Skip to main content
. Author manuscript; available in PMC: 2024 Sep 1.
Published in final edited form as: Artif Intell Med. 2023 Jul 17;143:102624. doi: 10.1016/j.artmed.2023.102624

Table 3.

Performance of ML model I with different classification algorithms for training and test datasets

5-fold cross validation performance of classification algorithms on the training dataset
Algorithms Precision Recall F1-score AUC-ROC Accuracy
SVM 86.92 ± 5.18 82.68 ± 3.94 84.64 ± 3.58 92.53 ± 3.34 85.04 ± 3.41
Extra Trees 85.77 ± 6.05 83.58 ± 7.19 84.26 ± 3.62 92.82 ± 3.64 84.52 ± 3.21
Random Forest 85.14 ± 6.11 83.45 ± 7.72 83.92 ± 4.47 92.08 ± 4.24 84.16 ± 4.04
AdaBoost 88.06 ± 7.36 80.52 ± 9.79 83.63 ± 6.36 93.69 ± 3.61 84.47 ± 5.63
XGBoost 82.99 ± 6.23 82.81 ± 7.04 83.00 ± 5.33 92.39 ± 4.58 82.74 ± 5.18
LR 82.80 ± 5.21 79.21 ± 12.17 80.65 ± 8.36 90.01± 4.06 81.55 ± 6.93
Performance of classification algorithms on the test dataset
SVM 93.75 85.71 89.55 93.89 90.14
Random Forest 88.78 79.54 83.84 91.60 84.94
Extra Trees 89.94 76.79 82.80 91.29 84.31
AdaBoost 77.42 68.57 72.72 84.84 74.65
XGBoost 83.87 74.28 78.78 88.17 80.28
LR 87.10 77.14 81.81 88.01 83.09