Skip to main content
. Author manuscript; available in PMC: 2024 Sep 1.
Published in final edited form as: Artif Intell Med. 2023 Jul 17;143:102624. doi: 10.1016/j.artmed.2023.102624

Table 4.

Performance of ML model II and ML model III with different classification algorithms for training and test datasets

Algorithms Precision Recall F1-score AUC-ROC Accuracy
Performance of ML model II with different classification algorithms on the test dataset
SVM 84.21 91.42 87.67 94.44 87.32
Random Forest 82.08 78.57 80.28 91.31 80.98
Extra Trees 82.21 80.18 81.14 91.85 81.67
AdaBoost 81.84 77.35 79.51 80.34 80.38
XGBoost 82.85 82.85 82.85 83.09 83.09
LR 85.29 82.85 84.05 92.06 84.50
Performance of ML model III with different classification algorithms on the test dataset
SVM 86.11 88.57 87.32 93.57 87.32
Random Forest 84.37 82.01 83.16 91.37 83.62
Extra Trees 83.29 84.09 83.67 91.21 83.83
AdaBoost 80.14 80.13 79.77 79.90 79.90
XGBoost 72.50 82.85 77.33 76.15 76.05
LR 88.57 88.57 88.57 92.06 88.73