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Abstract

Sepsis is one of the most challenging health conditions worldwide, with relatively high incidence 

and mortality rates. It is shown that preventing sepsis is the key to avoid potentially irreversible 

organ dysfunction. However, data-driven early identification of sepsis is challenging as sepsis 

shares signs and symptoms with other health conditions. This paper adopts a temporal pattern 

mining approach to identify frequent temporal and evolving patterns of physiological and 

biological biomarkers in sepsis patients. We show that using these frequent patterns as features for 

classifying sepsis and non-sepsis patients can improve the prediction accuracy and performance 

up to 7%. Most of the temporal modeling approaches adopted in the sepsis literature are based 

on deep learning methods. Although these approaches produce high accuracy, they generally have 

limited model explainability and interpretability. Using the adopted methods in this study, we 

could identify the most important features contributing to the patients’ sepsis incidence, such 

as fluctuations in platelet, lactate, and creatinine, or evolution of patterns including renal and 

metabolic organ systems, and consequently, enhance the findings’ clinical interpretability.
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1 Introduction

Sepsis, defined as “life-threatening organ dysfunction caused by a dysregulated host 

response to infection” [1], is one of the leading causes of health loss and death worldwide. 

The numbers of incidence of sepsis and sepsis-related deaths reported worldwide in 2017 

have been 48.9 million and 11.0 million, respectively [2]. Septicemia, the triggering cause of 
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sepsis, is ranked among the top four most costly health complications, incurring more than 

$20 billion to only the USA (5.2% of total USA hospital costs) [3].

A study composed of patients from 6 hospitals in the US shows that although sepsis has 

been the leading cause of death, it is unlikely to prevent these deaths since most sepsis 

cases resulting in death are associated with underlying severe chronic conditions. Therefore, 

they cannot be easily treated by providing better hospital-based care. It is suggested that 

prevention and care of underlying conditions would be a potential solution to reduce the 

number of sepsis-associated deaths [4]. Therefore, appropriate therapeutic management of 

to-be sepsis patients as early as possible might stop further deterioration and irreversible 

organ dysfunction.

There have been numerous studies focusing on the detection of sepsis progression at early 

stages. These studies adopt different approaches for predicting sepsis incidents or different 

stages of sepsis, such as septic shock characterized by more severe conditions of organ 

systems. The data of different vital signs, laboratory tests, patients’ medical histories, and 

patients’ demographic information are collected in these studies. Then, various analytical 

methods, such as traditional machine learning algorithms or more advanced deep learning 

approaches, are applied to the pre-processed data sets. The objective is to either predict some 

primary outcomes, such as the onset of sepsis or different stages of sepsis and patients’ 

outcomes [5, 6, 7, 8], or identify the potentially critical clinical indicators and biomarkers 

for early prediction of these primary outcomes [9, 10, 11, 12].

One common approach for identification or early detection of sepsis is using different 

sepsis scoring systems, such as SOFA (Sepsis-related Organ Failure Assessment) [13], PIRO 

(predisposition, insult, response, organ dysfunction) [14], and SIRS (Systemic Inflammatory 

Response Syndrome) [15]. However, it is shown that machine learning approaches, in 

general, out-perform sepsis scoring systems [16].

Furthermore, it is shown that considering the temporal dynamics of different biomarkers 

and vital signs may improve the performance of predictive models [17, 18]. However, 

most of the proposed approaches for incorporating the temporal aspects of the data 

components into the models are using different deep learning architectures, such as temporal 

convolutional, long short-term memory (LSTM), and recurrent neural networks (RNNs) [19, 

20, 21, 22]. Although these approaches might some of the traditional machine learning 

algorithms outperform, they suffer from limited explainability and interpretability of models 

and findings [23, 24]. In some applications, the performance of these approaches might 

outweigh the explainability and interpretability. However, these concepts remain crucial for 

the proposed approaches’ applicability and adoption in clinical settings [25, 26].

On the other hand, it is shown that the consideration and identification of frequent co-

failures of physiological and biological biomarkers, instead of considering these variables 

individually and independently, can improve the performance of prediction models [27, 28]. 

Identifying patterns of physiological and biological biomarkers observed more frequently in 

to-be sepsis patients than nonsepsis sepsis patients can result in a more accurate prediction 

of sepsis incidence. As these physiological and biological biomarkers are measured 
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frequently in patients, observation of these common patterns can inform the explainability 

of prediction. One of the most common approaches for modeling simultaneous events in 

various disciplines is using network representations [29]. The problem of identification 

of frequent patterns in network analysis and mining literature is called frequent subgraph 

mining. The typical approach for mining frequent subgraphs in data sets of temporal 

networks is representing the network as a sequence of equal-width time intervals of static 

networks. In this representation, each network in the sequence is a static network composed 

of simultaneous events in the corresponding interval [30]. This type of temporal network 

transformation to a sequence of static networks might either sacrifice some temporal aspects 

or impose a computational cost to the mining problem. Here, we consider patterns as 

the temporal changes observed in the physiological and biological biomarkers and their 

measurements in subpopulations of patients. Consequently, we consider frequent patterns 

as changes in different physiological and biological biomarkers and their combinations 

observed more frequently in patients. Based on these definitions, this study aims to answer 

the following questions.

Using a data set composed of patients with and without sepsis, how can we mine the 

frequent patterns in these patients while maintaining information regarding the temporal 

aspects of their physiological and biological biomarkers’ trajectories represented as 

networks? Are these patterns frequent and significant enough to inform the sepsis onset 

prediction? How can the frequent patterns detected inform the clinical interpretability of 

findings?

To answer these questions, we develop a series of novel algorithms for identifying frequent 

temporal and evolving patterns. We show that these patterns can improve the performance 

of sepsis incidence prediction. This paper is organized as follows. First, the data set of 

this study is described. Then, the criteria used to identify sepsis patients are explained, and 

the adopted approach for modeling dynamics of physiological and biological biomarkers is 

discussed. Then, the algorithms adopted for mining frequent patterns and their evolution are 

explained in detail. Next, the results obtained by applying the proposed algorithms to the 

data set are provided and discussed. The paper concludes with the limitations of the current 

study and potential future research direction.

2 Study Population

The data set of this study is composed of retrospectively collected EHR data from two 

hospitals of a single tertiary care health care system (in total, 1,100 in-hospital beds). The 

data collection is performed from patients admitted to these hospitals between July 2013 and 

December 2015. The inclusion criteria consist of patient age ≥18 at arrival, and visit types of 

inpatient, Emergency Department only, or observational visits.

Subpopulations Definition:

We consider two subpopulations of patients in this study; sepsis and non-sepsis. Based on 

the definition provided by the established Sepsis-3 guidelines [1] and input from subject 

matter experts, we considered sepsis as infected patients who have experienced at least 

one organ dysfunction from 24 hours before the first anti-infective administration to the 
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last administration. We also considered vasopressor administration as a sign of organ 

dysfunction. Patients are considered infected if they have received at least four days of 

anti-infective or a positive viral polymerase chain reaction test for influenza. Considering 

death as in-hospital death or discharge to hospice care, the patients who died while they 

were under anti-infective administration considered a sepsis patient too [31]. The list 

of physiological and biological biomarkers representing different organ dysfunction are 

provided in Table 1. The criteria considered for physiological and biological biomarkers’ 

failures are provided in Supplementary materials-Table 1.

As one of the ultimate goals is to compare and evaluate the power of different types and 

sets of features and their temporal dynamics for sepsis onset prediction, we create four data 

sets. These data sets are different based on the amount of information provided for sepsis 

onset prediction. We consider a window before sepsis onset and try to predict whether, 

based on the states as defined by the corresponding responses (Table 1), and their temporal 

patterns and evolution, we can differentiate sepsis patients from non-sepsis patients. We 

consider this window to be 3, 6, 12, and 24 hours and create one data set corresponding 

to each window (DS3, DS6, DS12, and DS24, respectively). This window is shown as the 

“gap” interval in Figure 1. Also, we only include patients in each data set who have at 

least 24 hours of hospitalization records before the window. By increasing the window, the 

number of patients meeting this constraint decreases. For non-sepsis patients, we do not have 

this limitation. However, we randomly select an equal sample size of non-sepsis patients to 

create a balanced data set. The characteristics of sepsis and non-sepsis patients in the data 

sets with different gap intervals are provided in Table 2.

3 Methods

In this study, we use two different approaches to predict the onset of sepsis. The data 

used for these methods are sepsis and non-sepsis patients’ EHR data. We would like to 

examine whether we can accurately classify patients into one of the two groups. Therefore, 

we consider a window before the sepsis incidence onset in sepsis patients. Then, we 

remove sepsis patients’ data in this window. Also, to accomplish the study’s objectives, 

we implement different classification algorithms with varying sets of features. More 

specifically, we use traditional algorithms as baseline methods. Also, we use frequent pattern 

mining in temporal networks and frequent evolving pattern mining in temporal networks as 

alternative approaches. The methods are compared based on their performance and other 

considerations in line with the paper’s objectives. We use different pre-processing and 

feature engineering steps to implement these methods. In the following, feature engineering 

is described in detail. Then, the adopted methods are described in further detail.

3.1 Preprocessing & Feature Engineering

The primary features used in this study are 16 physiological and biological biomarkers 

contributing to organ dysfunctions (Table 1). We also consider the three commonly 

used sepsis biomarkers; procalcitonin (PRC), C-reactive protein (CRP), and erythrocyte 

sedimentation rate (ESR). We refer to these 19 features as responses hereafter. Furthermore, 

age, gender, and past medical history of patients are included as other feature sets.

Jazayeri et al. Page 4

Artif Intell Med. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Considering that vital signs and laboratory tests are generally measured at irregular intervals, 

using the subject’s matter opinion, we carried forward vital sign measurements for eight 

hours and lab results for 24 hours if there were no more up-to-date measurements reported in 

these intervals. Furthermore, some of the variables are derived from a combination of other 

variables, such as mean arterial pressure (MAP) calculated as follows:

MAP = 2 × DPB + SBP
3 (1)

where DPB and SBP  represent the diastolic and systolic blood pressures, respectively.

This paper aims to identify the most frequent temporal patterns and their evolution in 

sepsis patients. To compare the usefulness of these patterns, we evaluate their importance in 

predicting sepsis onset in comparison with the typical approaches adopted in the literature, 

that is, using different sets of physiological and biological biomarkers as individual features. 

To accomplish this comparison, we apply multiple traditional machine learning algorithms 

to the set of individual features. Because the vital signs and lab results change throughout 

hospitalization, we create various statistics to represent the measures of central tendency 

(mean μ and median M) and dispersion (standard deviation σ and range R) of these features. 

Therefore, for each of the variables shown in Table 1 and the three biomarkers, we compute 

these statistics and use them as features to predict the sepsis onset and classify the sepsis 

patients.

To take the irregularity of inter-measurements into account, we computed the adjusted 

versions of μ, M, and σ. In other words, instead of simply computing these statistics, we 

consider for how long each measurement has been valid. Then, based on these durations at 

the minute level, we compute μ, M, and σ. Figure 2 shows how the temporal duration of 

measurements are included in calculation of μ, M, and σ. For the range R, we do not need to 

adopt this approach as it does not depend on the time over which the measurement is valid.

3.2 Temporal Networks Construction

For the temporal pattern mining, we create a continuous-time temporal network for each 

patient. Each network is composed of nodes, representing the responses shown in Table 1 

and the three biomarkers and edges, representing the simultaneous measurements of these 

responses. We consider the networks attributed, and we label each vertex attribute as a vector 

using the same (adjusted) statistics, ℓ = μ, M, σ, R . However, contrary to the previous case 

of individual variables, the labels are separately computed for each interaction window, 

instead of the entire course of data collection. Note that if during one node’s interaction with 

another node where the responses are concurrently recorded, the measurements for the same 

node remain continuously the same, the last two elements in ℓ would be zero. Also, note that 

two nodes might interact at two different intervals with different values of ℓ.

Figure 3 shows how continuous-time temporal networks are created for each patient. In 

Figure 3.a, given a set of responses ri i ∈ 1, 2, 3, 4  measured for a patient over time, we 

identify the overlapping intervals among these responses. The responses are the nodes of 

the network. The edges represent the window over which each pair of intervals is measured. 
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Figure 3.b provides two representations of the temporal network associated with Figure 

3.a. These two representations, edge-based and vertex-based, illustrate the same temporal 

network. Each row represents one edge and the corresponding window over which the 

interaction is active in the former. Each row is associated with one response (vertex) in the 

latter, and interactions are shown with oblique lines spanning over the interaction window. 

For each patient’s visit in the study population, we create one continuous-time temporal 

network as explained and record these networks in a network data set, DS. These networks 

are used to identify the frequent temporal patterns as described in the following subsection.

3.3 Frequent Temporal Patterns

Identification of frequent patterns in network data sets has a rich literature in static networks 

that has attracted increasing attention recently in data sets of temporal networks [30, 

32]. The typical approach in the proposed algorithms in the literature is transforming the 

temporal networks into a set of static networks. This representation might over-represent 

the interaction times or increase computation time. In this paper, we use the tempowork 
algorithm proposed for the identification of frequent temporal patterns in a temporal network 

data set [33]. The implementation of this algorithm is publicly available in the PyPI 

repository. Once we have the temporal networks data set DS, we apply the frequent pattern 

mining algorithms to identify the frequent pattern in DS.

In [33], each temporal network is converted to a novel graph representation, constrained 

interval graph CIG, that provides a lossless representation of the associated temporal 

network. The CIG created for a temporal network T  are directed networks composed of:

• Nodes, NCIG, representing the edges in T .

• Edges, ECIG representing overlapping edges in T  sharing one node.

Each node in CIG is labeled with the nodes’ labels, edge’s label, and the duration of the 

corresponding edge in T . Each edge in CIG is attributed with the delay magnitude between 

the starting points of the two overlapping edges. Figure 4 visualizes a temporal network at 

the top and the corresponding CIG at the bottom.

For mining frequent patterns in a data set of temporal networks, DS, we iterate over the 

networks one by one. For each T i ∈ DS, one CIGi is constructed. Based on the temporal 

networks in DS, a data set of CIGs (DS*) is constructed. The tempowork algorithm then 

mines DS*. To perform the mining, it adopts the depth-first search strategy. Given a 

frequency threshold f, the tempowork output would be a complete set of frequent temporal 

patterns in DS appearing in at least f networks of the DS.

The mining process starts with single vertices and edges in the CIGs in DS*. The vertices 

and edges in DS* with frequencies more than f are recorded. Note that these vertices and 

edges represent the frequent edges and frequent subgraphs of size 2 in DS, respectively. 

For these frequent patterns, an occurrence list is created, recording the location of their 

appearance in DS*. Then frequent patterns (parents) are extended using the frequent edges. 

The frequencies of extended patterns (candidates) are evaluated based on the occurrence list 
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of their corresponding parents. If the number of CIGs in the DS* supporting a candidate c is 

more than the frequency threshold f, we record c as a frequent pattern. Also, we add c and 

locations of its appearances in DS* in the occurrence list. This process is iteratively repeated 

until no further extension of the frequent patterns is possible. Further details related to this 

subsection is provided in Appendix B.1.

Algorithm 1

Frequent Temporal Pattern Mining Algorithm

1: procedureFREQUENT_TEMPORAL_PATTERN_MINING(DS, minfreq)

2:  Initialize DS* ▷ An empty set to record CIGs associated with 
temporal networks.

3:  forT ∈ DSdo

4:   Initialize CIG with empty vertex and edge sets

5:   foredge ∈ T do

6:    Add a vertex v to CIG corresponding to edge
7:    Label v in CIG with the endpoints’ and edge’s labels and duration of edge
8:    Identify other overlapping edges e′s in T  read prior to edge and with vertices in common with edge and 

with vertices in common with edge
9:    Connect e′s corresponding vertices in CIG to v with directed edges

10:    Label the connections with their starting points’ differences in T
11:   Append CIG to DS*
12:  frequent_temporal_patterns = PATTERN_MINING(DS*, minfreq)

13:  Return frequent_temporal_patterns

Algorithm 2

Frequent Pattern Mining Algorithm

1: procedurePATTERN_MINING(DSN, minfreq)

2:  one_vertex: Set of vertices in DSN with frequencies ≥ minfreq

3:  one_edge: Set of unique edges in DSN with frequencies ≥ minfreq

4:  frequent_patterns = {one_vertex,one_edge}

5:  procedureFREQUENT_PATTERN_MINING(minfreq, ,candidate)

6:   ifis_valid(candidate) then ▷ If candidate is the representative of all the networks isomorphic to candidate.

7:    frequent_pattern ← candidate

8:    Append frequent_pattern to frequentl_patterns

9:    Extend frequent_pattern with edges in one_edge → candidates

10:    forcandidate ∈ candidatesdo

11:     frequency = {Nid ∣ Nid ∈ DSN ∧ candidate ⊆ Nid}
12:     if frequency ≥ minfreq then

13:      FREQUENT_PATTERN_MINING(minfreq, ,candidate)
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14:  fore ∈ one_edgedoFREQUENT_PATTERN_MINING(minfreq,e)

15:  Return frequent_patterns

We use the frequent patterns detected by the tempowork at different frequency thresholds 

as features to classify and predict sepsis patients. The main goal is to detect patterns that 

are frequent, shared among a large number of patients, and important enough to be used as 

differentiating patterns in sepsis versus non-sepsis patients. To identify these frequent and 

important patterns, we apply different machine learning algorithms to the patterns detected 

by the tempowork.

3.4. Frequent Evolving Patterns

In addition to using frequent patterns detected in the previous step as features for 

classification and prediction, we identify the frequent evolution events of physiological 

and biological biomarkers. As we are using a continuous-time representation of patients’ 

EHR, we use an extended version of tempowork for mining frequent evolving patterns. 

This extension of tempowork considers three user-defined thresholds, size parameter σ, 

connectivity radius τ, and continuity radius δ. These parameters are used to characterize 

different evolution events. In total, we consider six fundamental evolution events; birth 

(appearance of a pattern), expansion (continuous growth of a pattern), merge (joining of 

patterns), contraction (continuous reduction in the size of a pattern), split (transformation 

of one connected component into two or more connected components), and death 

(disappearance of a pattern). More descriptive definitions of these events based on 

parameters σ, τ, and δ are provided in Appendix B.2.

Figure 5 visualizes the evolution events considered in this study. For identification of these 

events, we iterate over the CIGs in DS*. For each CIG, we identify the evolution events by 

checking each vertex, its neighbors, and the connected component that the vertex belongs to, 

and their temporal changes. In the evolution event identification step, we start with birth and 

death events. Then, we identify the merge and split events. The expansion and contraction 

events are identified inside both connected components contributing to the merge and split 

events and in patterns of physiological and biological biomarkers for which no merge and 

split events are identified.

Algorithm 3

Frequent Evolving Pattern Mining Algorithm

1: procedureFREQUENT_EVOLVING_PATTERN_MINING(DS*, minfreq , σ, τ, δ)

2:  Initialize DSE as a data set of evolution networks ℬ, ℰ, ℳ, C, S, D as empty sets for birth, expansion, 
merge, contraction, split, and death events

3:  forCIG ∈ DS*do

4:   Initialize E as an empty evolution network

5:   Identify Connected components in CIG
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6:   Populate ℬ with birth events detected as vertices with in-degree = 0 and all their neighbors in connectivity 
radius τ

7:   ℒ = Edges ordered based on their starting times in reverse order

8:   Populate ℳ with merge events by identification of edges in the order of ℒ whose removal increases the 
number of connected components with size ≥ δ

9:   ℱ = Edges ordered based on their finish times

10:   Populate S with split events by identification of edges in the order of ℱ whose removal increases the 
number of connected components with size ≥ δ

11:   forcomponent ∈ ℳ/Sdo

12:    Populate ℰ = with expansion events in component
13:    Populate C = with contraction events in component
14:   forcomponent ∉ ℳ/S and component ⊆ CIGdo

15:    Populate ℰ = with expansion events component
16:    Populate C = with contraction events in component
17:   Populate D with death events detected as vertices with out-degree = 0 and all their neighbors in connectivity 

radius τ
18:   Create evolution network E composed of vertices representing by evolution events and edges representing 

the connections among evolution events based on their component/sub-component relationships

19:   Append E to DSE

20:  frequent_evolving_patterns = PATTERN_MINING(DSE, minfreq)

21:  Return frequent_evolving_patterns

In the next step, the relationships among evolution events identified and their appearance 

and disappearance time in relation to other events can be used to create an evolution network 

for the patient. Therefore, we can create a data set of evolution networks corresponding to 

the temporal changes in patients’ physiological and biological biomarkers. Then, a frequent 

subgraph mining approach [30] is applied to the data set of evolution networks to identify 

the most frequent evolving patterns. In this case, we define a minfreq  frequency threshold to 

detect the frequent evolving patterns. The pseudocode for identification of evolution events 

and creation of a data set of evolution networks, DSE, is provided in Algorithm 3. Once 

DSE is created, it is sent to Algorithm 2 in which the frequent evolving patterns are detected. 

Note that for both frequent temporal pattern mining and frequent evolving pattern mining, 

Algorithm 2 is applied to a data set of networks. For the former, the data set of CIGs is 

sent to Algorithm 2. However, for the latter, first, we create the data set of CIGs, DS*. This 

data set is sent to Algorithm 3 and the data set of evolution networks, DSN, is created. 

Then, DSN is passed to the Algorithm 2 for identification of frequent evolving patterns. 

The function is_valid used in Algorithm 2 has different functionalities when it is applied to 

DS* and DSN. For DS*, the networks are CIGs. To verify the validity of a CIG, first, it is 

converted to the associated temporal network, and then the temporal network is converted 

back to a CIG. It is required because, as it is discussed in [33], for each temporal network, 

we can create only one CIG. However, multiple CIGs might represent the same temporal 

network. This problem is more common in densely connected CIGs. As discussed, the edges 

in CIGs represent the delays between nodes’ starting times. The temporal relationships 
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among different nodes can be derived by following different paths over the same CIG. To 

avoid over-counting these patterns, we need to construct the complete CIG based on the 

known temporal relationships among nodes and edges. In other words, even though some of 

the edges might be missing, their presence can be proved based on the known relationships 

among nodes and the edges in the network. These conversions are performed before the 

validity of CIG is evaluated to avoid redundancy and over-counting of frequent patterns. 

On the other hand, when DSN is sent to Algorithm 2, each network is a directed static 

network, and this conversion is not required. For evaluation of validity, we can use different 

approaches proposed for canonical labeling of networks [30]. We use the same approach 

proposed in [34, 35].

The output of this phase would be a data set of temporal evolving patterns. Combined with 

other feature sets discussed earlier, they are used to classify sepsis and non-sepsis patients.

3.5 Sepsis Onset Prediction

Based on the discussions above, we have three different feature sets; individual responses, 

frequent temporal patterns, and frequent evolving patterns. Furthermore, we consider 

patients’ age, gender, and medical history as a separate feature set that can be added to 

the three previous feature sets. Based on different combinations of feature sets, we develop 

different machine learning models for the sepsis onset prediction in 3, 6, 12, and 24 hours 

before sepsis onset. The machine learning algorithms adopted are logistic regression (LG) 

[36], k-nearest neighbors (kNN) [37], support vector machines with radial basis function 

(SVM) and polynomial (SVMP) kernels [38], Gaussian Naïve Bayes [39], decision tree (DT) 

[40] classifiers and two ensemble learning methods; random forest (RF) [41] and Ada Boost 

Classifier (ADA) [42]. Furthermore, we implemented an imputation approach to handle the 

missing data. The details of this approach are provided in Appendix B.3.

We used a 10-fold cross-validation approach for training and internal validation for all the 

predictive models. The training of the predictive models was performed using 70% of the 

data. All the performance metrics reported in the following sections of the paper are based 

on a 30% untouched subset of data sets in each iteration used for testing purposes.

For the identification of frequent temporal patterns to be used as features for predictive 

modeling, we implement tempowork algorithm for different frequency thresholds, temporal 

noise tolerance threshold, and different types of isomorphism. For identification of evolving 

patterns, we test different values for size parameter σ, connectivity radius τ, and continuity 

radius δ. Also, as discussed below, we categorize the labels of nodes. The results of 

implementing different machine learning algorithms are provided in the next section. Figure 

6 visualizes the analytical approach adopted for sepsis onset prediction.

4 Results and Discussion

We applied the approaches described in Section 3 to the study data set. We identified 

frequent temporal and evolving patterns and used different combinations of these patterns 

with individual statistics of physiological and biological biomarkers and patients’ age, 

gender, and medical history for early prediction of sepsis incidence. In the following 
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subsections, we summarize the results obtained corresponding to different approaches 

discussed in 3.

4.1 Individual Features

From the 19 responses considered in this study, the measurements for 17 responses are 

provided in numeric values. The measurements are provided in nominal and categorical 

values for two other responses, Oxygen (O2) source and Glasgow best verbal responses. 

Therefore, we computed the μ, M, R, and σ for the former responses. We only used 

the mode for the latter, representing the most common status of the patient for these 

responses. Based on these considerations, we created 70 features from responses (17 × 4 

+ 2). In addition, we considered age and gender and 30 different medical complications 

(as binary features) that patients had experienced in their medical history. The results for 

sepsis prediction for these feature sets are provided in Table 3. Among the eight prediction 

models adopted, the SVM and RF performed the best based on accuracy, recall, precision. 

Therefore, we consider the results obtained by the SVM as the baseline in this paper. The 

results of all the other algorithms are summarized in Supplementary materials - Table 2.

4.2 Frequent Temporal Patterns

The tempowork algorithm was applied to the data sets of temporal networks created from 

patients’ hospitalization courses (3, 6, 12, 24 hours) before the sepsis onset. For each of the 

network data sets, we considered multiple frequency thresholds. We considered a pattern 

frequent if it is observed in at least f patients f ∈ 50, 100, 200, 500 . Other parameters 

that can be tuned in these experiments are isomorphism types (four types) and the level 

of noise tolerance when inexact versions of isomorphism are adopted. We consider four 

values for noise tolerance (1, 2, 3, and 4 hours). These values determine how long two 

measurements are considered inexactly equal if the measurements of the corresponding 

response are equal, but their duration is different. Implementing the algorithm for the 

exact time versions of isomorphism showed that it is very rare to find identical frequent 

patterns with exactly identical duration or exactly identical delays between two responses 

interactions (even for f = 50 ). The results related to the number s  and size E  of frequent 

temporal patterns detected from different data sets and for two isomorphism definitions 

at different support thresholds are provided in Appendix C. This appendix also includes 

the results related to the number and size of frequent temporal patterns detected from the 

data sets with 3-hour window for different temporal noise tolerance thresholds, numbers of 

labeling categories and the two isomorphism definitions at different support threshold.

4.3 Frequent Evolving Patterns

The CIGs constructed based on patients’ physiological and biological biomarkers in 

different data sets of the study are used to identify evolution events and create the evolution 

networks. For this purpose, different values for size parameter σ, connectivity radius τ, and 

continuity radius δ are tried. In addition, we used different frequency thresholds minfreq  to 

detect frequent evolving patterns. A modified version of the approach proposed in [34, 35, 

43] is used for the identification of evolving patterns in the data set of evolution networks. 

Figure 7 shows the number of frequent patterns detected for DS6 for different values of 
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σ, τ, δ, and minfreq. The results obtained for different data sets are shown and compared in 

Supplementary materials - Figure 5.

4.4 Sepsis Onset Prediction

Different combinations of individual features, frequent patterns, and frequent evolving 

patterns with and without age, gender, and medical history of patients were used for sepsis 

onset prediction. The frequent temporal patterns and frequent evolving patterns are used 

as binary features. For each patient, it takes a value of 1 if observed in the patient’s 

hospitalization records. The results of predictive modeling for the SVM models for two 

different isomorphism definitions are provided in Figure 8. Considering that the inexact 

sequence-preserved isomorphism produced the best performance, the results for all the 

algorithms and different periods before sepsis onset are provided in Supplementary materials 

(Table 2 and Figure 1). The performance of the SVM algorithm for different feature sets and 

support values are provided in Figure 9.

Considering that adopting is isomorphism definition produces a large number of frequent 

patterns, we used a supervised feature selection approach. The results showed that selecting 

the 1000 most important features based on the feature selection approach almost always 

produces the best results for the combination of accuracy, recall, and precision performance 

metrics (refer to Supplementary materials). Based on these findings, we conducted a series 

of experiments to identify the best combination of features, support thresholds, temporal 

noise tolerance threshold, and the number of labeling categories.

The results (Figure 9.a) showed that using the statistics of individual responses ind , 

combined with age, gender, and medical history of patients as one feature set ind+  results 

in an accuracy of about 76%. Using only frequent patterns fp  produced slightly better 

results than the ind+ feature set. When we combine these two feature sets ind+/fp , the 

accuracy increases by about 3–4%. Adding the frequent evolving patterns to the previous 

feature sets ind+/fp+  further improves these performance metrics by about 2–3%.

We also found that the highest performance is obtained at the support threshold 

f(minfreq) = 50 (Figure 9.b). It implies that by increasing the support threshold, we remove 

some of the patterns considered frequent at lower thresholds. These patterns have a role in 

differentiating sepsis and non-sepsis patients. The results show that at frequency threshold 

f = 200 and f = 500, the classification performance is almost equal to the case where the 

feature set comprises features related to the statistics of individual responses, age, gender, 

and medical history of patients. It means that frequent patterns (and evolving patterns) 

detected at these frequency thresholds are common in both sepsis and non-sepsis patients. 

Therefore, they cannot be used to differentiate these two subpopulations effectively.

Furthermore, we can rank features based on their importance in classifying patients into 

sepsis and non-sepsis subpopulations. We categorized the top ten most important features 

in the four categories of i) statistics of physiological and biological biomarkers, ii) features 

related to age, gender, and medical history of patients, iii) frequent temporal patterns, and 

iv) frequent evolving patterns. The ranking was performed using univariate statistical tests 
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based on the ANOVA F-value scoring function [44]. Table 4 lists the top ten most important 

features in the first feature set. This table shows that fluctuations in platelet, lactate, and 

creatinine (represented by the range and standard deviation statistics) are among the top ten 

most important features. On the other hand, the mean and median of systolic blood pressure 

and oxygen source mode are considered important features for this classification problem.

The most important feature identified in the classification problem belongs to the feature set 

related to age, gender, and medical history of patients; electrolyte disorders (Table 5). The 

second most important feature in this group and the third most important feature among all 

the features is significant weight-loss in the history of patients. The patients’ gender is also 

an important feature in this group. However, the age of patients is not identified in the top 

ten most important features in this feature set.

Figure 10 shows the most important features in the group of frequent patterns. As provided 

in the code next to each frequent pattern (second placeholder), none of the frequent patterns 

are among the top 10 most important features for classification. It means that none of these 

features can individually differentiate a large number of sepsis patients from non-sepsis 

patients compared to the two other feature sets. However, as there are many frequent patterns 

detected by the algorithm in this study, each of them (or their combination) can differentiate 

some of the patients and improve the classification problem performance. Except for the 

oxygen source, for all the other vertices in this figure, a label is provided in the form of 

“xxxx”. These codes are concatenation of μ, M, σ, R  statistics. Because the classification is 

conducted with two labeling categories for each statistic, 1 in these codes means that the 

corresponding vertex has a high value for the corresponding statistics, 0 otherwise. In other 

words, for example, 1101 for the bilirubin means that a temporal pattern of bilirubin lasting 

between 4 to 8 hours, with high μ, high M, low σ, and high R has been identified as a 

frequent pattern.

Figure 11 shows the ten most important features in frequent evolving patterns. The results 

show that this set of features are generally more important than frequent patterns. This 

difference in importance can be attributed to the frequent evolving pattern being considered 

a generalization of frequent temporal patterns, as different temporal patterns might map 

to the same evolving patterns. Another observation made was that most of the important 

frequent evolving patterns shown in Figure 11 include an expansion, or merge, or both of 

these two events (compared to contraction or split events). These events are associated 

with the increasing number of physiological and biological biomarkers measurements, 

representing closer examinations of the patients experiencing more severe conditions.

Although, in most cases, a combination of features contributes to differentiating sepsis 

from nonsepsis patients, we could identify the evolution events and patterns frequently 

appearing in sepsis patients. We found that patients showing one or multiple instances of 

the patterns shown in Figure 12 are more likely to become sepsis patients. We observed 

that these patterns (events) either contribute to the appearance of multiple physiological 

and biological biomarkers through the birth event or the increase in the size of the patterns 

through expansion or merge events. We also observed that these patterns are composed of 

co-appearances of more severe conditions of responses associated with two or more than 
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two organ systems (shown with different colors in Figure 12). This observation highlights 

the importance of considering the changes in multiple organ systems’ rather than isolated 

individual organ systems. Another observation was that in many of these patterns, the 

responses associated with the renal organ system represented by creatinine (Cr) or BUN 

(Bu) and metabolic organ system represented by lactate (La) are more common than other 

organ systems.

There are many studies in the sepsis literature devoted to improving the early prediction of 

sepsis onset as it is known that successful prediction of sepsis incidence can significantly 

improve the patients’ outcomes. Furthermore, the interpretability of analytical approaches’ 

findings in clinical settings can promote the adoption of these approaches. Consequently, 

the investigation of model explain-ability and interpretability of findings in clinical settings 

has attracted increasing attention in recent years. This study aimed to propose an approach 

to improve the prediction of sepsis onset using interpretable feature sets. With the proposed 

methods in this study, we could identify the most important features contributing to the 

patients’ classification. These features are either simple statistics of individual responses, 

patients’ medical history, or temporal dynamics and evolution of physiological and 

biological biomarkers as shown in Figures 10, 11, and 12. The importance of all these 

components can be clinically verified. Using graph matching approaches for any patient 

of interest, we could retrieve similar patients to the patient of interest using a vector of 

important features and components. As a result, we can enhance the clinical interpretability 

of findings by using a diverse set of features and incorporating the temporal changes in 

patients’ states.

5 Conclusion

In this paper, we used a frequent temporal pattern mining approach to identify frequent 

patterns in populations of sepsis patients. We showed that using these patterns can improve 

the prediction performance of sepsis onset. The investigation of different combinations 

of feature sets revealed that although the individual features (the typical approach in the 

literature) and frequent patterns identified have almost identical performance for predicting 

sepsis onset, their combination can further improve the performance. It implies that the 

recurring patterns probably carry a different type of information that cannot be captured 

by the statistics used in this study to represent the average values and fluctuations of 

physiological and biological biomarkers. In many decision applications, decision-makers act 

upon individual observations to start, stop, or change treatment strategies. However, our 

results showed that individual responses have limited value and power compared to when a 

rich repository of both individual responses and frequent temporal or evolving patterns is the 

source of decision making.

Nevertheless, this study has some limitations. First, the data used in this study is from 

one health care system. The reliability of results should be investigated by applying the 

same approach to data sets from different health care systems. Furthermore, to evaluate the 

robustness of the proposed algorithms, we would like to apply them to real-world data sets 

related to other health conditions. It is an avenue for our future work.
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The main objectives of this paper were to show the importance of consideration of 

temporality in the feature engineering phase for early sepsis prediction and propose 

an approach to enhance the interpretability of the findings. Therefore, we adopted a 

balanced data set with a specific experimental design and used traditional machine learning 

algorithms. Although sepsis is a prevalent health complication, adopting a balanced data set 

is still an overestimated number of sepsis incidences. Furthermore, the evaluation of patients 

for identification of sepsis incidence starts with and is continuously monitored after the 

hospitalization. However, the experimental design and patient inclusion criteria adopted in 

this work (Figure 1) is a simplified version of the sepsis identification problem in real-world 

settings. Therefore, adopting methods specifically developed for imbalanced data sets (e.g., 

refer to [45, 46, 47]) with the same types of features proposed in this study might be 

beneficial. Although the frequent temporal and evolving patterns common among sepsis 

patients can be mined from already collected sepsis patients’ data sets, the identification of 

these patterns in patients in hospitalization should be continuously performed. Furthermore, 

the algorithms adopted in this study are mainly traditional machine learning algorithms. 

The usefulness of the feature sets developed in this study can be examined with more 

advanced deep learning approaches for better performance. We could not apply these 

approaches in this study because of the limited data sets (and the large number of frequent 

patterns detected). Also, although we could capture the temporal aspects of physiological 

and biological biomarkers, we still used summary statistics to represent their values and 

dynamics. In our future work, we are interested in developing models that capture these 

characteristics of data entirely.

In this study, first, we identified the frequent patterns and then used supervised feature 

selection and classification approaches to identify the most important features. In addition to 

working on the limitations above, we would like to integrate the frequent temporal mining 

approach with the classification algorithm into one step. This integration can enhance the 

efficiency of the proposed approach by eliminating frequent patterns whose growth does not 

seem promising and therefore limit the search space as early as possible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1. Using frequent temporal patterns can improve the performance of sepsis onset 

prediction.

2. The patients with more severe renal and metabolic organ systems’ 

manifestations are more likely to be sepsis patients.

3. The identification of critical temporal patterns contributing to the prediction 

performance improves clinical interpretability.

4. The rich repository of frequent temporal and evolving patterns can inform 

personalized treatment and management of sepsis.
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Figure 1: 
The EHR data used from sepsis patients are composed of responses’ states collected from 

the beginning of the hospitalization up to a gap (considered as the prediction window into 

the future) before the onset of sepsis. The prediction windows considered are 3, 6, 12, and 

24 hours. The patients should be monitored for at least 24 hours before the gap’s starting 

time to be included in the study.
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Figure 2: 
For the computation of mean, median, and standard deviation, in addition to absolute values, 

the frequency of the corresponding values at the minute level is taken into account. For 

example, the adjusted mean for the response in this figure would be μ = ∑firi/∑fi. The 

areas with stripes are duration without any values recorded for the response.
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Figure 3: 
Visualization of physiological and biological biomarkers a) temporal representation of 

individual physiological and biological biomarkers and b) the edge-based and vertex-based 

representation of biomarkers’ temporal relationships.
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Figure 4: 
Visualization of physiological and biological biomarkers relationships a) in edge-based and 

vertex-based representations and b) by the corresponding CIG. In the CIG representation, 

directed edges connect the nodes that appear sooner to the nodes that appear later (subject 

to the other conditions of CIG construction). In cases where both nodes appear at the same 

time, we could connect the nodes with lexicographically smaller labels to the nodes with 

larger labels and follow an identical approach for all the CIGs created in the data set.
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Figure 5: 
The six fundamental evolution events considered in this study. These events are identified 

from the CIGs associated with temporal networks created based on the relationships among 

patients’ physiological and biological biomarkers. The vertices contributing to events are 

shown in different colors.
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Figure 6: 
The analytical approach adopted in this study for sepsis onset prediction. The boxes in grey 

represent the feature sets used. FPM: Frequent pattern mining; FEPM: Frequent evolving 

pattern mining.

Jazayeri et al. Page 25

Artif Intell Med. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 

The number of frequent evolving patterns identified in the data set DS6 of the study for 

different values of parameters σ, τ, δ, and minfreq .
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Figure 8: 
The performance of the SVM algorithm for two different definitions of isomorphism. i: 
inexact-time isomorphism, is: inexact-time sequence-preserved isomorphism in combination 

with all other feature sets.
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Figure 9: 

The impact of a) different feature sets and b) support values for sepsis onset prediction. ind+: 

statistics of individual responses, and patients’ age, gender, and medical history, fp: frequent 

temporal patterns, ind+/fp: statistics of individual responses, and patients’ age, gender, and 

medical history, and frequent temporal patterns, ind+/fp+: statistics of individual responses, 

and patients’ age, gender, and medical history, frequent temporal patterns, and frequent 

evolving temporal patterns.
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Figure 10: 
The ten most important frequent patterns in the classification of sepsis and non-sepsis 

patients. Next to each pattern, a code is provided representing the importance rank of the 

pattern in the feature set composed of frequent temporal patterns and their importance 

rank in the entire feature set. The duration of the temporal pattern is shown with black 

arrows. For the explanation related to code associated with each vertex, refer to the text. 

Bi: BiliRubin, Bu: BUN, Cr: Creatinine, La: Lactate, Os: Oxygen source, Px: Pulse ox, Sb: 

Systolic blood pressure, W: White blood cells count.
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Figure 11: 
The ten most important frequent evolving patterns in the classification of sepsis and 

nonsepsis patients. The frequent evolving pattern mining approach has not detected the 

blue edges. However, they are shown to emphasize that these events should be connected to 

other events by their definition, and they are not shown as they have not been frequent. Next 

to each pattern, a code is provided representing the importance rank of the pattern in the 

feature set composed of frequent evolving patterns and their importance rank in the entire 

feature set.
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Figure 12: 
The ten most common evolution events observed among sepsis patients with the lowest 

frequencies among non-sepsis patients. The responses representing the same organ system 

are shown with the same color (Bi: Bilirubin; Bu: BUN; Cr: Creatinine; Gc: Glasgow Coma 

Score; Gv: Glasgow Best Verbal Response; La: Lactate; Or: SpO2/FiO2; Os: Oxygen Source; 

pc: Procalcitonin; Pl: Platelet; Px: Pulse oximetry (SpO2); Sb: systolic blood pressure; W: 

WBC), ⟜ : birth, ≺ : expansion, ⊢ : merge).
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Table 1:

Organ systems and their associated physiological and biological biomarkers.

Organ Dysfunction Response

Cardiovascular Systolic blood pressure (SBP)

SBPmax* - Systolic BP

Mean arterial pressure (MAP)

Renal Creatinine

(Creatinine - Cbase**)/(Cbase)

Blood Urea Nitrogen (BUN)

Hematopoietic WBC

Platelet

Metabolic Lactate

Gastrointestinal Bilirubin

Respiratory Fraction of inspired oxygen (FiO2)

Pulse oximetry (SpO2)

SpO2/FiO2

Oxygen (O2) Source

Central Nervous Glasgow Comma Score

Glasgow Best Verbal Response

*:
Maximum systolic blood pressure for each observation within 8-hour windows. 

**:
Initial creatinine value observed in each visit.
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Table 4:

The ten most important statistics of physiological and biological biomarkers and biomarkers ordered by their 

importance rank in the classification of sepsis and non-sepsis patients. SD: Standard deviation, WBC: White 

blood cells count.

feature rank in set rank in all

Range of platelet 1 2

Mean of systolic blood pressure 2 4

Mode of oxygen source 3 5

Median of systolic blood pressure 4 6

SD of platelet 5 7

SD of lactate 6 8

Range of lactate 7 9

Range of creatinine 8 10

Range of WBC 9 32

SD of creatinine 10 38
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Table 5:

The ten most important features related to age, gender, and medical history of patients ordered by their 

importance rank in the classification of sepsis and non-sepsis patients.

feature rank in set rank in all

Electrolyte disorders 1 1

Significant weight-loss 2 3

Anemic disorders 3 11

Coagulation disorders 4 29

Chronic pulmonary disease 5 31

Paralysis prior to this visit 6 32

Diabetes 7 49

Peripheral vascular disease 8 77

Gender 9 101

Depression 10 149
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