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Abstract

Genome-wide association studies (GWAS) of mood disorders in large case-control cohorts have 

identified numerous risk loci, yet pathophysiological mechanisms remain elusive, primarily due to 

the very small effects of common variants. We sought to discover risk variants with larger effects 

by conducting a genome-wide association study of mood disorders in a founder population, the 

Old Order Amish (OOA, n = 1,672). Our analysis revealed four genome-wide significant risk loci, 

all of which were associated with >2-fold relative risk. Quantitative behavioral and neurocognitive 

assessments (n = 314) revealed effects of risk variants on sub-clinical depressive symptoms and 

information processing speed. Network analysis suggested that OOA-specific risk loci harbor 

novel risk-associated genes that interact with known neuropsychiatry-associated genes via gene 

interaction networks. Annotation of the variants at these risk loci revealed population-enriched, 

non-synonymous variants in two genes encoding neurodevelopmental transcription factors, CUX1 
and CNOT1. Our findings provide insight into the genetic architecture of mood disorders and a 

substrate for mechanistic and clinical studies.

INTRODUCTION

Mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD), 

affect more than 300 million people worldwide [1]. Identifying genetic risk factors is a 

promising path toward pathophysiological mechanisms and novel therapeutic targets, with 

genetic factors estimated to account for 60–80% [2, 3] and 30–50% [4, 5] of risk in BD 

and MDD, respectively. Genome-wide association studies (GWAS) in large case-control 

cohorts have revealed 64 genome-wide significant risk loci for BD and 178 for MDD, and 

have documented strong genetic correlations between BD and MDD [6–11]. However, the 

effect sizes of individual risk variants are extremely small, collectively explaining at most 

10–20% of the observed heritability [6–13]. The causal mechanisms at most of these loci 

remain speculative, and few have been functionally characterized. Thus, the genetic causes 

and biological mechanisms of mood disorders remain poorly understood.

Population bottlenecks in founder populations lead to the enrichment of many functional 

alleles that are rare in the broader population [14–16]. Some of these alleles may have 

larger effects on disease risk than common variants typically identified through GWAS in the 

broader population. The Lancaster Old Order Amish (OOA) are conservative Anabaptists 

who comprise a closed founder population of ~40,000 individuals living primarily in 

Lancaster County, Pennsylvania [17–20]. Genetic studies in this population have led to 

the discovery of risk variants and pathophysiological mechanisms for numerous complex 

and Mendelian traits [14, 21–23]. Genetic studies of mood disorders in the OOA were 

initiated in the 1970s, motivated both by founder effects and by cultural factors that may 

provide higher fidelity of neuropsychiatric phenotyping such as the relative uniformity in 

education, lifestyle, and socioeconomic status, and the reduced influence of alcohol and 

illicit drugs. Initial studies within the Amish Study of Major Affective Disorders (ASMAD) 

cohort identified suggestive linkage peaks, while more recent genome sequencing studies 

suggested polygenic effects of single-nucleotide variants and copy number variants [21, 22, 

24–27]. However, previous studies were limited by their small sample sizes (n < 400).
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Here, in an expanded OOA cohort (n = 1672), we describe the first genome-wide significant 

risk loci for mood disorders in this population. We provide evidence that these associations 

are driven by population-enriched founder alleles with large effects. We further assessed 

effects of these variants on quantitative behavioral and cognitive sub-phenotypes, identified 

convergent effects on neuropsychiatry-related gene networks, and discovered functional 

variants at the risk loci that are predicted to impact neurodevelopmental genes.

METHODS AND MATERIALS

Cohorts and genotyping

We performed genome-wide genotyping of two newly collected OOA cohorts comprised of 

multiply affected pedigrees with mood disorders: the Amish Connectome Project (ACP) 

and the Amish Mennonite Bipolar Genetics Study (AMBiGen). All participants gave 

written informed consent approved by the IRBs of the University of Maryland Baltimore 

(ACP) and of the National Institutes of Health (AMBiGen). We integrated these data 

with existing genotyping data from a third OOA mood disorders cohort, the Amish Study 

of Major Affective Disorders (ASMAD) [22, 26] and with whole-genome sequencing 

(WGS) of population controls from the Amish Cohort of the Trans-Omics for Precision 

Medicine program (Amish TOPMed) [28, 29]. While ACP, AMBiGen, and ASMAD are all 

strongly enriched for mood disorders, the inclusion criteria differed (detailed of cohorts and 

genotyping are in Table S1). AMBiGen and ASMAD specifically recruited around probands 

with bipolar disorder, whereas ACP also enrolled families multiply affected with other 

mental health disorders. As a result, ACP includes a higher proportion of major depression 

cases and a lower proportion of bipolar disorder cases compared to AMBiGen and ASMAD. 

Please see Refs [28, 29] for a thorough evaluation of the population genetic characteristics of 

the OOA relative to the broader European-ancestry population.

Data processing

Uniform processing, quality control, and imputation of the ACP, AMBiGen, and ASMAD 

genotypes was performed as previously described for ASMAD [22, 26]. Briefly, quality 

control within each cohort prior to imputation included removing SNPs missing from more 

than 2% of individuals, as well as those with a minor allele frequency less than 0.2% and 

HWE p value less than 1 × 10−6 using the –geno, -maf, and –HWE commands in PLINK 

v1.9 [30, 31]. Individuals missing more than 5% of SNPs or with heterozygosity greater 

than three standard deviations from the mean were removed (-missing and –het commands, 

respectively). Allele frequencies were checked against the Haplotype Reference Consortium 

and 1000 Genomes using perl commands provided by the Wellcome Sanger Institute 

[32] (https://www.well.ox.ac.uk/~wrayner/tools/#Checking). Imputation was performed on 

the Michigan Imputation Server [33] using the TOPMed Freeze5 reference panel, which 

includes WGS from the Amish TOPMed cohort among ~65,000 genomes. We used the 

GRC38/hg38 build with a European population, no r-square filtering, and Eagle v2.4 

phasing, using the quality control and imputation mode. We removed all non-polymorphic 

sites from both the imputed and directly sequenced genomes, then renamed all remaining 

sites by chromosome, position, reference allele, and alternate allele using bcftools annotate 
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[34]. Finally, polymorphic-subsetted datasets were merged (PLINK v1.9 [30, 31] -merge-

list). We filtered out all imputed SNPs with an imputation r2 < 0.6.

Assessment of population structure

We calculated principal components for the genomes using the –pca command in PLINK 

v1.9 [30, 31], after removing SNPs missing from more than 5% of the entire sample and 

with a minor allele frequency less than 1% (-geno and –maf). This analysis was performed 

using the imputed genomes for the ACP, AMBiGen, and ASMAD cohorts and the WGS 

from the TOPMed cohort as there were only 598 polymorphic SNPs in common among 

the four genotyping panels. PC1 separated the Lancaster OOA from various non-OOA 

populations collected in the ACP and AMBiGen studies. We removed all individuals that 

did not belong to the Lancaster OOA population, then recalculated PCA. Lancaster OOA-

specific PCs were used as covariates in the GWA analysis.

Assessment of sample overlap

We calculated identical-by-descent (IBD) allele sharing statistics on Lancaster OOA samples 

with the PLINK v1.9 –genome command [30, 31]. We used the proportion of IBD values to 

identify individuals who were enrolled in more than one cohort. Samples with a proportion 

value > 0.8 were assumed to be from the same individuals, and duplicate samples were 

removed. For each individual, the most recent, most-deeply-phenotyped sample was retained 

(ACP > AMBiGen > ASMAD > TOPMed; Table S1).

Assessment of genotyping and imputation accuracy

Accuracy of imputed genotypes was confirmed through comparison to WGS performed 

for a subset of the individuals in each cohort. These validation datasets included Illumina 

WGS (~30× average coverage) for 214 of the individuals in the ACP cohort obtained as 

part of the Whole-Genome Sequencing of Psychiatric Disorders consortium (David Glahn 

and John Blangero, PIs); Complete Genomics WGS for 80 participants in ASMAD [22, 

26]; and Illumina WGS (~30×) for 93 individuals enrolled in both the Amish TOPMed 

cohort and one of the mood disorders cohorts. Details of sequencing, genome alignment, 

and variant calling for the ASMAD and TOPMed WGS have been described [22, 27–29]. 

For the ACP WGS, whole-genome sequencing was performed on an Illumina HiSeq-X 

at the Broad Institute of MIT and Harvard. Reads were aligned to the hg38 reference 

genome, and variant calling was performed jointly across all samples from this cohort using 

freebayes [35] (v1.3.1) with the following parameters: use-best-n-alleles 3, min-alternate-

count 5, -min-alternate-fraction 0.2, -min-coverage 10, and -limit-coverage 500. We note 

that while the sequencing and genotyping-based variant calls for ACP and ASMAD are fully 

independent, the TOPMed WGS are not fully independent due to the inclusion of these 

93 individuals in the imputation panel. Treating the ACP and TOPMed WGS as a gold 

standard, we calculated the precision and recall for non-reference genotype calls across all 

alleles. In addition, in all cohorts we specifically verified the genotypes for the four lead 

SNPs at genome-wide significant risk loci: rs192622352, rs569742752, rs117752843, and 

rs7185072.
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Affection status models

The primary phenotype was diagnosis with a bipolar spectrum disorder, including 

individuals with primary diagnoses of Bipolar Disorder Type I (n = 86), Bipolar Disorder 

Type II (n = 17), Bipolar Disorder Not Otherwise Specified (n = 10), or Recurrent Major 

Depressive Disorder (n = 73). We did not include Single-Episode Major Depressive Disorder 

in this phenotype because the heritability of this disorder is much lower than the heritability 

of Recurrent Major Depressive Disorder [36]. Individuals from the AMBiGen, ASMAD, 

and ACP cohorts (the cohorts ascertained on mood disorders) were coded as unaffected 

if they had no Axis I or Axis II diagnosis (n = 449). All individuals from the TOPMed 

general population cohort were coded as unaffected (n = 938). In the primary analysis, 

individuals with other Axis I or Axis II diagnoses were coded as unknown, and we 

considered these diagnoses in alternative affection status models, as follows. The cohort 

included ten individuals with a primary diagnosis of schizophrenia, all of whom were first- 

or second-degree relatives of mood disorder cases. While SCZ is not classically identified 

as a mood disorder, there are substantial genetic, clinical, and brain pathophysiological 

overlaps between SCZ and mood disorders, especially bipolar disorders [37, 38]. Therefore, 

we studied an alternative affection status model in which individuals with SCZ were coded 

as affected. In addition, we tested models in which Single-Episode Major Depressive 

Disorder and Persistent Depressive Disorder were coded as affected. Individuals from these 

cohorts with a psychiatric diagnosis other than the diagnoses above or who did not undergo a 

psychiatric evaluation were always coded as unknown (n = 62). We also considered a model 

in which only individuals with recurrent MDD were coded as affected, as well as a model in 

which only individuals with a BD diagnosis were coded as affected.

Genome-wide association analysis

We tested associations of genotyped and imputed variants with mood disorders, as defined 

above, in our sample of 1672 Lancaster OOA individuals using a mixed-effect linear 

regression model implemented with EMMAX [39, 40]. Covariates included an empirical 

kinship matrix and twenty principal components, which account for family structure and 

more distant relatedness, respectively. Beta coefficients for binary traits were converted to 

odds ratios using the method of Lloyd-Jones et al. [41].

LD clumping

We identified linkage-disequilibrium (LD)-independent lead SNPs and sets of genetically 

correlated SNPs in the Old Order Amish using the –clump command in PLINK v1.9 

[30, 31], setting the significance threshold for lead SNPs to 1 × 10−5 and the secondary 

significance threshold for clumped SNPs to 0.05. We set the LD threshold to 0.6 and the 

physical distance threshold to 1000 kb. We also allowed for non-index SNPs to appear in 

multiple loci. After we generated the list of loci, we identified SNPs and indels in LD with 

each of the lead SNPs. For this purpose, we utilized WGS from OOA participants in the 

ACP study, so as to include unimputed, population-specific variants. We used D’ as our 

primary measure of linkage disequilibrium, enabling us to identify linked variants that differ 

in allele frequency from the lead SNPs (e.g., variants on sub-haplotypes). This analysis 

was performed with a call to PLINK v1.9 with the following flags:- r2 dprime with-freqs 
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-ld-snp chr7:103511937:C:T -ld-window 100000 -ld-window-kb 20000 -ld-window-r2 0.05. 

We note that in all of these analyses of LD, the physical distance thresholds were set to 

larger values than is typical of GWAS in the broader population due to the longer haplotypes 

in this founder population.

Pseudo-replication

We performed pseudo-replication analyses using a leave-one-out strategy to verify that the 

results are not dependent on samples from a single cohort. We removed one cohort at a 

time (ACP, AMBiGen, ASMAD, or TOPMed) from the sample and reran EMMAX [39]. 

We recalculated PCA coordinates for each pseudo-replication dataset and used the first 20 

recalculated coordinates as covariates in the model. We also reran the analysis on the ACP 

and ASMAD cohorts independently, again using 20 recalculated PCs as covariates.

Annotation of loci and variants

We assessed overlap of risk loci identified in the OOA with loci from published large-

scale neuropsychiatric GWAS. We used the BEDtools v2.27.1 [42] intersect command to 

calculate the overlap between the risk-associated loci (defined as SNPs with r2 > 0.6 to 

one of the 4 lead SNPs) and risk-associated SNPs identified in previous GWAS of mood 

disorders and related neuropsychiatric traits: MDD [7], BD [8, 9], SCZ [43], and educational 

attainment [44]. We used the authors’ definitions of risk loci for MDD, BD, and SCZ. For 

the educational attainment dataset, bounds of risk loci were not described in the original 

publication, so we set bounds 250 kb upstream and downstream of the lead SNPs. We also 

tested whether the lead SNPs identified in the Lancaster OOA sample were in LD with 

risk-associated SNPs identified in previous neuropsychiatric GWAS using the PLINK’s –ld 

command and recorded the r2 value.

We further annotated proximal candidate genes at risk loci using gene sets related to 

autism spectrum disorders (ASD), BD, and SCZ. Within the bounds of each risk locus, we 

annotated differentially expressed genes in the prefrontal cortex of ASD, BD, and SCZ cases 

vs. controls from PsychENCODE [45]. We also annotated genes from exome sequencing 

studies, including genes with a gene burden p value < 2.5 × 10−6 from SCHEMA [46] 

(SCZ-associated genes), and ASD-associated genes from Satterstrom et al. [47] and SFARI 

Gene [48].

We annotated the variants at each locus using the Ensembl Variant Effects Predictor (VEP, 

release 105, accessed online, January 31, 2022) with the following parameters: assembly 

GRCh38.p13, Ensembl/GENCODE transcripts, 1000 Genomes global and continental allele 

frequencies, gnomAD exomes allele frequencies, and including CADD scores.

Polygenic risk score (PRS) analysis

We calculated polygenic risk scores for each OOA individual, using results from the 

largest available GWAS of BD in an independent sample [9]. PRS was calculated using 

PRS-CS [49], including 708,939 SNPs in common among our imputed Amish sample, the 

independent GWAS of BD, and the UK Biobank European-ancestry reference panel, with 

phi = 1e-2 and otherwise default parameters. We constructed linear mixed models with 
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the lme4qtl R package [50] to test for additive and non-additive effects of PRS and of 

OOA-specific risk alleles on affection status, using an empirical kinship matrix to control for 

relatedness. We used anova() to compare models and test for significance.

Effects of risk variants on quantitative behavioral and neurocognitive phenotypes

We tested for the associations of the lead SNPs at genome-wide significant risk loci 

identified by the GWA analysis with quantitative behavioral and cognitive traits in 314 

OOA participants in the ACP study, including 84 individuals affected with a mood disorder. 

We studied self-reports of current depression symptoms from the Beck Depression Inventory 

[51], lifetime depression symptoms from the Maryland Trait and State Depression scale 

[52], and lifetime history of bipolarity from the Bipolar Spectrum Diagnostic Scale [53]. 

We also used scores from several cognitive tasks, including digit sequencing (verbal 

working memory), digit symbol coding (processing speed, visuospatial memory), spatial 

span (visuospatial working memory), and the Wechsler Abbreviated Scale of Intelligence 

[54] (WASI) matrix reasoning and vocabulary subtests (IQ and cognitive ability). We 

assessed normality, as well as associations of each trait with age and sex. The scores from 

the Beck Depression Inventory, Bipolar Spectrum Diagnostic Scale, and spatial span were 

transformed using a square root transformation to improve normality. The other five traits 

displayed nonlinear associations with age. For those traits, we applied a loess regression 

model (using the loess function in R v. 3.6.2, span = 0.5) and performed genetic association 

tests on residuals. Covariates in the EMMAX model for these three traits included sex, age, 

and an empirically constructed kinship matrix. The heritability of each trait was calculated 

using SOLAR-Eclipse [55]. We constructed mixed-effect linear regression models for each 

genotype-phenotype pair using EMMAX [39, 40].

Gene interaction networks

Gene-based p values were computed from GWAS summary statistics using MAGMA [56]. 

SNPs were annotated to ENSEMBL genes, including a 10 kb window up- and downstream 

of each gene’s genomic coordinates. Gene p values were computed using the lowest 

SNP p value as the test statistic (snp-wise = top,1), and gene-gene correlations were 

computed using our imputed OOA genotype matrix. We studied 21 gene sets with prior 

evidence for association with neuropsychiatry, as described previously [57, 58]. Briefly, 

these gene sets were derived from the following sources: genes identified through GWAS 

of MDD [7], BD [8], SCZ [59], and neuroticism [60]; genes identified through genetic 

association studies of rare variants, including exome and genome sequencing studies of 

SCZ [61], autism spectrum disorders (ASD) [47], or other developmental disorders [62], 

as well as genes intolerant to loss-of-function mutations [63]; genes that are differentially 

expressed in the prefrontal cortex of individuals with BD, SCZ, or ASD [45]; genes that 

have been identified as targets of the RNA-binding proteins FMRP, RBFOX2, RBFOX1/3, 

and CELF4, of the chromatin remodeling genes CHD8, and of the microRNA miR-137 

[58, 64]; genes localized to synapses from SynaptomeDB [65]. Human protein-protein 

interactions were downloaded from the STRING database [66] (https://stringdb-static.org/

download/protein.links.detailed.v11.5/9606.protein.links.detailed.v11.5.txt.gz). We defined 

OOA risk genes as those with a MAGMA gene p value < 0.01. To assess interactions 

between established gene sets and OOA risk genes, we counted the number of protein-
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protein interactions that directly link OOA risk genes to genes in each of the 21 established 

neuropsychiatry gene sets. We tested whether the number of interactions was greater than 

expected by chance by two approaches. First, we computed Fisher’s exact tests. Second, 

we repeatedly permuted the edges of the network, holding each node’s degree constant, 

and compared the number of OOA-known edges in observed vs. permuted data. Edge 

permutations were used to confirm results from Fisher’s exact test (n = 100 permutations). 

Odds ratios and p values from Fisher’s exact test are reported in the manuscript, as they 

provide a more precise measure of the likelihood.

To prioritize specific OOA risk genes, we ranked them by their centrality within a gene 

interaction network centered on known neuropsychiatry risk genes. We defined a set of 

684 core neuropsychiatry genes with evidence from at least three independent approaches 

from our 21 gene sets, as follows: Genes implicated by studies of rare variants; genes 

implicated by gene expression profiling in prefrontal cortex; genes implicated by gene 

network analyses; synaptic genes. We excluded genes derived from GWAS, as these genes 

are potentially non-independent from association signals in our OOA dataset. We extracted 

all protein-protein interactions from the STRING database for which at least one node 

was one of these 684 genes. In practice, the large number of interactions in the STRING 

database means that nearly all genes are represented in this network, but only the subset of 

their interactions that involve neuropsychiatry-related genes. We used the eigen_centrality() 

function from the igraph R package [67] to calculate the centrality of each node, including 

OOA risk genes that have not previously been implicated in neuropsychiatric disorders. We 

computed ranks for the OOA risk genes, separately, based on eigencentrality, as well as 

based on their MAGMA p values. The final ranking is the median rank from these two 

metrics. We tested for functional enrichments within the top 250 genes from this analysis 

using DAVID [68].

Expression of CUX1 and CNOT1 in the human brain

We evaluated the expression of CUX1 and CNOT1 using RNA-seq of developing and adult 

brain regions [69], downloaded from the BrainSpan website (https://www.brainspan.org/

static/download.html). Analyses of CNOT1 expression utilized normalized counts 

summarized to Gencode v10 gene models. Analyses of CUX1 expression utilized 

normalized counts summarized to exons. We studied the expression of the following CUX1 
exons (hg19 coordinates). chr7:101921219-101921336, exon 17 of ENST00000425244.6, 

which contains rs118010189 and is expressed only in splice forms that encode CASP, and 

chr7:101891691-101901513, which spans the final exon and 3’ untranslated region of CUX1 
transcription factor-encoding transcripts.

Data and code availability

Genotypic and phenotypic data from the Amish TOPMed study and from AMBiGen are 

available through the National Institute of Health Database of Genotypes and Phenotypes 

(phs000956.v1.p1, phs000899.v1.p1). Genotypic and phenotypic data from ACP are 

available through the NIMH Data Archive (Study #2902). Genotypic and phenotypic data 

from ASMAD are available through the Coriell Institute for Medical Research. A custom 
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R script implementing the network analyses described in this paper is available at https://

github.com/seth-ament/amish-mood-dx-gwas.

RESULTS

Genome-wide association study of mood disorders in the Old Order Amish founder 
population

We generated whole-genome genotyping data from two newly collected Anabaptist cohorts 

with mood disorders - the Amish Connectome Project (ACP) and the Amish and Mennonite 

Bipolar Genetics study (AMBiGen) – and we integrated these with existing data from 

two additional cohorts - ASMAD and the Trans-Omics for Precision Medicine cohort 

(TOPMed). Following uniform quality control and imputation, we studied 6.6 million 

polymorphic single-nucleotide polymorphisms (SNPs) in 1,672 OOA individuals from this 

combined cohort, of whom 196 were affected with a major mood disorder (BD, recurrent 

MDD, or schizoaffective disorder; Tables S1 and S2). Power analyses [70] suggest that this 

cohort is well-powered to detect population-enriched risk alleles with moderate to large 

effects, equivalent to those discovered in the OOA for non-psychiatric traits [14, 23, 71]. 

Principal component analysis (PCA) indicated that these OOA individuals form a discrete 

population compared to other Anabaptist groups in our sample (Fig. S1A), with minimal 

stratification by study or genotyping platform (Fig. S1B). Whole-genome sequencing (WGS; 

n = 214 from ACP and n = 87 from TOPMed) confirmed >99.9% precision for imputed 

non-reference genotype calls, with >99.8% recall (Table S3).

We conducted a genome-wide association study (GWAS) of mood disorder affection status 

in this OOA cohort using a linear mixed model implemented with EMMAX [39]. Twenty-

five SNPs were associated with affection status at a conventional genome-wide significance 

threshold, P < 5 × 10−8 (Fig. 1A). The quantile–quantile plot of observed vs. expected p 
values revealed no genomic inflation, as well as an excess of p values less than ~1e −4, 

consistent with polygenicity (γGC = 0.8; Fig. S2A). Linkage-disequilibrium (LD)-based 

clumping supported four genome-wide significant risk loci at cytobands 3q28/29, 5q13, 

7q22, and 16q21 (Table 1; Fig. S2B–E; Table S4). Each of the four lead SNPs was 

associated with >2-fold relative risk. Consistent with founder effects, the lead SNPs or 

other SNPs in LD with them (D’ > 0.9) at all four loci were uncommon, OOA-enriched 

SNPs on extended haplotypes [15]. Carriers from 3–10 families contributed to each allele’s 

association with mood disorders (Fig. 1B, S3A, B).

Several analyses support the robustness and reproducibility of these associations. First, we 

confirmed 100% accuracy for reference and non-reference genotype calls for all four lead 

SNPs by comparing the imputed genome to WGS (n = 214 from ACP, n = 80 from ASMAD 

[22, 26, 27], and n = 87 from TOPMed). These results indicate that the associations are not 

an artifact of biases in genotyping or imputation.

Second, we performed pseudo-replication analyses within subsets of our OOA sample using 

a leave-one-cohort-out approach, in which the GWAS was conducted using the integrated 

data from all but one cohort. All four lead SNPs remained nominally significant (P < 0.05; 

Table S5). The lead SNPs at 5q13, 7q22, and 16q21 were also nominally significant in 
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GWAS of the ASMAD and ACP cohorts singly. Carriers of the 3q28/29 lead SNP were 

identified primarily in ACP, with a single affected carrier in the ASMAD cohort. These 

results indicate that the associations are reproducible in multiple OOA cohorts.

Third, we performed secondary analyses using alternative affection status models (Table 

S6). All four lead SNPs remained either significant (P < 5 × 10−8) or suggestive 

(P < 5 × 10−6) when we broadened the affection status model to include Persistent 

Depressive Disorder and Single-Episode MDD, rather than removing these individuals 

from the analysis. Similar results were obtained when we treated ten participants with 

SCZ as affected (rather than excluding them from the analysis). We also found suggestive 

associations for all four lead SNPs when we considered only recurrent MDD cases to be 

affected and when we considered only BD cases to be affected. These results suggest that 

the associations are robust to affection status model and that the loci influence risk for 

multiple mood disorders.

Fourth, we performed analyses to test whether the risk loci identified in the OOA overlap 

known risk loci for MDD, BD, SCZ, and educational attainment in the broader population 

[7–9, 43] [44] (Table S7). The 5q13, 16q21, and 7q22 risk loci each overlap previously 

reported risk loci for at least one of these traits. The 3q28/29 risk locus has not previously 

been identified in large-scale GWAS of BD, MDD, SCZ, or educational attainment, but 3q29 

microdeletions are associated with increased risk for BD and SCZ [72, 73]. By contrast, 

none of the lead SNPs or genetically correlated SNPs identified in the OOA had significant 

p values in previous GWAS of mood disorders. Taken together, these results suggest that the 

loci we identified in the OOA correspond to novel risk haplotypes, potentially with large 

effects, at known risk loci for mood disorders and related traits.

Evaluation of genotype-phenotype relationships with polygenic risk scores and deep 
phenotyping

The discovery of risk alleles with substantial effects provides opportunities for deeper 

exploration of genotype-phenotype relationships. First, we evaluated the relationship 

between OOA-specific risk alleles and polygenic risk from common variants. Consistent 

with previous studies in the ASMAD cohort [22, 26], a polygenic risk score (PRS) for 

BD, derived from GWAS in the broader population [9], explained a small but significant 

proportion of risk for mood disorders in our cohort, corresponding to a 2.2-fold relative risk 

in the top vs. bottom decile (P = 8.9 × 10−4; Fig. S4). Individuals with mood disorders also 

had significantly higher PRS than their unaffected family members, excluding population 

controls (P = 0.014). We tested for additive and non-additive effects of bipolar disorder PRS 

and OOA-specific risk alleles using multivariate linear mixed models. We found significant 

main effects of PRS and of each OOA-specific risk allele (P < 0.05), but interactions 

between PRS and OOA-specific alleles were not significant. These results suggest that 

OOA-specific risk alleles and common risk alleles have additive, independent effects on risk 

for mood disorders in this cohort.

Next, we tested whether OOA-specific risk alleles for mood disorders also have quantitative 

effects on the classic behavioral symptoms of mood disorders, which we assessed via three 

rating scales (n up to 314 ACP participants): the Beck Depression Inventory [51] (BDI), 
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which measures depression symptoms in the two weeks prior to testing; the Maryland 

Depression Trait Scale [52] (MDTS), which assesses lifetime depression symptoms; and 

the modified Bipolar Spectrum Diagnostic Scale [53] (BSDS), which measures the polarity 

of the depressive and manic symptoms. We found significant broad-sense heritability in 

this sample for all three scales (h2 = 0.25–0.41, P < 0.003;Table S8) and confirmed 

that participants with mood disorder diagnoses had higher scores (Table S8). The lead 

SNPs at the 3q28/29, 7q22, and 16q21 risk loci were all associated with higher scores 

on the MDTS (Fig. 2, Table S9). Also, the 7q22 lead SNP was associated with a higher 

BSDS score. Interestingly, none of the lead SNPs were significantly associated with BDI, 

suggesting these loci more strongly influence lifetime history than current symptoms. These 

results suggest that the OOA-specific risk alleles identified in our analysis impact the core 

behavioral symptoms of MDD and BD. We note, however, that the interpretation is limited 

by the relatively modest sample size.

Cognitive deficits are observed in a subset of individuals with BD and MDD [54]. We 

assessed effects on cognition via five tasks that measure cognitive dimensions previously 

implicated in mood disorders: Digit Sequencing, which primarily measures verbal working 

memory; Spatial Span, which measures visuospatial working memory; Digit Symbol 

Coding, which primarily measures processing speed; Matrix Reasoning, which measures 

fluid intelligence, spatial ability, and perceptual organization; and Vocabulary, which 

measures semantic knowledge and verbal comprehension. We confirmed significant broad-

sense heritability for all five tests (Table S8). Mood disorder diagnoses were associated with 

lower scores, especially for digit sequencing and digit symbol coding (Table S9). Despite 

low n, we detected an association of the lead SNP at the 5q13.3 locus, rs569742752, with 

decreased performance on the digit symbol coding task (n = 2 carriers and 299 non-carriers, 

β = −28.3, P = 0.006). The lead SNPs at the other loci were not significantly associated with 

cognitive performance. Therefore, cognitive deficits are present in a minority of carriers with 

these risk variants, again with the caveat that the sample size is small.

Gene networks associated with mood disorders in the OOA

We applied a network analysis approach to gain insight into the biological characteristics 

of the genes located at risk loci. As a starting point, we computed gene-based p values 

from our GWAS summary statistics with MAGMA [56]. This analysis revealed three exome-

wide significant genes: ATP13A5 at 3q29 (P = 1.6e–7), SV2C at 5q13 (P = 2.8e–7), 

and MB21D2 at 3q28 (P = 6.5e–7). ATP13A5 encodes ATPase 13A5, which is highly 

expressed in brain pericytes and is involved in the transport of diverse cargo across cellular 

membranes [74]. SV2C encodes Synaptic Vesicle Glycoprotein 2C, which is expressed 

specifically on the vesicles of dopaminergic neurons and contributes to dopamine release 

[75]. MB21D2 encodes Mab-21 Domain Containing 2. In addition, we identified 820 genes 

with nominally significant MAGMA p values (P < 0.01;Table S10). These included many 

known neuropsychiatry-related genes. For instance, 44 genes within the bounds of the 

7q22 risk locus had a prior annotation to a psychiatric disorder (Methods), including the 

well-established autism spectrum disorder risk genes RELN, KMT2E. and CUX1 [76].
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Next, we asked whether risk genes for mood disorders identified in the OOA overlap 

established neuropsychiatry-associated gene networks. We seeded a mood disorder risk gene 

network with “known” neuropsychiatry-related genes, based on 21 gene sets derived from 

psychiatric GWAS, exome sequencing, post-mortem prefrontal cortex gene expression, and 

analyses of disease-associated gene networks [57, 58]. We then drew connections between 

these established risk genes and OOA-derived risk genes (820 genes, MAGMA P < 0.01) 

using protein-protein interactions from the STRING database [66].

We hypothesized that the OOA-derived risk genes are enriched within the same gene 

networks as established risk genes. To test this, we examined whether protein-protein 

interactions between established neuropsychiatry gene sets and OOA-derived risk genes 

occur more often than expected by chance. Indeed, 15 of the 21 neuropsychiatry 

gene sets showed at least a nominally significant over-representation for network edges 

(hypergeometric test: P < 0.001; Fig. 3A; Table S11). The most strongly over-represented 

gene sets included target genes of the neuronal RNA-binding proteins CELF4 (174,778 

interactions, odds ratio [OR] = 1.06, P = 1.0e–116) and RBFOX1 (235,084 interactions, OR 

= 1.05, P = 1.8e–87), genes down-regulated in prefrontal cortex from bipolar disorder cases 

(17,684 interactions, OR = 1.06, P = 1.8e–13), and autism spectrum disorder risk genes from 

exome sequencing studies (11,242 interactions, OR = 1.07, P = 7.8e–13). Permutations of 

network edges confirmed significant over-representation for each of these gene sets.

We prioritized specific OOA risk genes based on network centrality. Eigencentrality is a 

measure for the influence of a node (gene) within a network, wherein the most highly ranked 

nodes are those that are connected to many other high-scoring nodes. We calculated the 

eigencentrality within our gene network for each of the 820 OOA-derived risk genes. The 

top 250 genes are shown in Fig. 3B. These genes were enriched for 13 Gene Ontology 

functional categories (FDR < 0.01;Table S12), including genes localized to dendrites (18 

genes, P = 5.5e–6) and genes involved in signal transduction (39 genes, P = 3.1e–6) and 

focal adhesion (18 genes, P = 2.5e–5). These results suggest that OOA risk loci harbor 

novel risk genes within a polygenic gene network that is shared with neuropsychiatry genes 

discovered by independent approaches.

Associations of OOA-enriched protein-coding variants with mood disorders

Association testing in founder populations has the potential to identify population-enriched, 

functional alleles with substantial effects on disease risk. We therefore annotated the SNPs 

at each locus to identify protein-coding variants in strong LD with our lead SNPs (D’ 

> 0.9). For this purpose, we utilized our WGS from the ACP sample so as to include 

unimputed, population-specific variants. This analysis revealed 15 non-synonymous variants 

(Table S4). Of these, three stood out based on their strength of linkage with lead SNPs, their 

enrichment in the OOA compared to the broader European population, and their predicted 

deleteriousness: chr7:102278021:A:C (rs118010189, CUX1 K500Q), chr16:58576526:C:T 

(rs201250006, CNOT1 M547I), and chr16:58551644:G:A (rs960417287, CNOT1 A1049V). 

The latter two variants are in perfect LD in our sample.

CUX1 encodes Cut Like Homeobox 1, and the rs118010189 variant is located in an 

alternatively spliced exon that is included only in the CUX1 Alternative Splicing Product 
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(CASP) isoform. Previously, rare, protein-truncating and regulatory variants in CUX1 have 

been implicated in neurodevelopmental disorders and autism [77]. The protein product of 

the canonical CUX1 transcript is a homeodomain transcription factor with well-established 

roles in the development of cortical projection neurons and cerebellar granule neurons 

[77–80]. The CASP isoform lacks a DNA-binding domain, interacts biochemically with 

other CUX1 isoforms [81], and has independent functions as a transmembrane protein 

involved in intra-Golgi retrograde transport [81–84]. Notably, although variant annotation 

was performed independently of the network analyses above, CUX1 is a hub gene of the 

OOA mood disorder risk gene network (Fig. 3B). We examined the expression of exons 

specific to the CUX1 and CASP isoforms in the developing and adult brain using RNA 

sequencing data from BrainSpan [69] (Fig. S5A). As expected, CUX1 exons were expressed 

most highly in the primary visual cortex and in the cerebellum. Intriguingly, CASP exons 

were highly expressed only in the cerebellum and did not have substantial expression in 

the cortex. These results suggest differential use of CUX1 and CASP isoforms, and that the 

rs118010189 variant may have its greatest impact in the cerebellum.

CNOT1 encodes CCR4-NOT Transcription Complex Subunit 1, a component of a 

transcription factor complex implicated in brain development [85]. Pediatric carriers of 

loss-of-function variants in CNOT1 have been described to have developmental delay, as 

well as mental health conditions such as attention deficit and hyperactivity disorder and 

autism spectrum disorder. One of the few adult carriers in the published case series had 

bipolar disorder [85]. Data from BrainSpan suggest that CNOT1 is broadly expressed in the 

brain, with the highest expression at prenatal timepoints (Fig. S5B).

DISCUSSION

Our findings build on >40 years of research on mood disorders in the OOA population, 

which previously provided insight into the genetic architecture of mood disorders but were 

underpowered to detect specific risk loci [22, 24–27]. Here, in an expanded sample, we 

identified the first genome-wide significant risk loci for mood disorders in this population. 

These OOA-specific risk alleles have larger effects than common variants identified in 

the broader population, most likely explained by founder effects. They act additively with 

previously described common risk variants for mood disorders and influence sub-clinical 

behavioral and cognitive traits. Gene network analyses suggest that the loci harbor novel risk 

genes within gene networks that are shared with neuropsychiatry-related genes identified 

in the broader population. Annotation of the risk loci revealed missense variants impacting 

neurodevelopmental genes.

The discovery of OOA-specific risk loci for mood disorders was facilitated by their 

large effect sizes. Indeed, the major rationale for studies in founder populations is to 

identify alleles with larger effects than those that can be discovered through GWAS in 

the broader population. We cannot rule out winner’s curse effects, which would predict 

that the true effect sizes are smaller than is observed in the current sample. And the lack 

of an independent cohort is an important limitation. However, large effects are plausible, 

especially since we find evidence for founder effects.
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Several evolutionary processes may explain the presence of large-effect risk alleles that 

are relatively common in the OOA. The causal alleles - whose genotypes may or may not 

have been ascertained in our analysis - may be present at low frequencies in the broader 

population and became more common during the population bottleneck at the founding of 

the OOA population. Alternatively, the causal alleles may have arisen as new mutations 

within the OOA. In either scenario, the current allele frequencies are likely explained 

by genetic drift, aided by the recency of the population bottleneck, the rapid expansion 

of the OOA population due to their extremely large families, and the very low rate of 

inter-marriage between OOA and the broader population. It is generally thought that variants 

with large effects on risk for mood disorders confer fitness costs, which prevent them 

from becoming common in the broader population. If so, negative selection may eventually 

remove these variants from the OOA population, but only after many generations unless 

their fitness consequences are severe.

Risk for mood disorders in the OOA appears to be highly polygenic, despite the 

relatively large effects of certain risk loci. Modeling polygenic risk from common variants 

together with population-specific risk alleles suggested additive contributions. The extent of 

polygenicity may vary among OOA individuals. It is plausible that the rare 3q28/29 and 

5q13 risk alleles confer risk for mood disorders in a pseudo-Mendelian fashion. For carriers 

of the 7q22 and 16q21 risk alleles, polygenic background and non-genetic factors likely play 

larger roles. Many OOA individuals with mood disorders are not carriers of any of these 

population-specific risk alleles. These observations extend previous work in the broader 

population showing additive effects of polygenic risk scores and copy number variants [86].

Deep phenotyping provided insights into the effects of risk variants on sub-clinical 

phenotypes. We found that the 3q28/29, 7q22, and 16q21 risk alleles were associated with 

elevated scores on the Maryland Depression Trait Scale, while the 5q13 risk allele was 

associated with deficits in digit symbol coding. These associations buttress the primary 

association of these SNPs with mood disorders. We interpret the stronger effects of 

these SNPs on MDTS vs. the Beck Depression Inventory to indicate that they more 

strongly influence lifetime history than current symptoms. The digit symbol coding task 

primarily measures deficits in information processing speed. This task and other measures 

of processing speed are among the cognitive tasks most consistently found to be impaired 

in individuals with bipolar disorder and major depression [87–90]. We note that these 

results are limited by the relatively small sample, which precluded analyses stratified by 

affection status (i.e., to test whether the SNPs influence these quantitative phenotypes in 

individuals whose symptoms do not qualify for a major mood disorder). Nonetheless, these 

findings demonstrate promise for utilizing population isolates to gain insight into the genetic 

influences on endophenotypes and should be followed up with larger sample sizes and 

additional sub-clinical assessments.

Network analysis suggested that genes proximal to OOA-specific risk loci converge on 

a highly polygenic gene network shared with neuropsychiatry risk genes identified by 

independent approaches. This analysis provided the strongest evidence for interactions with 

genes that are targets of CELF4 and RBFOX1/2/3, which are neuron-specific RNA-binding 

proteins with roles in neurodevelopment. For instance, RBFOX1, encodes RNA-Binding 
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Fox-1 Homolog 1, a neuron-specific splicing factor. RBFOX1 itself is located at a top 

GWAS risk locus for major depression [6] and is disrupted by copy number variants 

associated with risk for autism spectrum disorders [91], and its targets have previously 

been implicated in risk for major depression [6], bipolar disorder [92], schizophrenia [64], 

and autism [93] through GWAS and exome sequencing studies. These network enrichments 

support the biological relevance of OOA-specific risk loci - including those at suggestive 

levels of significance in our GWAS - and will aid in the prioritization of specific genes for 

follow-up studies.

Variant annotation identified promising protein-coding variants at the 7q22 and 16q21 

risk loci, in the genes CUX1 and CNOT1. Both these genes are highly plausible 

candidates with established roles in brain development and previously implicated in risk 

for neurodevelopmental disorders. However, it is important to note that these variants, if 

causal, are unlikely to be the only causal variants at these loci. Both loci include hundreds 

of additional variants, some of which could have important gene regulatory functions, which 

remain difficult to predict bioinformatically. It is also possible that the risk loci tag structural 

variants that were not considered in our analysis. The relatively modest enrichment of CUX1 

K500Q in the OOA (it has a minor allele frequency of 0.019 in the Amish and 0.007 in 

the broader European population) puts an upper bound on its true effect size. The CNOT1 
variants are > 170-fold enriched in the OOA, with minor allele frequencies less than 0.0001 

in the broader population. However, the linkage structure at the 16q21 locus suggests that 

multiple haplotypes contribute to the signal in this region, with the CNOT1 variants being 

much less common than the lead SNP. Nonetheless, these variants represent some of the 

stronger leads to have emerged from studies of rare variants in mood disorders.

The discovery of OOA-specific risk loci for mood disorders enables a variety of future 

studies. Additional deep phenotyping may include assessments of brain structure and 

function. Functional studies may be merited, particularly for CUX1 and CNOT1. Additional 

loci are likely to be discovered by continuing to expand our sample and through analyses 

of family-specific variants that could be identified through genome sequencing. These 

and other family-based studies will continue to provide insights into the etiology and 

pathophysiological mechanisms of psychiatric disorders, complementary with large-scale 

GWAS and sequencing studies in the broader population. Family studies are likely the most 

efficient strategy to characterize specific variants with moderate to large effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Discovery of four genome-wide significant risk loci for mood disorders in the Old Order 
Amish founder population (n = 1672).
A Manhattan plot: −log10(p values) for associations of single-nucleotide polymorphisms 

(SNPs) with mood disorders in the OOA. B Carriers of the lead SNP at the 7q22 risk locus 

are related within ten OOA families. Y-axis indicates the coefficient of relatedness from an 

empirical kinship matrix, with the dotted line at 0.5 indicating first-degree relatives. a ACP, 

b AMBiGen, c ASMAD, d TOPMed.
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Fig. 2. OOA-specific risk alleles for mood disorders are associated with depressive symptoms and 
cognitive performance.
A Direction and significance (z-score) of each SNP’s associations with behavioral and 

cognitive traits. Blue dots indicate lead SNPs, and gray dots indicates other SNPs in LD 

with the lead SNP at each locus. BDI Beck Depression Inventory; BSDS bipolar spectrum 

diagnostic scale; depression trait = Maryland Depression Trait Scale. B–E Plots of the most 

strongly associated trait for each lead SNP.
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Fig. 3. Genes at OOA-specific risk loci for mood disorders interact with neuropsychiatry-related 
gene networks.
A Putative OOA risk genes (820 genes; MAGMA, P < 0.01) had an elevated rate of 

protein-protein interactions with gene sets derived from GWAS, rare variant studies, 

differential gene expression, and network analyses of psychiatric disorders. B Protein-

protein interactions among the top 250 genes at OOA risk loci prioritized by their centrality 

in a gene network centered on known neuropsychiatry-related genes and strength of their 

statistical association with mood disorders in the OOA. Larger node size corresponds to 

more significant MAGMA p values.
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