Skip to main content
. Author manuscript; available in PMC: 2024 Sep 1.
Published in final edited form as: Artif Intell Med. 2023 Jul 17;143:102624. doi: 10.1016/j.artmed.2023.102624

Table 5.

Performance of ML model II with different classification algorithms for training and test datasets

5-fold cross validation performance of classification algorithms on the training dataset
Algorithms Precision Recall F1-score AUC-ROC Accuracy
SVM 77.47 ± 6.38 89.67 ± 8.52 82.97 ± 6.56 89.03 ± 5.68 80.76 ± 7.15
Extra Trees 79.21 ± 7.69 82.17 ± 5.98 80.59 ± 6.56 86.91 ± 6.62 79.11 ± 7.26
Random Forest 77.65 ± 7.58 80.81 ± 8.48 79.14 ± 7.78 85.03 ± 6.17 77.67 ± 8.28
AdaBoost 74.58 ± 6.30 70.20 ± 2.64 72.19 ± 3.57 75.87 ± 3.80 71.52 ± 4.78
XGBoost 78.87 ± 7.36 70.13 ± 1.84 74.09 ± 3.47 77.83 ± 7.53 74.09 ± 4.50
LR 79.05 ± 5.79 81.63 ± 9.58 80.09 ± 6.45 84.93 ± 8.15 78.98 ± 6.28