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Deep learning for video‑based 
automated pain recognition 
in rabbits
Marcelo Feighelstein 1, Yamit Ehrlich 1, Li Naftaly 1, Miriam Alpin 3, Shenhav Nadir 3, 
Ilan Shimshoni 1, Renata H. Pinho 4, Stelio P. L. Luna 2 & Anna Zamansky 1*

Despite the wide range of uses of rabbits (Oryctolagus cuniculus) as experimental models for pain, 
as well as their increasing popularity as pets, pain assessment in rabbits is understudied. This study 
is the first to address automated detection of acute postoperative pain in rabbits. Using a dataset of 
video footage of n = 28 rabbits before (no pain) and after surgery (pain), we present an AI model for 
pain recognition using both the facial area and the body posture and reaching accuracy of above 87%. 
We apply a combination of 1 sec interval sampling with the Grayscale Short-Term stacking (GrayST) 
to incorporate temporal information for video classification at frame level and a frame selection 
technique to better exploit the availability of video data.

Rabbits (Oryctolagus cuniculus) are widely used worldwide as experimental models, especially in translational 
research on pain. They also are increasingly popular as pets, who may experience various painful conditions1. 
However, research on pain assessment in rabbits is still underdeveloped2. For instance, despite the high number 
of rabbits undergoing surgical procedures, the protocols for anesthesia and analgesia in rabbits are still limited 
compared to those for cats and dogs3.

One method for pain assessment is behavioral assessment which is simple, multidimensional, noninvasive, 
painless, does not require physical restraint and allows remote assessment, providing easy pain assessment 
in investigation and medical settings. To our knowledge there are four behavior-based scales to assess acute 
postoperative pain in rabbits. The Rabbit Grimace Scale (RbtGS)4 is a facial expression based scale developed 
and evaluated in rabbits submitted to ear tattooing. Another scale developed to assess pain in pet rabbits by 
merging this facial scale with physiological and behavioural parameters is the composite pain scale for rabbit 
(CANCRS)5. Another two scales with more robust validations are the Rabbit Pain Behavioral Scale (RPBS) to 
assess postoperative pain6 and the Bristol Rabbit Pain Scale (BRPS)7.

A recent systematic review by Evangelista et al.8 assessed evidence on the measurement properties of gri-
mace scales for pain assessment, addressing internal consistency, reliability, measurement error, criterion and 
construct validity, and responsiveness of the grimace scales. The Rabbit Grimace Scale (RbtGS) only exhibited 
moderate level of evidence (as opposed, e.g., to mouse or rat grimace scales that were found to be of high level 
of evidence). Moreover, the scoring is affected by various factors, such as procedures the animal is subjected 
to, environment9, and perhaps most importantly, are susceptible to bias and subjectivity of the human scorer. 
An additional limitation of the RbtGS is the presence of cage bars that rabbits are frequently housed in, which 
can compromise the assesment of facial expressions. This leads to the need for the development of more precise 
methods for scoring and assessing pain in rabbits which are less susceptible to these factors.

Automated recognition of pain is addressed by a large body of research, several reviews focus on facial 
expression assessment in humans10, and, specifically in infants11. For animals, on the other hand, this field has 
only emerged a few years ago, but is now growing rapidly. Broome et al.12 review over twenty studies addressing 
non-invasive automated recognition of affective states in animals, mainly focusing in pain. It is highlighted that 
the problem of noisy facial analysis for animals is even more challenging than in humans due to technical and 
ethical challenges with data collection protocols with animal participants, but perhaps more importantly, the 
challenges with data quality due to obstruction, blurred images due to movement, challenging angles, cage bars, 
among others. Species that have been addressed in the context of automated pain recognition include rodents13–15, 
sheep16, horses17–19, cats20,21 and dogs22.
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To the best of our knowledge, this is the first study addressing automated detection of acute postoperative 
pain in rabbits. Using a dataset of video footage of n = 28 rabbits before (no pain) and after surgery (pain), we 
developed an AI model for pain recognition using both facial area and body posture, reaching accuracy of above 
87%. The second, more technical contribution of this study is addressing the problem of information loss in 
static analysis, i.e., working with frames (as opposed to videos). As highlighted in Broome et al.23, static analysis 
is the simplest and least expensive option in terms of computational resources, and indeed almost all the works 
on pain recognition reviewed in Broome et al.23 opt for this path. However, this implies information loss: as 
was demonstrated in Broome et al.18 for horses, dynamics is important for pain recognition. The alternative of 
working with video data directly, however, as reported in18,24, requires computationally heavy training, and is 
extremely data-hungry, requiring data in volumes that we did not have in our dataset.

To address the problem of information loss, we propose a two-step approach that utilizes sequences of frames. 
Our method applies a combination of 1 sec interval sampling with the Grayscale Short-Term stacking (GrayST) 
to incorporate temporal information for video classification at frame level. After training a ’naive’ model with 
sampled and stacked frames, we apply a frame selection technique that uses confidence levels of our ’naive’ pain 
classifier. This approach significantly improves performance, reaching above 87% accuracy, while using a much 
smaller dataset of better quality. Our proposed method provides a practical solution for pain recognition, ena-
bling accurate analysis without sacrificing computational efficiency.

Results
For narrative purposes we preface our results with essential and practical aspects to improve understanding for 
those less familiar with AI methods, presenting a high-level overview of the used approaches, as well as with 
the dataset description.

Overview.  Figure 1 presents a high-level overview of the two-staged pipeline used in this study. At the pre-
processing stage, rabbits are automatically detected (using Yolov5 object detection model) and cropped, and 
videos are sampled, extracting a single frame every second. As a second step, samples are converted to grayscale 
and aggregated using GrayST stacking method. Then the first model is trained on all sampled frames. We then 
use confidence levels (how “sure” the model is of its classification of a frame) to choose the top n = 20 frames for 
each class (pain/no pain). The intuition here is by this specific manner of undersampling we can remove ‘noisy’ 
frames caused by the in-the-wild videos containing many low-quality frames, due to obstruction (bars, rabbit 
not facing camera), blurry frames (caused by movement), or the fact that pain level reflected visually does not 
always remain on the same fixed level throughout the video. Such removal of ‘noise’ indeed leads to increased 
performance of the second model which is trained only on the top (highest confidence) frames.

Dataset.  We used a portion of the video dataset of Haddad et al.6, collected for the aim of validation of the 
rabbit pain behaviour scale (RPBS) to assess acute postoperative pain in rabbits, which captured rabbits under-
going orthopaedic surgery (the Ortho dataset of Haddad et al.6). This dataset was collected during a study that 
was approved by the Ethical Committee for the Use of Animals in Research, of the School of Veterinary Medicine 
and Animal Science and School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), 
under protocol numbers 0156/2018 and 019155/17, respectively. The study follows the Brazilian Federal legisla-
tion of CONCEA (National Council for the Control of Animal Experimentation); University of Haifa waived 
further ethical approval. The dataset includes footage corresponding to pre/post-operative periods of 28 rabbits 
(11 females and 17 males) that were recorded at different time points corresponding to varying intensities of 
pains during surgery process: ‘baseline’ (before surgery), ‘pain’ (after surgery, before analgesic), ‘analgesia’ (after 
analgesic), and ‘24h post’ (24 h after surgery). Overall, the footage contained 112 videos of 2–3 minutes length. 
Four rabbits showing RPBS scale score equal or above pain threshold (3) during ’baseline’ stage were excluded. 
For our final dataset we selected 48 videos with one video labeled as ‘No Pain’ (before surgery stage) and one 
video labeled as ‘Pain’ (after surgery) for each of the 24 individuals, leading to a balanced dataset of overall 24 
videos for each class (pain/no pain). Figure 2 shows examples of frames from both ‘pain’ and ‘no pain’ classes.

Figure 1.   Pipeline description.
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Model Performance.  For measuring the performance of the models, we use standard evaluation metrics of 
accuracy, precision, recall and F1 (see, e.g., Lencioni et al17 for further details).

As a validation method25, we use leave-one-subject-out cross validation with no subject overlap. Due to the 
relatively low numbers of rabbit (n = 24) and samples (n = 24 * 2) in the dataset, following the stricter method 
is more appropriate15,18. In our case this means that we repeatedly train on 19 subjects, validate on 4 and test on 
the remaining subject; Table 1 presents the aggregated average result. By separating the subjects used for train-
ing, validation and testing respectively, we enforce generalization to unseen subjects and ensure that no specific 
features of an individual are used for classification.

Table 1 displays the performance outcomes of a pipeline we experiment with two different backbones: 
ResNet50 and CLIP/ViT + Naive Bayes. In both cases we performed the following two phases. 

1.	 Naive phase. The initial model, referred to as “ Model 1” was trained first on all frames and did not utilize 
GrayST pre-processing. This model, employing the Resnet50 transfer learning architecture, achieved an 
accuracy of 66% and 69% employing CLIP + Naive Bayes backbone. However, when GrayST pre-processing 
was employed, the model’s performance improved to 77% and 81% employing CLIP + Naive Bayes backbone.

2.	 Improved phase. The next “Model 2”, on the other hand, was only trained on the frames with the highest 
confidence (obtained in “Model 1”), achieving an improved accuracy of 83% with Resnet50 backbone and 
87% employing CLIP + Naive Bayes backbone. On both type of backbones, “Model 2” trained on the frames 
with the highest confidence exhibited the best performance. Note that to test “Model 2” (in both Resnet and 
CLIP cases) we use the same strict cross-validation method of leave-one-subject-out to avoid ofer-fitting. 
“Model 2” is tested on all frames of videos belonging to rabbits taken out for testing.

Aggregating from single frames to video prediction, we average confidence levels (pain and no-pain scores) for 
each class and selecting the class with the highest average, similar to the Average Pooling method described in26. 
The aggregated results are presented in Table 1, which displays the video classification results using combina-
tions of training sets consisting of all frames or only Top frames, and using or not using the GrayST aggregation 
method.

An interesting by-product of the frame selection process described above should be noted. Table 2 shows the 
performance of both types of classifiers (ResNet and CLIP) using only datasets obtained from the selected top 
frames (for both classes). The fact that “Model 2” used on selected top frames performs so much better than on 
(all frames on all ) videos reflects the presence of more informative signals of pain in these top frames, essentially 

Figure 2.   Example of cropped frames.

Table 1.   Video classification performance comparison.

Resnet50 transfer learning
CLIP VIT B/32 Encoding + Gaussian 
Naive Bayes

Train set GrayST Accuracy Recall Precision F1 Accuracy Recall Precision F1

Model 1 (all frames) No 0.66 0.54 0.72 0.61 0.69 0.59 0.74 0.66

Model 1 (all frames) Yes 0.77 0.66 0.84 0.74 0.81 0.67 0.94 0.78

Model 2 (top frames) Yes 0.83 0.83 0.83 0.83 0.87 0.87 0.87 0.87

Table 2.   Top frames image classification performance comparison.

Model Accuracy Recall Precision F1

Resnet50 transfer learning 0.93 0.96 0.93 0.94

CLIP VIT B/32 Encoding + Gaussian Naive Bayes 0.96 0.96 0.96 0.96
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yielding an automated method for frame selection which could replace manual selection of frames from videos 
employed, e.g., in20,21.

Discussion
To the best of our knowledge, this work is the first to address automation of post-operative pain recognition in 
rabbits. The ‘naive’ model trained on all frames reached accuracy of above 77% using the technique of GrayST. 
It should be noted that our dataset contains noisy video footage of subjects appearing in different angles in 
cages with bars. The used method of frame selection manages to reduce ‘noise’ in this data, with performance 
increasing to above 87%.

As expected, the accuracy of 87% reached here for rabbit pain recognition outperforms the approaches 
of18,22,24, which work with video and are comparable to previous work for automated pain detection with 
frames17,20,21. The benefit of the frame selection approach used here is not only in increasing accuracy, but also 
dealing with occlusion and a variety of angles of rabbit in a cage. In our experiments we compared the perfor-
mance of the Resnet50-based architecture to the more novel CLIP VIT-based architecture. As can be seen in 
Table 1, the latter exhibits a slightly superior performance. These rather similar performance results emphasize 
the contribution of the proposed pipeline disregarding the very different model architectures used for the pain 
classification.

The outstanding performance of Vision Transformer (ViT) models in identifying pain in rabbits, as well as 
other emotional states such as positive anticipation and frustration in dogs27, is indicative of their superiority. 
This can be attributed to several factors, such as their enhanced attention mechanism that enables ViT models to 
capture long-range dependencies and focus on relevant image features related to pain. Furthermore, ViT models 
consider global contextual information, which aids in recognizing subtle cues across the entire image. Their 
deeper architecture and larger number of parameters also provide a higher representational capacity, enabling 
them to capture fine-grained details associated with pain. Transfer learning from large-scale pretraining on image 
datasets further enhances their performance by providing a strong initial understanding of visual concepts, which 
can be effectively generalized to the pain identification task. These factors collectively contribute to the improved 
performance of ViT models in identifying pain in animals.

The models used in this study are deep learning models, which means that they are ‘black-box’ in their 
nature. As discussed in21, one common approach to explore explanability of such models is to apply visualization 
methods that highlight the areas in the image that are of importance for classification. We applied the GradCAM 
(Gradient-weighted Class Activation Mapping)28 technique to the Top images obtained from our model. Figure 3 
shows some examples. These examples demonstrate that the model focuses on facial areas in certain images, 
while in others, attention is directed towards body areas. This observation prompts further investigation into 
the regions exploited by the models to discern pain, as well as the importance of body posture as opposed to 
facial expressions in machine pain recognition. A more systematic investigation of explainability of the obtained 
models along the lines of21 is an immediate future direction.

Moreover, when training and testing using only with selected Top images Table 2 shows a superior accuracy 
of even 95% which indicates that such subset of selected images contains high valuable information about 
pain and may be useful for researchers to investigate what it seen in those images, combined with previously 
described visualization techniques. The results obtained in rabbit pain recognition are highly promising, with 
an accuracy of 87%, which outperforms previous approaches that used video, such as18,22,24. This method is also 
comparable to previous work for automated pain detection with frames17,20,21. The approach used here, which 
involves selecting frames, not only increases accuracy but also deals effectively with occlusion and a variety of 
angles of the rabbit in a cage.

The utilization of a combination of techniques, namely 1-sec sampling and the Gray-ST aggregation of three 
frames into a single frame, has been found to significantly enhance the capacity of pain detection models. This 
improvement can be attributed to the fact that reduced animal movement is considered a behavioral indica-
tor of pain, as described in RPBS, and the temporal information related to this indicator appears to be more 
effectively captured by the combined implementation of these techniques. For example, Fig. 4(3) displays a 
complete gray image of a rabbit without any colored area. Such image indicates that during three consecutive 
seconds this rabbit remained static, which correlates with a painful state. However, further analysis is necessary 
to comprehend the effectiveness of distinct sampling intervals on the performance of pain identification. Given 

Figure 3.   Examples of GradCAM applied to TOP frames.
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that temporal information seems to be a major factor for pain identification, it is recommended that temporal 
models be further investigated.

It is important to note that while some elements of the developed approach are rabbit-specific most of the 
elements can be reused across species. In particular, we have tested the GrayST and the frame selection techniques 
studied here on the dataset from20, and achieved increased performance. It seems that the pipelines can be reused 
for various species after some fine-tuning (e.g., the cropping pre-processing is species-specific).

Methods
Preprocessing.  1. Trimming and frame sampling. Videos contain large amounts of temporally redundant 
data, making it possible to skip some parts without losing much information29. Assuming that pain expressions 
may be intermittent but with a certain continuous duration over time, we trimmed every 2-min length video, 
selecting one frame per second. Every video was recorded using a 60 frames per second encoding. Thus each 
video was reduced from 7200 frames (60 frames/s × 120 s) to 120 frames.

2. Rabbit Detection and Cropping. We customized a Yolov530 object detector using a manually annotated 
dataset with 179 rabbit images, extracted from the original dataset. A total of 142 images of different individu-
als were used for training the detector, and 37 for validation. Using the rabbit detector, images were cropped, 
focusing on the rabbit.

3. Grayscale Short-Term Stacking (GrayST). We use the Grayscale Short-Term Stacking (GrayST), a meth-
odology proposed in31, to incorporate temporal information for video classification without augmenting the 
computational burden. This sampling strategy involves substituting the conventional three color channels with 
three grayscale frames, obtained from three consecutive time steps. Consequently, the backbone network can 
capture short-term temporal dependencies while sacrificing the capability to analyze color. A description of 
GrasyST process is shown in Fig. 5. Figure 4 shows examples of frames from both ‘pain’ and ‘no pain’ classes 
after application of Grayscale Short-Term Stacking (GrayST).

Model training.  We investigated two different types of deep learning pipelines: Transfer Learning using a 
pretrained Resnet50 architecture and CLIP embedding combined with Gausian Naive Bayes Classification.

Transfer Learning using a pretrained Resnet50.  Similarly to32, we apply transfer learning on a Resnet50 model 
pre-trained on ImageNet, provided in the Tensorflow package for Keras using ImageNet weights without its 

Figure 4.   Examples of cropped frames after Grayscale Short-Term Stacking (GrayST).

Figure 5.   Grayscale Short-Term Stacking (GrayST) preprocess.
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head. On top of the last layer, we added a new sub network compound of an average pooling layer, a flatten layer, 
a fully connected (FC) layer of 128 cells, a 0.5 dropout layout and a softmax activation layer for pain/no pain cat-
egorization. The model was compiled using binary cross-entropy loss and Adam optimizer, and all layers in the 
base model were set as non-trainable to retain the pre-trained weights during the initial training phase. We used 
batch size of 64 with a learning rate of 1e-4, and chose the model that achieved the best (maximal) validation 
accuracy. Every image was augmented applying only changes on the image size or illumination like a random 
zoom range of up to 0.15, width shift of up to 0.2, height shift of up to 0.2, shear range of up to 0.15. We did not 
apply any augmentation that may change the angle of the image since we assumed important visual information 
could be contained in body position changes.

CLIP embedding combined with Gausian Naive Bayes classification.  CLIP33 encoding is a process of mapping 
images into a high-dimensional embedding space, where each image is represented by a unique embedding 
vector. The CLIP encoder achieves this by pre-training a neural network on a large dataset of image and text 
pairs using a contrastive loss function. In this work, we encode images using a ViT-B/32 architecture, a specific 
instance of a Vision Transformer (ViT) model that can be used as an image encoder in CLIP. The “ViT” in ViT-
B/32 stands for Vision Transformer, “B/32” refers to the batch size used during training of the model. It indicates 
that during the training process, the data is divided into batches, with each batch containing 32 samples. Batch 
size is an important parameter in machine learning models and affects the efficiency and memory requirements 
during training. We extract the output of the final layer as a 512 dimensional embedding vector that will be used 
for pain classification.

The Naive Bayes classification model34 is a probabilistic algorithm used for classification tasks in machine 
learning. It is based on Bayes’ theorem, which describes the probability of a hypothesis given some observed 
evidence. The “naive” assumption in the model is that the features used to represent the data are independent of 
each other, which simplifies the probability calculations. The model estimates the probability of each class given 
the input features and then assigns the input to the class with the highest probability. Naive Bayes is computa-
tionally efficient and can work well even with small amounts of training data.

Frame selection.  We used the obtained classification models (ResNet Model 1 and CLIP/ViT Model 1) 
to select N Top frames with the highest confidence to train their corresponding Model 2 (ResNet Model 2 and 
CLIP/ViT Model 2 respectively). In the ResNet-based model, after the last layer added on top of the pre-trained 
model, we used the binary entropy values of two classes (no pain, pain) as confidence values of the Resnet50 
model. For the Gaussian Naïve Bayes classifier we used with the CLIP model, the confidence level is the prob-
ability estimation for the test vectors (image embeddings).

For our experiments, we chose N = 20. The intuition here is by this specific manner of undersampling we can 
remove ‘noisy’ frames caused by the in-the-wild videos containing many low-quality frames, due to obstruc-
tion (bars, rabbit not facing camera), blurry frames (caused by movement), or the fact that pain level reflected 
visually does not always remain on the same fixed level throughout the video. Such removal of ‘noise’ may lead 
to increased performance of the model, thus we experimented by using only the top-20 frames data for training 
another model.

Figures 6 and 7 show the confidence level distributions of frames classified by the Resnet50 and CLIP/ViT 
models respectively, with the majority of frames with high confidence levels. Our new Top-20 dataset consists 
of 20 images of pain and 20 images of no pain for each rabbit. The exact same training procedure as described 
above was used for training new models using the Top-20 dataset.

Figure 6.   Confidence histogram of frames classified by Resnet50 model.
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Data availability
The dataset is available from the corresponding authors upon request.
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