ-TuRC), essential for microtubules nucleation [211, 212].
Moreover, PLK1 is recruited on the kinetochore in metaphase,
where it phosphorylates KNL-1 and MPS-1, executing the so-called
spindle assembly checkpoint (SAC) to control whether chromo-
somes are correctly aligned and to prevent premature mitosis exit
[213]. In anaphase, most mitotic proteins are degraded by the
ubiquitin ligase APC complex. PLK1 promotes APC complex
activation by phosphorylation-dependent degradation of EME1,
a major APC complex inhibitor [214]. Finally, PLK1 localizes in the
midzone during cytokinesis, interacting with several proteins and
phosphorylating abscission-factors such as CEP55, to properly
coordinate abscission [215]. Although PLK1 is mostly studied for
its role in mitosis regulation, its involvement is also reported in
DNA replication, DDR, and genome stability as well as in processes
beyond cell cycle, such as autophagy, epithelial-mesenchymal
transition and inflammation. For a more comprehensive descrip-
tion of these functions, we refer the readers to a recent review by
Iliaki and colleagues [216].
Considering the pleiotropic role of PLK1 in regulating many

fundamental processes for cell survival and proliferation, it is
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reasonable to believe it may function as a pro-oncogenic factor.
This is further supported by the fact that PLK1 is frequently
overexpressed in human cancer, including breast cancer and
gastric adenocarcinoma, and its expression correlates with poor
prognosis. In this regard, PLK1 can negatively regulate tumor
suppressors such as TP53 and PTEN, as well as stabilize tumor-
promoting factors, including the oncogene MYCN [217–219].
Paradoxically, PLK1 can also act as a tumor suppressor. Interest-
ingly, PLK1 loss is embryonic lethal in mice, indicating its crucial
function in cell division. However, PLK1 heterozygotes mice are
healthy at birth, but they develop tumors with a three-fold higher
incidence than the wild-type counterpart, suggesting that PLK1
might have tumor-suppressing properties in a haploinsufficient
context [220]. Finally, as other kinases mentioned in this text, PLK1
is rarely mutated in cancer, as reported in TCGA, PanCancer Atlas
dataset, with this pointing out once again the essentiality of this
kinase in both physiological and cancer conditions. For these
reasons, targeting PLK1 as a therapeutic strategy for cancer
treatment has been considered a double-edge sword for a long
time. On the one hand, targeting PLK1 in cancer would be
detrimental for cancer progression, but on the other hand, this
may result in toxicity also in normal healthy cells, thus limiting
PLK1 inhibitors usage in cancer patients. Nevertheless, both
academia and industry have put efforts into the development of
specific PLK1 inhibitors, and nowadays there are two classes of
small molecules available, one targeting the ATP binding domain
and the other the PBD. Some of these inhibitors have also entered
in clinical trials (Table 1) for patients with different tumors, but
their therapeutic index is not yet satisfactory [221, 222]. Moreover,
the efficacy of PLK1 inhibitors has been shown to be also
dependent on the tumor genetics (Fig. 4). For instance, patients
with colon cancer harboring APC mutation have a better
prognosis when PLK1 expression is higher [223]. Instead, PLK1
inhibition has a strong anti-tumor activity in patient-derived
xenograft of metastatic breast cancer with CCND1 amplification
and Palbociclib resistance [224]. Therefore, the therapeutic index
of PLK1 inhibitors must be carefully evaluated, especially
regarding the systemic toxicity and the tumor context, making
the race toward a more personalized medicine extremely urgent.
AURORA kinases (Ipl1-like kinases) are a family of proteins that

in mammals consists of multiple Ser/Thr kinase crucial for mitotic
entry and spindle regulation, namely Aurora A (AURKA), Aurora B
(AURKB) and Aurora C (AURKC). On the other hand, Ipl1 is the
unique S. cerevisiae representative of a family that diverges into
two Ipl1-like kinases (Aurora-A and Aurora-B) in Drosophila, C.
elegans and X. laevis.
Initially discovered in 1993 during a search for S. cerevisiae

mitotic mutants that failed to undergo typical chromosomal
segregation, Ipl1 kinases were then independently identified in
cell cycle studies in Xenopus laevis and Drosophila melanogaster
[225–229]. In mammals, the three paralogs share very high
similarity in sequence, with 71% of identity between Aurora A and
B in the carboxyterminal catalytic cleft. Residing also in the C-
terminal, the degradation box (A-box/D-box/KEN-box) of Aurora
kinases is crucial for its recognition and degradation by APC/C.
Conversely, the three Auroras differ in the length and sequence of
the amino-terminal domain [230, 231]. In humans, AURKA, AURKB
and AURKC map on chromosomes 20q13.2, 17p13.1, and 19q13.43
As often observed in kinases, Aurora kinases are regulated by

phosphorylation of a conserved residue in the catalytic T-loop
residues, namely Thr288 (AURKA), Thr232 (AURKB), and Thr195
(AURKC), respectively. These residues reside in a RRXS/TY motif,
that is recognized and phosphorylated by protein kinase A (PKA).
Additionally, the consensus motif has been also identified as an
auto-phosphorylation site [232], which is able to boost the
catalytic activity by up to 157 times [233]. The reshaping in the
folding of the active site caused by such events is necessary but
not sufficient for full catalytic activation. For instance, to be fully

activated, AURKA depends on the binding to an allosteric activator
at the N-terminal called Tpx2 [233, 234]. This microtubule-binding
protein once released by RAN-GTP from importins, actively
positions AURKA on microtubules to support mitotic spindle
assembly. Recently, it was reported that the kinase Bora (see also
above) exerts a similar function, thanks to a 100 amino acid region
encompassing two short Tpx2-like motifs and a phospho-Serine-
Proline motif at Serine 112, that activate cytoplasmic AURKA
during mitotic commitment.
Despite showing striking structural and sequence similarities,

Aurora kinases exhibit entirely diverse subcellular localization and
mitotic functions. For instance, AURKA is initially associated with
pericentriolar material at the centrosome from the conclusion of
the S-phase, when centrosome duplication occurs, it is then
distributed to the pole proximal ends of spindle microtubules, and
finally is degraded upon mitotic exit [235]. Conversely, AURKB is
widely dispersed into the nucleus until prometaphase, when it
travels to the centromeres to form a complex with two other
proteins, inner centromere protein (INCENP) and survivin, and
it behaves as chromosomal “passenger”. Being a “passenger”
protein, AURKB associates with centromeric heterochromatin at
the onset of mitosis and gradually moves to the midbody, where it
remains until the end of cytokinesis. Very little is known about
AURKC apart from that is tipically active in meiotic cells, where it
also acts as a chromosomal passenger [236, 237].
Once completed their functions, Aurora kinases are inactivated

by dephosphorylation, which is typically carried out by protein
phosphatase 1 (PP1). Then, anaphase-promoting complex/cyclo-
some (APC/C) detects Aurora kinases in late mitosis, and they are
subsequently destroyed via the proteasome.
The extensive and thorough description of the three Aurora

kinases` function is far beyond the scope of this review, and for
that reason we will focus on the one that over the years has been
mostly associated with cancer ontogenesis, while referring the
reader to other recently issued review and articles on the
remaining two [238–240].
As we previously discussed, AURKA in ensuring centrosome

functionality and bipolar spindle assembly. AURKA functions in
cancer contexts have been widely explored and both oncogenic
and tumor suppressor functions have been elucidated. As for the
former, AURKA is often amplified in breast, colorectal, ovarian,
pancreatic, gastric, bladder, cervical, and head and neck cancer.
Similarly, the overexpression mediated by constitutive phosphor-
ylation on S51 that inhibits its APC/C proteasomal degradation
contributes to head and neck cancer formation. Further confirma-
tion of its oncogenic abilities was obtained in immortalized rodent
fibroblasts, where AURKA overexpression was able per se to
induce oncogenic transformation and tetraploidy by boosting
chromosome instability [230, 241, 242]. Elegant studies have
contributed to the characterization of the functional link between
AURKA aberrant expression and oncogenesis.
Additional oncogenic events were reported to contribute to

AURKA overexpression. For instance, HER-2 oncogenic signaling, a
commonly altered feature of breast cancer, induces AURKA
phosphorylation, thereby increasing its stability [243]. TP53
deficiency affects AURKA levels both transcriptionally and post-
translationally. In the former regulation, by decreasing p21
expression, hence positively affecting CDK2-E2F3 axis, a well-
known AURKA transcriptional activator. In the latter, by down-
regulating FBXW7, a member of the SCF E3 ligase complex known
to ubiquitinate AURKA [244]. Alternatively, AURKA kinase activity
directly affects p53 phosphorylation status on S215 and S315,
abrogating its transactivation activity [245, 246] and increasing its
Mdm2-mediated degradation [247]. Similarly to p53, AURKA exerts
its kinase activity also on another well-established tumor
suppressor, BRCA1. Aberrant AURKA-mediated phosphorylation
on its S305 overrides G2/M checkpoint, leading to centrosome
amplification and CIN.
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Conversely, acting upstream of AURKA, loss-of-function muta-
tion in the mitotic checkpoint protein Chfr induces aberrant
AURKA kinase activity, by impairing its ubiquitination and
proteasomal degradation [248].
The first evidence that AURKA could also possess a tumor

suppressor function stems from the identification of two coding
single nucleotide polymorphisms (SNPs) in AURKA (91 T > A (encod-
ing F31I) and 169 G > A (encoding V57I)), that are associated with
reduced kinase activity and increased risk of developing esophageal
cancer [249]. In line with that, haploinsufficiency in Aurka+/− mice
develops a higher incidence of spontaneous tumor formation [250].

In sum, despite the causal relationship between AURKA
amplification and oncogenic formation remains still unresolved
(since its genomic aberration typically affects a large chromosomal
locus), multiple cues strongly demonstrate that deregulated
AURKA activity is a driving force towards genomic instability and
tumor progression (Fig. 4).

Conclusions, open questions, and perspectives
Although rarely mutated, cell cycle kinases appear to be
frequently deregulated in cancer, and this might be mainly due
to altered transcriptional regulation by oncogenes. Indeed, there is

Table 1. Clinically relevant cell cycle kinase inhibitors.

Targeted
kinase

Tumor Inhibitor Clinical trials (NCT
nUMBER)

Phase Status

CDK4/6 Liposarcoma (CDK4/6 amp) Abemaciclib NCT04967521 [251] Phase 3 Recruiting

Sarcoma (CDK4 overexpression/amp) Palbociclib
Palbociclib

NCT03242382NR

NCT01209598 [252–254]
Phase 2
Phase 2

Recruiting
Completed

Solid tumors (CDK4/6 amp) Abemaciclib
Palbociclib

NCT03310879
NCT01037790 [252, 255]

Phase 2
Phase 2

Recruiting
Completed

Metastatic breast cancer (HR+ ; HER2-) Abemaciclib + Aromatase
Inhibitor / Abemaciclib +
Fulvestrant

NCT05362760 Phase 4 Recruiting

Glioblastoma (CDK4/6 amp) Abemaciclib
Palbociclib

NCT02981940 [256]
NCT01227434 [257]

Phase 2
Phase 2

Active
Terminated

Cancer with brain metastasis Abemaciclib NCT02308020 [258] Phase 2 Completed

Non-Small cell lung cancer Abemaciclib
Abemaciclib + Osimertib

NCT02152631 [259, 260]
NCT04545710 [261]

Phase 3
Phase 2

Active
Unknown

Squamous cell lung cancer
(CDK4 amp)

Palbociclib + Docetaxel NCT02785939 Phase 2/3 Completed

Esophagogastric cancer
(CDK6 amp)

Abemaciclib NCT03292250 Phase 2 Completed

CDK2 Breast cancer and solid tumors PF-07104091 NCT05262400 Phase 2 Recruiting

ATR Solid tumors Berzosertib NCT03718091 [262] Phase 2 Completed

Ovarian cancer Berzosertib + gemcitabine NCT02595892 [263] Phase 2 Active

Solid tumors (relapsed or refractory) BAY1895344 NCT05071209 Phase 1/2 Active

Non-small cell lung cancer Ceralasertib NCT05450692 Phase 3 Recruiting

Advanced solid tumors and
Hematological Malignancies

ATG-018 NCT05338346 Phase 1 Recruiting

DNA-PK Rectal cancer Peposertib NCT03770689 Phase 1/2 Completed

CHK1/2 Solid tumors LY3295368 NCT02873975 Phase 2 Completed

Small cell lung cancer LY3295368 NCT02735980 Phase 2 Completed

Ovarian Carcinoma, Endometrial
Adenocarcinoma, and Urothelial
Carcinoma

LY2606368 NCT05548296 Phase1/2 Recruiting

WEE1 Triple-negative Metastatic Breast
Cancer

MK-1775 NCT03012477 Phase 2 Completed

Adenocarcinoma of the Pancreas MK-1775 NCT02037230 [264] Phase 1/2 Completed

Advanced solid tumors Debio 0123 NCT05109975 Phase 1 Recruiting

High-Grade Serous Ovarian, Fallopian
Tube or Primary Peritoneal Cancer
(CycE Driven)

ZN-C3 NCT05128825 Phase 2 Recruiting

Uterine Serous Carcinoma ZN-C3 NCT04814108 Phase 2 Recruiting

PLK1 Pancreatic cancer Rigosertib + Gemcitabine NCT01360853 [265] Phase 3 Completed

Myelodysplastic Syndromes Rigosertib NCT01241500 [266] Phase 3 Completed

AURORA A Prostate cancer Alisertib NCT01799278 [267] Phase 2 Completed

Acute Myeloid Leukemia Alisertib NCT02560025 [268] Phase 2 Completed

Cancer Patients (KRAS G12C mutated) LY2606368 NCT04956640 Phase 1 Recruiting

In a wide range of tumor malignancies, several kinase inhibitors that target cell cycle regulators are currently undergoing clinical trials for cancer therapy, both
as single and combined treatment.
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a plethora of transcription factors that, when mutated or
epigenetically altered, function as oncogenic factors with a crucial
role in the initiation/progression of cancer as well as in invasion
and chemo-resistance. Most of these factors (e.g., Myc, Ras, E2F,
Wnt, etc) are difficult to target. Therefore, many studies have
focused on the limitation of their effects, targeting their
substrates. However, cell cycle kinase inhibition has in many
cases yet to be carefully evaluated with regard to tumor genetics.
To this end, the capacity of sequencing in public health systems
should be increased, to better tailor the treatment according to
the patient.
Both Academia and Industry have made a lot of efforts in the

development of a variety of small-molecule inhibitors targeting
cell cycle kinases with some of them entered in advanced clinical
trials (Table 1). However, many inhibitors showed limitations in
their application, due to low specificity and/or to the severity of
adverse effects. One of the reasons is that most kinase inhibitors
are designed against the ATP-binding site, making them less
specific. However, nowadays there are new classes of inhibitors
binding other residues on the kinases and inhibiting the protein
activation with different mechanisms.
Although this increased specificity, it still does not prevent the

chemotherapy-acquired resistance often seen in cancer therapy,
due to the rise of kinase mutations. Hence, future studies should
pay attention to the development of more specific and well-
tolerated inhibitors, focusing on new classes of non-ATP compe-
titive molecules and new models of chemotherapy resistance.
Advanced high-throughput cell-based screening using natural
compound libraries might lead to the discovery not only of new
kinase inhibitors but also of new physiological functions of kinases.
As we have reported in this review, most cell cycle checkpoint

kinases have roles beyond their canonical one in DDR. However,
ATR is mainly associated with the response to RS and ssDNA
breaks, opening the question of whether this kinase may also have
some functions, not yet uncovered. Future studies on this
direction should be encouraged. Moreover, since most of the
here mentioned kinases work together with binding partners,
such as Cyclins for CDKs, ATRIP for ATR, MNR complex for ATM and
Ku70/Ku80 for DNA-PK, additional functions independent from
such binding proteins should also be investigated.
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