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Evolutionary selection of proteins with
two folds

Joseph W. Schafer1 & Lauren L. Porter 1,2

Although most globular proteins fold into a single stable structure, an
increasing number have been shown to remodel their secondary and tertiary
structures in response to cellular stimuli. State-of-the-art algorithms predict
that these fold-switching proteins adopt only one stable structure, missing
their functionally critical alternative folds. Why these algorithms predict a
single fold is unclear, but all of them infer protein structure from coevolved
amino acid pairs. Here, we hypothesize that coevolutionary signatures are
being missed. Suspecting that single-fold variants could be masking these
signatures, we developed an approach, called Alternative Contact Enhance-
ment (ACE), to search both highly diverse protein superfamilies–composed of
single-fold and fold-switching variants–and protein subfamilies with more
fold-switching variants. ACE successfully revealed coevolution of amino acid
pairs uniquely corresponding to both conformations of 56/56 fold-switching
proteins from distinct families. Then, we used ACE-derived contacts to (1)
predict two experimentally consistent conformations of a candidate protein
with unsolved structure and (2) develop a blind prediction pipeline for fold-
switching proteins. The discovery of widespread dual-fold coevolution indi-
cates that fold-switching sequences have been preserved by natural selection,
implying that their functionalities provide evolutionary advantage and paving
the way for predictions of diverse protein structures from single sequences.

Though machine learning methods have recently revolutionized
protein structure prediction1–3, some classes of proteins remain a
challenge4–7. For example, fold-switching proteins8, also known as
metamorphic proteins9, transition between two sets of stable sec-
ondary and tertiary structure8,10. These structural transitions mod-
ulate protein functions involved in suppressing human innate
immunity during SARS-CoV-2 infection11, controlling the expression
of bacterial virulence genes12, maintaining the cycle of the cyano-
bacterial circadian clock13,14, and more15,16. Despite their biological
importance, AlphaFold2 predicts only one conformation for 92% of
known dual-folding proteins, and 30% of the predicted conforma-
tions were likely not the lowest energy state17. Other structure pre-
diction algorithms, such as trRosetta18 and EVCouplings19, also
systematically failed to predict experimentally validated fold

switching in the universally conserved NusG family of transcription
factors15,20.

Most state-of-the-art protein structure prediction algorithms,
including all just mentioned, infer folding information from evolu-
tionary conservation patterns. Very early studies of protein structure21

recognized that covarying amino acid pairs in homologous sequences,
also known as coevolved residue pairs, tend to be in direct contact22,23.
These coevolved contacts cangreatly constrain thenumber of possible
conformations that computational methods must sample to predict a
protein’s fold24, motivating the development of increasingly sophisti-
cated methods that infer amino acid coevolution25–31. Multiple
sequence alignments (MSAs), collections of sequences homologous to
the sequence of interest, are the inputs to most of these methods.
Typically, the accuracy of inferred coevolved residue pairs increases
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with MSA depth30, though recent deep learning-based methods can
make accurate inferences from shallow MSAs3,31.

The heavy reliance of structure prediction algorithms on coevo-
lutionary information suggests two possible explanations for the lack
of predicted fold-switching proteins: (1) fold-switching proteins are
rare, transient evolutionary byproducts that bridge two distinct folds
but are not selected to assume distinct conformations32,33, or (2) both
conformations of fold-switching proteins are selected, but current
prediction strategies unintentionally miss the evolutionary signatures
of two folds. Frequent coevolution of both conformations, if present,
both supports the idea that protein fold switching confers selective
advantage8,16,34 and provides a potential strategy to identify additional
fold-switching proteins.

Some previous work hints that amino acid contacts unique to
each conformation of fold-switching proteins may have coevolved, a
phenomenon hereafter called dual-fold coevolution. For example, we
recently identified fold-switching proteins within the universally con-
served NusG transcription factor family by leveraging structural
information derived from MSAs from protein superfamilies (deep
MSAs containing a large clade of diverse-yet-homologous sequences)
and protein subfamilies (shallow MSAs with sequences similar to a
target of interest)20. Furthermore, Dishman and colleagues found that
several reconstructed ancestors of the fold-switching chemokine
XCL1 switch folds, fromwhich they concluded thatXCL1 fold switching
was evolutionarily selected34. These studies, though suggestive, focus
on a couple of specific systems and infer fold switching from experi-
mental characterization of a few variants (XCL1) or inconsistent sec-
ondary structure predictions (NusG). Weak coevolutionary couplings
of a fold-switching NusG have also been predicted, though the cou-
plings had high proportions of noise35.

Here, we find dual-fold coevolution in 56/56 fold-switching pro-
teins frommany diverse families. To do this, we applied unsupervised
learning techniques to both superfamily and subfamily-specific MSAs
of all known fold switchers with two distinct experimentally deter-
mined structures and leveraged our findings to bias AlphaFold2 to
predict both conformations of a candidate fold-switching NusG pro-
tein with <30% aligned identity to both of its PDB homologs. Realizing
that the information from dual-fold coevolution can facilitate

predictions of two protein structures from one amino acid sequence,
we developed a pipeline to blindly predict fold-switching proteins
from their sequences. This pipeline correctly identified 13/56 fold-
switching proteins (23%) with a false-positive rate of 0/181. Together,
our results indicate that (1) fold-switching proteins have largely been
selected by evolution and likely confer selective advantage and (2) the
information from dual-fold coevolution can be leveraged to predict
fold-switching proteins from sequence.

Results
Methodologies to infer and analyze residue-residue coevolution
To assess the frequency of dual-fold coevolution among unrelated
fold-switching proteins, we applied unsupervised learning techniques
to both superfamily and subfamily-specific MSAs of 91 fold switchers
with two distinct experimentally determined structures17. One techni-
que identifies coevolution of amino acid pairs using Markov Random
Fields (MRFs). The MRF construction offers several advantages: (i) it
converges to a global minimum as MSA depth increases, (ii) it can
generate reasonable predictions from fairly shallowMSAs, and (iii) the
MRF formalism accounts for noncausal correlations that arise when
two residues interact with a third but not with one another36–38. Among
the numerous MRF-based methods19,27,39, we selected GREMLIN (Gen-
erative Regularized ModeLs of proteINs) because of its superior
performance36,37. The second technique, MSA transformer, infers
coevolved amino acid pairs using a language model that focuses on
both evolutionary patterns of amino acidswithin anMSA (column-wise
attention) and properties of the individual sequences (row-wise
attention), often with better accuracy than GREMLIN for single-fold
proteins31.

We gauge the success of these methods by quantifying the over-
lapbetweenpredicted and experimentally determined residue-residue
contacts fromboth folds. These comparisons are easily visualizedwith
contact maps, which display amino acid pairs either measured or
predicted to be proximal (heavy atom distance ≤8Å37). Though typical
contact maps are symmetric about the diagonal, those used here are
asymmetric to maximize information content. For example, the large
light gray circles in the upper triangular portion of Fig. 1 represent
contacts unique to the experimentally determined monomeric fold of

Fig. 1 | Example of a dual fold contact map from experimentally determined
structures.KaiBmonomeric/tetrameric heavy-atom contacts within 8 Å are shown
in the upper/lower triangles of the contact map in light gray/black. Contacts
common to both folds are shown in medium gray. Interchain contacts within 10Å

are shown as smaller circles in their respective colors. Monomeric/tetrameric
contacts were calculated from PDBs 1T4Y/4KSO. Protein structures were generated
with PyMOL80. Plots in all figures were generated with Matplotlib81. Source data are
provided as a Source Data file.
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KaiB, while the black circles in the lower triangular portion represent
contacts unique to KaiB’s experimentally determined tetrameric fold.
Contacts common to both experimentally determined folds are shown
in medium gray on both sides of the diagonal. Where appropriate,
interchain contacts are represented by smaller circles using the same
color scheme (in this case, black but not light or medium gray). Pre-
dicted contacts, shown in other figures below, are smaller and teal.

Correct predictions are opaque circles; incorrect predictions are
translucent diamonds.

Approach to identify dual-fold coevolution
Figure 2 depicts our workflow to search for dual-fold coevolution
(Methods), called alternative contact enhancement (ACE). The query
sequence, which corresponds to two distinct experimentally

Fig. 2 | Graphical depiction of Alternative Contact Enhancement (ACE), using
KaiB asanexample input. AAnMSAsuitable for coevolutionary analysis is pruned
by the identity of its sequences to the query sequence (yellow), removing distantly
related sequences from the dataset and generating subfamily-specificMSAs.B Each
MSA (original + all pruned) is used as input for coevolutionary analysis.
C Predictions from all MSAs are superimposed on a single contact map. D A

clustering algorithm filters noise, leaving dense clusters of predicted amino acid
contacts. Contacts unique to the dominant/alternative folds are light gray/black;
common contacts are light gray; experimentally consistent predictions are teal
circles; incorrect predictions (noise) are translucent teal diamonds. Figure 1 pro-
vides an explanation of the dual-fold contact maps used here. Source data are
provided as a Source Data file.
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determined structures, is used to generate a deep MSA. This MSA is
pruned to create successively shallower MSAs with sequences
increasingly identical to the query (Fig. 2A). These increasingly
subfamily-specific MSAs are intended to unmask coevolutionary cou-
plings from alternative conformations, as they did with RfaH, a fold-
switching NusG protein whose ground state α-helical conformation
was identified only in subfamily-specific MSAs20,35. Accordingly, coe-
volutionary analysis is performed on each MSA using GREMLIN and
MSA Transformer (Fig. 2B). Predictions from both methods run on
these nested MSAs are combined and superimposed on a single con-
tact map (Fig. 2C). Finally, these predictions are filtered by density-
based scanning to remove noise (Fig. 2D). Predicted contacts are
categorized as follows. Dominant fold: unique contacts corresponding
to the experimentally determined structure that overlaps most with
predicted contacts from the deepest MSA (light gray contacts in
Fig. 2B–D); Alternative fold: unique contacts corresponding to the
other experimentally determined structure (black contacts in
Fig. 2B–D); Common: predicted contacts overlapping with experi-
mentally determined contacts shared by both folds (gray contacts
symmetric on both sides of the diagonal in Fig. 2B–D); Unobserved:
predicted contacts that do not overlap with any experimentally
determined contacts (readily visible in Fig. 2C). As shown in previous
work, unobserved contacts can result from alternative conformations
consistent with molecular dynamics simulations revealing folding
intermediates35 and other structural dynamics40. Unobserved contacts
can also be erroneous (noise).

Evolutionary selection of dual-fold proteins
We applied ACE to all known fold-switching proteins, 91 single
sequences with two distinctly folded experimentally determined
structures17. These proteins are found in all kingdoms of life and
represent >80 distinct fold families (Supplementary Table 1). Although
efforts weremade to generate the deepest possibleMSA for each fold-
switching sequence (Methods), the depths of 35 MSAs were too shal-
low for downstream analysis (<5*length of query sequence37) and one
displayed severe artifacting after analysis. Thus, ACE was applied only
to the remaining 56 fold-switching sequences with sufficiently deep
MSAs (Supplementary Table 1, Supplementary Figs. 1–10). Conforma-
tions with more contacts predicted in the superfamily MSA are deno-
ted “dominant”, and thosewith fewer predicted contacts, “alternative”.
This terminology holds no biophysical significance: 33% of “dominant”
conformations do not correspond to the lowest energy states (Sup-
plementary Table 2).

ACE predicted substantially more correct contacts than the
standard approach, i.e., coevolutionary analysis run on deep super-
family MSAs alone30. Most notably, predicted amino acid contacts
uniquely corresponding to the 56 alternative conformations were
highly enhanced, with mean/median increases of 201%/187% (Fig. 3a).
The number of correctly predicted contacts also increased for all 56
proteins, with mean/median increases of 111%/107% (Fig. 3b). Experi-
mentally unobserved contacts were amplified substantially less than
either alternative or correctly predicted contacts, with mean/median
increases of 42%/47% (Supplementary Fig. 11). Prior to density-based
filtering, mean/median unobserved contacts were amplified by 69/
73%, demonstrating that, on average, 39% of the extra unobserved
contacts accrued from subfamily MSAs is sparsely distributed.

Statistical analysis confirmed that the additional coevolutionary
contacts identified by our approach are much more likely to be pro-
ducts of evolution than chance. Specifically, the likelihood of gen-
erating the additional correct contacts–with concomitant unobserved
contacts–was very low for all 56 fold-switching proteins, with p-values
ranging from 0.0091 to 0 (one-tailed hypergeometric test, Supple-
mentary Table 1). These low p-values demonstrate that the dual-fold
coevolutionary signatures identified by GREMLIN and MSA Transfor-
mer are significant, indicating that evolution has selected for protein

sequences that assume two distinct folds. Importantly, dual-fold coe-
volution was largely not observed in a test set of 181 single-fold pro-
teins: the distribution of non-dominant contacts in this set was
significantly lower than for fold switchers (p < 1.1 * 10−94

, Epps-Singleton
test, Fig. 3c, Supplementary Table 1).

Enhanced contacts originate largely from shallow subfamily-
specific MSAs
We sought to identify which subfamily MSAs most enhanced predic-
tions. For all 56 fold-switching proteins, we determined the cumulative
number of alternative contacts predicted as a function of MSA depth.
Correctly predicted contacts were quantified and binned by the
number of sequences in the shallowestMSAnormalizedby thenumber
of sequences in the original superfamily MSA. For instance, a super-
family MSA with 20,000 sequences could have smaller pruned MSAs
with 19,050, 15,100, and 999 sequences, which would fall in bins 0.95,
0.70, and 0.0, respectively. The mean and standard deviation of the
cumulative number of predicted contacts were calculated across all
bins for each of the 56 proteins, from which the z-scores of the num-
bers of predicted contacts were determined. This approach allowed
statistical variations in the number of predicted contacts to be com-
pared directly between all 56 proteins despite large variations in the
raw numbers of contacts predicted across families.

Many enhanced contacts originated from shallow subfamily-
specificMSAs (Fig. 4, Supplementary Fig. 12). Most notably, z-scores of
the numbers of alternative contacts increased sharply in subfamily-
specific bins (0.00–0.15) (Fig. 4a, b). Subfamily-specific bins 0.0–0.1
had median z-scores >0, indicating more predicted contacts than
expected across the 56 families, on average (Fig. 4a). Furthermore,
subfamily-specific MSAs constituting <20% of their unpruned super-
family MSAs provided over half of the enhancement in predicted
alternative contacts (Fig. 4b). As hypothesized, these results demon-
strate that most contacts corresponding to the alternative conforma-
tions of fold-switching proteins originate from shallow MSAs with
sequences most similar to the known fold-switching sequence.

Amodest increase in alternative contacts was also observed upon
pruning 5–10% of the least similar sequences in the deepest super-
family MSAs (bin 0.9, Fig. 4a, b), suggesting that eliminating the most
dissimilar sequences may enhance overall MSA quality. Z-scores
increased gradually between bins 0.85 and 0.15 (Fig. 4a). Subfamily-
specific MSAs enhanced predictions of dominant and common con-
tacts also (Supplementary Fig. 12a-d). Importantly, our noise reduction
strategy preferentially eliminated experimentally unobserved contacts
(Supplementary Fig. 12e, f): z-scores of the number of experimentally
consistent contacts in all three categories remained essentially con-
stant, while the z-score of the number of experimentally unobserved
contacts decreased to ~0, on average (Supplementary Fig. 12g).

Masking dominant contacts allows AlphaFold2 to predict both
structures of a distant NusG homolog
Widespread dual-fold coevolution opens the possibility of predicting
both conformations of a fold-switching protein from its sequence.
We tested this possibility on a NusG Variant with low sequence
identity (≤29%) to homologs with experimentally determined three-
dimensional structures. NusG proteins are the only transcription
factors known to be conserved in all kingdoms of life41. Unlike most
NusGs with atomic level structures, whose C-terminal domains
(CTDs) assume a β-roll fold, this Variant’s CTD switches from an α-
helical ground state to a β-roll20, much like its homolog, RfaH42.
Nevertheless, AlphaFold2 consistently predicts that the CTD of this
Variant assumes a β-roll fold only (Fig. 5a, Supplementary Fig. 13).
This prediction corroborates the observations discussed previously:
all NusG CTDs are expected to assume β-roll folds (dominant con-
formation), though a subpopulation can also assume α-helical folds
(alternative conformation). To test whether the coevolutionary
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signal of the β-roll fold might be masking a weaker α-helical sig-
nature,we examined the coevolved amino acidpairs identified byour
approach. Twenty-one amino acid positions in the CTD formed only
coevolved pairs corresponding to the β-roll fold, while positions
exclusively forming coevolved pairs corresponding to the α-helical
fold numbered only four (Fig. 5a).

To weaken the coevolutionary signal corresponding to the β-roll
fold, we changed all 21 positions in theMSA to alanine, themutation of
choice for perturbing structure43, except for the sequence of the Var-
iant (Fig. 5b); positions formingdifferent contacts in the two foldswere
left unchanged. From this modified MSA, AlphaFold2 predicted a
ground state α-helical structure consistent with our coevolutionary
predictions (Fig. 5b, Supplementary Fig. 14). The secondary structures
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Fig. 4 | Alternative contacts are enhanced largely by subfamily-specific MSAs.
a Z-scores of predicted alternative contacts increase as MSAs become shallower
and more similar to the fold-switching sequence of interest. Median z-scores of
each bin are gray. b Z-scores of predicted contacts change most in deepest and
shallowest MSAs. Purple bars are differences between median z-score of bin (gray
dots in (a)) and median z-score of the deepest MSA. Pink bars are differences
betweenmedian z-score of bin andmedian z-scoreof next deepest bin. Source data
are provided as a Source Data file.

Fig. 3 | ACE amplifies correctly predicted contacts for fold-switching proteins.
Amplification is observed for 56/56 predicted contacts uniquely corresponding to
the alternative fold (a) and for all predicted contacts (b). Identity lines in both plots
are dashed lines. c Amplification of alternative contacts occurs much more fre-
quently in fold switchers than among single folders. Violin plots show the dis-
tributions of %non-dominant contacts for fold-switching and single-fold proteins.
The left and right distributions were generated from n = 56 and n = 181 datapoints,
respectively. Inner bold black boxes span the interquartile ranges (IQRs) of each
distribution (first quartile, Q1 through third quartile, Q3); medians of each dis-
tribution are white dots, lower line (whisker) is the lowest datum above Q1-1.5*IQR;
upper line (whisker) is the highest datum below Q3+ 1.5*IQR. Source data are
provided as a Source Data file.
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of both CTDs have high prediction confidences (pLDDT scores),
except for the most C-terminal helix in the α-hairpin conformation
(Supplementary Fig. 15a, b). RoseTTAFold244 predicted a similar helical
conformation within 0.6Å RMSD of the AlphaFold2 prediction when
ourmodifiedMSAwas inputted (Methods), confirming that alternative
protein folds can be predicted bymasking coevolutionary information
in MSAs43.

Both predicted conformations are consistent with amino-acid-
specific secondary structure predictions calculated from nuclear
magnetic resonance assignments20 (Fig. 5a, b). Furthermore, without
suppressing the strong β-roll coevolutionary signature, AlphaFold2
consistently predicted the β-sheet fold regardless of input MSAs and
use or absence of templates. The α-helical CTD conformation was also
missed by RoseTTAfold1 and RGN245, an MSA-independent deep
learning method that outperforms AlphaFold2 on orphan protein
sequences (Supplementary Fig. 13). Importantly, masking coevolu-
tionary signals in the experimentally characterized single-foldingNusG
protein from Escherichia coli resulted in anAlphaFold2predictionof an
unfolded CTD rather than anα-helical one (Supplementary Fig. 16a, b).
Together, these results demonstrate that the coevolved contacts
identified by our approach guided AlphaFold2 to predict the correct
alternative conformation of an experimentally confirmed fold
switcher.

Not all AlphaFold2-generated fold-switch predictions have
obvious coevolutionary signatures
We wanted to see if other MSAmodifications have caused AlphaFold2
to produce fold-switched structures with strong coevolutionary sup-
port, like the NusG variant predicted here (Fig. 5a, b, Supplementary
Fig. 14). Recently, four different fold-switching events have been pre-
dicted blindly using ColabFold46, an efficient implementation of
AlphaFold2 that generates comparable structure predictions: three in
E. coli Adenylate Kinase (AK) and one in DsbE, an oxidoreductase from
Mycobacterium tuberculosis. The first threewere generated bymasking
coevolutionary signals within AK’s MSA43, the fourth by inputting a
small cluster of sequences similar to DsbE47. Interestingly, our
approach did not identify strong coevolutionary signatures for any of
these four predictions (Fig. 6a, b, Supplementary Fig. 17), especially
DsbE, whose putative fold-switched state has the largest number of
higher order contacts. While these recent AlphaFold2 predictions may
be fold switchers, they remain to be confirmed experimentally.

Blind predictions of known fold switchers
Taking a more conservative approach to blind predictions of fold
switchers, we tested an alternative strategy that avoids input MSA
modification and cross-validates predictions by dual-fold coevolu-
tionary signatures (Fig. 7a). Hypothesizing that different coevolutionary

Fig. 5 | AlphaFold2 successfully predicts two conformations of a candidate
sequence without experimentally determined structures. a A NusG N-terminal
(NGN) fold (light gray) and a C-terminal β-roll fold (lavender) are predicted from a
deep input MSA (region corresponding to the CTD shown). Predicted β-sheets in
the C-terminal domain that agree closely with the β-sheets predicted from nuclear
magnetic resonance experiments are shown with black boxes surrounding laven-
der bars. b A NusG N-terminal (NGN) fold (light gray) and a C-terminal α-helical

hairpin fold (teal) are predicted from a modified input MSA in which columns
predicted to formonlyβ-roll contacts are changed to alanine. Predictedα-helices in
the C-terminal domain that agree with the α-helices predicted from nuclear mag-
netic resonance experiments are shown with black boxes surrounding teal bars.
Protein structures were generated with PyMOL80. Source data are provided as a
Source Data file.
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inference methods may favor different conformational states of fold-
switching proteins, we compared three-dimensional structures gener-
ated by ColabFold46–a more efficient implementation of
AlphaFold2–and ESMFold3, a highly efficient computational method
recently used to predict the structures of >600,000,000 proteins.
While ColabFold infers residue-residue contact patterns from MSAs,
ESMFoldpredicts contacts fromsingle sequencesusing a large language
model. Structural differences between the models produced by these
twomethods do not necessarily indicate fold switching, especially since
ESMFold predictions can be less accurate than AlphaFold2, and by
extension, ColabFold3. Thus, we cross-validated these two predicted
structureswith coevolvedcontacts inferred fromACE.We reasoned that
if ACE-predicted contacts overlapped with the uniquely folding regions
of both structures, they were likely both correct. Importantly, this
approach is more efficient than previously proposed methods that
modify the MSA inputs to AlphaFold2, which require several47–and
sometimes many43–ColabFold runs on multiple modified MSAs. By
contrast, our approach involves one ColabFold run on an unmodified
MSA and one ESMFold run on a single sequence. Furthermore, this
approach leverages the information gained from our dual-fold MSAs
without using them for direct structural inference,whichwould likely be
impeded by their suboptimal levels of experimentally uncharacterized
contacts, many of which are likely to be noise (Supplementary Fig. 11b).

This blind predictive approach successfully identified fold switch-
ing in 13/56 known fold switchers (23%) with zero false positives. Suc-
cesses are subdivided as follows. Category 1 comprises seven proteins
with two correctly predicted conformations both corroborated by our

coevolutionary pipeline (Fig. 7b, Supplementary Fig. 18). Figure 7b
highlights MinE48–a bacterial protein whose fold switching fosters cell
division–and Entamoeba histolytica calcium-binding protein-1, whose
domain-swapped conformation may limit its target binding
specificity49. Importantly, many of MinE’s unobserved contacts corre-
spond to its experimentally observed homodimeric interface. Category
2 comprises six other proteins for which only one conformation was
predicted, but persisting coevolutionary signatures suggest a correct
alternative conformation (Fig. 7c, Supplementary Fig. 19). For instance,
bacterial PapA has a domain-swapped β-sheet (black) that fosters for-
mation of large protein assemblies known as pili, which play a critical
role in mediating bacterial adhesion to human urinary tracts50. Fur-
thermore, the initiator protein RepE forms a monomeric and dimeric
state with distinct conformations and functions: the monomeric form
functions as a replication initiator, the dimer as a repressor51. Impor-
tantly, applying this approach to 181 expected single folders yielded no
predicted fold switchers. In 22 cases ColabFold and ESMFold predicted
different conformations in at least oneprotein region, but noneof them
were corroborated by coevolved contacts inferred by ACE. Thus, this
predictive approach appears to be a reliable way to blindly predict fold-
switching proteins. Although it will miss many true fold switchers, its
low false positive rate (0% in this instance) suggests that the putative
fold switchers it identifies will likely be correct.

Discussion
Although globular proteins are generally observed to assume single
unique folds, an increasing number can switch between distinct sets of

EbsDesaniK etalynedA

Experimentally 
determined

Predicted

Experimentally 
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Fig. 6 | Some AlphaFold2 fold-switch predictions based on modified multiple
sequence alignments (MSAs) lack strong coevolutionary signatures. Contact
maps of Adenylate Kinase (left) and DsbE (right) show the experimentally deter-
mined structure on the top diagonal and the AF2-predicted fold switched structure
on the bottom. Many predicted coevolved contacts (teal) overlap with contacts
unique to the experimentally determined structures (light gray), but few overlap
with contacts unique to the alternative structures predicted by AlphaFold2 (black).

Structures of both sets of conformations are shown below their respective contact
maps. Medium gray regions are common to both folds; white/black correspond to
experimentally determined/AF2prediction. PDB IDs for experimentally determined
structures are 4AKE, chain A and 1LU4, chain A, for adenylate kinase and DsbE,
respectively. Figure 1 provides an explanation of the dual-fold contact maps used
here. Source data are provided as a Source Data file.
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stable secondary and tertiary structure. These fold-switching proteins
facilitate cancer progression52, foster SARS-CoV-2 pathogenesis53, fight
microbial infection34, and more16. The biological importance of many
fold-switching proteins suggests that they may have been selected to
assume two folds54. By runningwell-developed coevolutionary analysis
methods31,36,37 on many sets of unrelated protein superfamilies and

subfamilies, we identified statistically significant coevolutionary sig-
nals corresponding to two folds of 56 diverse fold-switching proteins.
Although coevolutionary signals for alternative protein folds have
been proposed previously for a small number of proteins17,35,43, this
work systematically identifies their origins (shallow subfamily-specific
MSAs) and provides a biological rationale: dual-fold coevolutionary
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signals arise from the sequences of protein subfamilies populated by
fold-switching proteins rather than the superfamilies often dominated
by single-fold proteins. These signals were then leveraged to (1) cor-
rectly predict two experimentally consistent conformations of a can-
didate protein with <30% sequence identity to its homologs with
solved structures and (2) blindly predict fold switching of 13/56 pro-
teins with zero false positives.

The widespread selection of proteins with two distinct structures
indicates that fold switching (1) confers evolutionary advantage and (2)
is a fundamental biological mechanism. These results, coupled with the
difficulties associated with experimentally characterizing fold
switchers8,55, suggest that fold-switching proteins may be more abun-
dant than currently realized. Accordingly, recent experimentally con-
firmed predictions suggest that over 3500 proteins in the NusG
transcription factor family of ~15,500 proteins switch folds20. Further-
more, since subfamily MSAs have also been used to infer other protein
properties56,57, ACE might successfully extend beyond fold switchers to
other forms of structural heterogeneity, such as allostery, which pre-
vious coevolutionary approaches have predictedwith some success58,59.

The observed prevalence and biological relevance of fold-
switching proteins underscore the need to develop computational
methods that reliably predict more. Although state-of-the-art pre-
dictive algorithms have revolutionized protein structure
prediction1,2,60, they systematically fail to predict protein fold
switching17,20. Here, we suggest a computationally efficient pipeline to
predict fold switching blindly. Although its 23% true positive rate is
modest, its extremely low false positive rate (0/181), suggests that its
fold switch predictions will likely be reliable. ACE was the key step in
eliminating false positives. ColabFold and ESMFold predicted struc-
tural differences in 22/181 single folders, but none of these structural
differences were supported by dual-fold coevolution. Thus, ACE not
only demonstrates that evolution has selected formany fold-switching
proteins but also can be used to cross-validate blind predictions of
fold-switching proteins.

We expect that applying our blind predictive approach to thou-
sands of sequenceswill yield numerous predicted fold switchers,many
of which will be bona fide. The next challenge will be experimentally
testing predictions. Most fold-switching events are triggered by
external stimuli15, and the triggers are often not obvious. For instance,
RfaH was identified as a fold switcher in 201261. Seven years later, the
triggers of its reversible α-helix to β-sheet transition were reported62:
binding bothRNApolymerase and a specificDNA sequence, called ops.
Screening for such non-obvious triggers will likely be difficult, but
other fold switchers with simpler triggers, such as smallmolecules63 or
pH ref. 8, could potentially be identified through comprehensive
screens. Furthermore, high-throughput structural screens for folds-
witching need to bedeveloped. Currently, no generalizable screens are
available, though methods such as hydrogen-deuterium exchange
mass spectrometry can identify slow conformational changes64 and
may therefore be used to screen for fold-switching, which occurs on
the order of tens of milliseconds65, seconds66, or longer67. Circular
dichroismcanalso screen fold switchers that undergo large shifts from
α-helix to β-strand or vice versa20.

Our findings lay the groundwork for amore functionally complete
picture of the proteome by capturing dual-fold coevolutionary

signatures of fold-switching proteins from their genomic sequences. In
addition to developing a computational pipeline that blindly predicts
fold switchers, we show that AlphaFold2 can be biased to predict two
folds from one amino acid sequence. The key to this approach was
suppressing the strong coevolutionary signature of the dominant β-
roll fold, allowing AlphaFold2 to detect weaker α-helical signals from
the amino acid sequence of a fold-switching NusG protein with low
sequence identity to its PDB homologs. Importantly, the algorithm
predicted no such signals from a single-folding NusG. This result
confirms that dual-fold coevolutionary signals are present in a fold-
switching NusG protein, but not in its single-folding homolog. On a
cautionary note, running AlphaFold2 on the shallowest E. coli RfaH
MSA used in our coevolutionary analysis yielded a nonsensical pre-
diction with high confidence (ranked 0): a CTDwithmixed α-helix and
β-sheet character (Supplementary Fig. 20). Thus, we interpret high-
confidence AlphaFold2 models inferred from modified MSAs with
caution and run our blind prediction pipeline on full MSAs rather than
modified ones.

Additional technical advances are needed to predict protein fold
switching more reliably. First, coevolutionary signatures of fold
switching must be distinguished from noise or true contacts arising
from other phenomena, such as multimerization (e.g., MinE dimeric
interface, Fig. 7b). Second, dual-fold contacts must be correctly sepa-
rated into their two respective folds without prior knowledge of both
conformations, on which we rely here. Nevertheless, ColabFold and
ESMFold predictions captured the two distinct states of six fold-
switching proteins and partially predicted both folds of a seventh. All
seven sets of predictions were consistent with both sets of contacts
inferred from ACE, giving us confidence that the blind predictive
approach we developed will successfully predict some fold-switching
proteins from whole genomes. Third, dual-fold coevolution must be
predicted reliably. Our approach works only on sequences for which
sufficiently deep MSAs can be generated. As a result, fold switching
could not be predicted in 35% of the sequences in our initial dataset.
Nevertheless, the rapid growth of diverse sequenced proteins68, recent
advances in deep learning69,70, and increasingly accessible computa-
tional resources leave us optimistic that these challenges will be
overcome.

Methods
MSA generation
Fold-switching protein sequences were used as inputs for
jackhmmer71,72 to generateMSAs after searching the Uniref9068 release
from January 2021. To achieve optimal MSA depths, multiple searches
with -incE and -incdomE thresholds set to the same value ranging from
10−1 to 10−250 were performed in increments of 10−3. We then searched
for the deepest MSA in this range with a maximum of
60,000 sequences. Each jackhmmer run was iterated until the MSA
converged or until 10 iterations had occurred.

MSA preparation
To generate subfamilyMSAs, distantly related sequences were pruned
from deep superfamily MSAs using hhfilter73. This software filters
alignments by QID, pairwise sequence identity between the query
sequence used to generate the MSA and each subsequent sequence

Fig. 7 | Blind predictions of fold-switching proteins. a Blind predictions are
performedbyusingColabFold and ESMFold to each predict a structureof an amino
acid sequence. ACE predicts coevolved residue pairs using the two predicted
structures as references. The predicted structures are compared. Different struc-
ture predictions both consistent with coevolutionary predictions fall into Category
1 (b). Examples include the cell division protein MinE and the EF-hand protein
EhCaBP. Similar structure predictions with coevolutionary evidence fall into Cate-
gory 2 (c). Examples include the bacterial pilin protein PapA and the DNA replicase,
RepE. For Figures (b) and (c), contact maps are shown above structures predicted

by ColabFold (fold-switching regions light gray) and ESMFold (fold-switching
regions black). Predicted contacts are teal. In (c) ColabFold and ESMFold predict
the same conformation. Predicted contacts corresponding to the experimentally
characterized alternative conformation are light purple. Structurally conserved
protein regions/common contacts are medium gray. Although all proteins are
presented as monomers for simplicity, MinE forms a dimer and PapA forms large
oligomers. Figure 1 provides an explanation of the dual-fold contact maps used
here. Source data are provided as a Source Data file.
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within it. Subfamily MSAs of varying depths were generated with QID
thresholds ranging from 1% to 50% in increments of 1%. All MSAs—both
superfamily and subfamily—were prepared for coevolutionary analysis
by removing any sequences with >25% gaps and then filtering any
columns with >75% gaps.

Coevolutionary analysis
Prepared MSAs from each protein family were used as separate inputs
into both GREMLIN36,37 and MSA transformer31, each run with default
parameters. Typically, the number of coevolved amino acid pairs
retained from each run from both programs is 3L/237,74, where L is
length of the target protein. Here, a superposition of all coevolutionary
predictions is created and the most probable 15L=2 amino acid pair
predictions are retained. The superposition reports the average
z-score of each amino acid pair across all subfamilies. Contacts are
categorized as follows. Dominant fold: unique contacts corresponding
to the experimentally determined structure that overlaps most with
predicted contacts from the deepest MSA; Alternative fold: unique
contacts corresponding to the other experimentally determined
structure; Common: predicted contacts overlapping with experimen-
tally determined contacts sharedbyboth folds; Unobserved: predicted
contacts that do not overlap with any experimentally determined
contacts. In all cases, overlap was defined as being with +/−2 residues
of crystallographic (or predicted) contacts.

Noise filtering
All predicted contacts generated from the original MSA and the sub-
family MSAs were superimposed onto a single contact map. These
predictions were clustered using a density-based algorithm
(DBSCAN)75 that efficiently identifies structure in datasets with arbi-
trarily shaped clusters. The main criteria for defining whether a point
belongs to a cluster is how many other points are close. The eps
parameter defines a radial distance froma corepoint and points within
that radius are clustered. All points included in the cluster were then
used as new core points to search for additional points within the eps.
Clusters were iteratively built in this way until the entire dataset is
clustered. The minimum number of points to define a cluster in this
work is 3. The sparsest points in the dataset were then defined as noise
and eliminated from the dataset to produce the final, densest set of
filtered predictions. The eps value is optimized for each set of contacts
calculated from experimentally determined or predicted protein
structures using a receiver operating characteristic curve, where the
optimal value’s first derivative >1, corresponding to more true posi-
tives gained by increasing the eps value, but the successive value’s first
derivative <1, corresponding to more false positives gained by further
increasing the eps value. True positives are defined as being within
+/−2 residues of crystallographic (or predicted) contacts. However,
eps values could not be so stringent that fewer contacts were returned
than from the original run on deep MSAs.

Statistical tests
p-valueswerecalculatedusing theone-tailedhypergeometric test (also
known as Fisher’s exact test) to evaluate the significance of the addi-
tional structural information obtained from the subfamily alignments,
as described by:

XNnoisesubf amilies

i=0

Nexp�Npredsuperf amily

Npredsubf amilies + i

� �
Nnoise�Nnoisesuperf amily

Nnoisesubf amilies�i

� �

Nexp total�Npredsuperf amilyð Þ + Nnoisetotal�Nnoisesuperf amilyð Þ
Npredsubf amilies +Nnoisesubf amilies

� � ð1Þ

where Nexp is the total number of unique experimentally determined
contacts from both conformations of a fold-switching protein,
Npredsuperf amily is the number of unique contacts correctly predicted
by GREMLIN and MSA transformer on the superfamily MSA only,
Npredsubf amilies is the number of unique contacts predicted by GREMLIN

and MSA transformer on all subfamily MSAs excluding those also
predicted from the superfamily, Nnoise is L2 � Nexp, where L is the
maximumsequence lengthof an experimentallydetermined structure,
Nnoisesuperf amily is the number of unique contacts incorrectly predicted
by GREMLIN or MSA transformer on the superfamily MSA only, and
Nnoisesubf amilies is the number of unique contacts incorrectly predicted
by GREMLIN or MSA transformer on all subfamily MSAs, excluding
those also predicted from the superfamily. Epps-Singleton tests on
distributions in Fig. 3cwereperformedusing the scipy statsmodule on
non-dominant contacts from single-fold (181) and fold-switching (58)
proteins.

Single fold dataset
A comparison dataset of monomeric proteins was constructed to
compare to the 56 fold-switching proteins. These proteins were taken
from the CAMEO dataset from37, excluding complexes and de novo
proteins. These 181monomers were then run through the pipeline and
non-dominant contacts (all contacts not corresponding to experi-
mentally determined contacts) associated with all 181monomers were
compared to the non-dominant (noise+alternative) contacts asso-
ciated with the 56 fold switchers.

Structure predictions
Structure predictions of Variant 5 were performed by AlphaFold2.1.2
both with templates deposited in the PDB by 4/20/22 and without
templates and both with MSAs generated from the standard pipeline
(Uniref9068, MGnify76, and MMseqs277 (BFD clust)) and the shallowest
MSA generated from our approach. In all four runs, only the β-roll fold
was predicted in the five top-scoring models (Supplementary Fig. 12).
The α-helical fold was predicted by modifying MSA columns that our
pipeline predicted to form only β-roll contacts. These columns corre-
sponded to amino acids in the 100–168 range, and the deepest MSA
generated by our approach wasmodified bymutating these columns to
alanine. AlphaFold2.1.2was runon thismodifiedMSAwithout templates.
The α-helical conformation did not result from alanine substitution:
mutating the same MSA columns to their corresponding amino acid in
Variant 5’s sequence instead of alanine yielded the same prediction.

When RoseTTAFold244 was run on the sequence of the NusG
Variant using default settings, it predicted structures whose CTDs
assumed the β-roll fold only. Upon inputting the alanine-substituted
Uniref90 MSA used to bias AlphaFold2 to predict the Variant’s
helical CTD conformation, RoseTTAFold2 also predicted the
structures with same helical conformation. The overall RMSD
(NTD + CTD) of these structures was within 0.6 Å of the helical
AlphaFold2 prediction (Fig. 5). In addition to the modified input
MSA, 15% of the Variant’s sequence was masked at random, and
256 sequences were randomly selected as input MSAs for 16 inde-
pendently predicted models, 6 of which had helical CTDs and the
remaining 10 had β-roll CTDs. As a control, we ran RoseTTAFold2
using the same parameters while inputting the Variant’s Uniref90
MSA without alanine substitutions. Inputting this unmodified MSA
yielded 16/16 predictions with β-roll CTDs. Thus, the alanine sub-
stitutions in our input MSA successfully biased both RoseTTAFold2
and AlphaFold2 to predict experimentally consistent α-helical CTDs
of the NusG Variant. All RoseTTAFold2 runs were performed using
Sergey Ovchinnikov’s publicly available Colab notebook: https://
colab.research.google.com/github/sokrypton/ColabFold/blob/
main/RoseTTAFold2.ipynb

The standard RoseTTAfold pipeline (https://robetta.bakerlab.org)
was used to predict three-dimensional structures of Variant 5 with the
shallowest MSA generated from our pipeline.

The RGN2 Colab notebook
(https://colab.research.google.com/github/aqlaboratory/rgn2/

blob/master/rgn2_prediction.ipynb) was run on the sequence of Var-
iant 5 with standard parameters. The sequence of Variant 5 is:
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MESFLNWYLIYTKVKKEDYLEQLLTEAGLEVLNPKIKKTKTVRNKKKEVI
DPLFPCYLFVKADLNVHLRIISYTQGIRRLVGGSNPTIVPIEIIDTIKSRMVD
GFIDTKSEEFKKGDTILIKDGPFKDFVGIFQEELDSKGRVSILLKTLALQPRI
TVDKDMIEKLHN. Experimentally determined secondary structures
were taken from20. ESMFold predictions were generated with a local
install of the ESMFold software (https://github.com/facebook
research/esm).

Blind prediction pipeline
Structures of each experimentally confirmed fold switcher were pre-
dicted by independently inputting their sequences into ColabFold and
ESMFold run with standard parameters. Resulting structures were
inputted into ACE to improve noise filtering. Predicted structures that
both differed in the fold-switching regions and were each corrobo-
rated by dual-fold coevolution were classified as Category 1. In 7/8
cases, both predicted structures matched experimentally determined
protein conformations; in the 8th (RfaH), one matched the α-helical
conformation, while the other was amixture of helix and β-sheet in the
fold-switching region. Cases in which ColabFold and ESMFold pre-
dicted the sameconformation, but substantial signal corresponding to
the alternative fold remained present were classified as Category 2. All
cases with coevolutionary evidence for one conformation (i.e., no
alternative contacts) were considered single folders. As a control, this
procedure was also performed on 181 single-fold proteins; none of
them showed coevolutionary evidence for an alternative protein
conformation.

To determine whether ColabFold and ESMFold predictions of the
same sequence had regions with different structures, secondary
structure annotations of each PDB, by DSSP78, were compared one-by-
one, position-by-position. This approach allowed us to quantitatively
assess the similarity of aligned secondary structures. A potential fold
switcher was required to have a continuous region of at least 15 resi-
dues in which at least 50% of the residues showed α-helix ↔ β-sheet
differences79.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The coevolutionary plots for all 56 fold-switching proteins and pre-
dicted structures of the candidate NusG have been deposited on
Github under accession code: https://github.com/ncbi/dual_fold_
coevolution. PDB accession codes used in Fig. 1: 4KSO, chain A and
1T4Y, chain A. PDB accession codes used in Fig. 6: 4AKE, chain A and
1LU4, chain A. Chemical shifts from which secondary structure
assignments were made are deposited in the BMRB with accession
codes 51529 [https://doi.org/10.13018/BMR51429] (α-helical con-
formation) and 51428 (β-sheet conformation)20. Source data are pro-
vided as a source data file. Source data are provided with this paper.

Code availability
Code used to generate the results reported in this manuscript can be
found at: https://github.com/ncbi/dual_fold_coevolution.
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