Table 4.
Performance of ML model II and ML model III with different classification algorithms for training and test datasets
Algorithms | Precision | Recall | F1-score | AUC-ROC | Accuracy |
---|---|---|---|---|---|
Performance of ML model II with different classification algorithms on the test dataset | |||||
SVM | 84.21 | 91.42 | 87.67 | 94.44 | 87.32 |
Random Forest | 82.08 | 78.57 | 80.28 | 91.31 | 80.98 |
Extra Trees | 82.21 | 80.18 | 81.14 | 91.85 | 81.67 |
AdaBoost | 81.84 | 77.35 | 79.51 | 80.34 | 80.38 |
XGBoost | 82.85 | 82.85 | 82.85 | 83.09 | 83.09 |
LR | 85.29 | 82.85 | 84.05 | 92.06 | 84.50 |
Performance of ML model III with different classification algorithms on the test dataset | |||||
SVM | 86.11 | 88.57 | 87.32 | 93.57 | 87.32 |
Random Forest | 84.37 | 82.01 | 83.16 | 91.37 | 83.62 |
Extra Trees | 83.29 | 84.09 | 83.67 | 91.21 | 83.83 |
AdaBoost | 80.14 | 80.13 | 79.77 | 79.90 | 79.90 |
XGBoost | 72.50 | 82.85 | 77.33 | 76.15 | 76.05 |
LR | 88.57 | 88.57 | 88.57 | 92.06 | 88.73 |