Table 5.
Performance of ML model II with different classification algorithms for training and test datasets
| 5-fold cross validation performance of classification algorithms on the training dataset | |||||
|---|---|---|---|---|---|
| Algorithms | Precision | Recall | F1-score | AUC-ROC | Accuracy |
| SVM | 77.47 ± 6.38 | 89.67 ± 8.52 | 82.97 ± 6.56 | 89.03 ± 5.68 | 80.76 ± 7.15 |
| Extra Trees | 79.21 ± 7.69 | 82.17 ± 5.98 | 80.59 ± 6.56 | 86.91 ± 6.62 | 79.11 ± 7.26 |
| Random Forest | 77.65 ± 7.58 | 80.81 ± 8.48 | 79.14 ± 7.78 | 85.03 ± 6.17 | 77.67 ± 8.28 |
| AdaBoost | 74.58 ± 6.30 | 70.20 ± 2.64 | 72.19 ± 3.57 | 75.87 ± 3.80 | 71.52 ± 4.78 |
| XGBoost | 78.87 ± 7.36 | 70.13 ± 1.84 | 74.09 ± 3.47 | 77.83 ± 7.53 | 74.09 ± 4.50 |
| LR | 79.05 ± 5.79 | 81.63 ± 9.58 | 80.09 ± 6.45 | 84.93 ± 8.15 | 78.98 ± 6.28 |