Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Aug 15;79(Pt 9):804–807. doi: 10.1107/S2056989023006904

Synthesis, crystal structure and Hirshfeld surface analysis of a copper(II) complex involving 3-methyl­benzoate and 2,2′-bi­pyridine ligands

Adnan Qadir a,*
Editor: G Diaz de Delgadob
PMCID: PMC10483552  PMID: 37693670

A new copper(II) complex with 3-methyl­benzoate and 2,2′-bi­pyridine synthesized displays chains of hydrogen-bonded complex units along the b axis. Hirshfeld surface analysis indicates that H⋯H and H⋯C/C⋯H contacts are the most important inter­actions.

Keywords: crystal structure, coordination compound, Hirshfeld surface analysis, 3-methyl­benzoate

Abstract

3-Methyl­benzoic acid (3-mbH) and 2,2′-bi­pyridine (bipy) reacted with a cop­per(II) salt forming a new mixed ligand complex, aqua­(2,2′-bi­pyridine-κ2 N,N′)bis­(3-methyl­benzoato)-κ2 O,O′;κO-copper(II) 0.68-hydrate, [Cu(C8H7O2)2(C10H8N2)(H2O)]·0.68H2O or [Cu(3-mb)2(bipy)(H2O)]·0.68H2O. The coord­ination environment of CuII is a distorted octa­hedron. The metal atom is attached to two 3-mb moieties, which bind in monodentate and bidentate fashions. One of the 3-mb units is disordered. The coordination environment is completed by one bipy ligand and a water mol­ecule. A second water mol­ecule is outside the coordination sphere of the CuII atom and its occupancy refined to 0.68. The structure consists of chains along the b-axis direction formed by complex units joined via hydrogen bonds between the coordinated water mol­ecule and an O atom of a coordinated 3-mb unit. Hirshfeld surface analysis indicates that the most abundant contacts are H⋯H (56.8%), H⋯C/C⋯H (21.7%) and H⋯O/O⋯H (13.7%).

1. Chemical context

The coordination chemistry of mixed-ligand copper(II) complexes continues to be of inter­est. Copper is an important part of various metalloenzymes. It takes part in many metabolic processes such as iron metabolism, mitochondrial oxidative phospho­rylation and catecholamine production (Chen et al., 2020; De Freitas et al., 2003). Mixed-ligand copper(II) carboxyl­ates containing nitro­gen donor ligands have been reported to display a variety of pharmacological and superoxide dismutase activities. For example, the bis­(acetato)­bis­(imidazole)­copper(II) complex exhibits anti­tumor activity (Tamura et al., 1987) and copper(II) salicylate with imidazoles have dismutase activities (Abuhijleh, 2010). Incorporating nitro­gen donor ligands in metal complexes has resulted in enhancement of the biological activity of these complexes (Patel et al., 2012). It has been reported that the steric effect of a substituent on the phenyl group of carboxyl­ate ligands in metal complexes affects the coordination number of the metal, the geometry of the complex and the coordination mode of the ligand (Saini et al., 2015). In our previous contribution, the CuII complex with 3-mb and N,N,N,N-tetra­methylethyl­enedi­amine (tmeda), [Cu(3-mb)2(tmeda)(H2O)2], was prepared and characterized by single-crystal X-ray diffraction. The complex was octa­hedral with 3-mb acting as monodentate (Kansız et al., 2021). In view of the above information, a new CuII carboxyl­ate containing 2,2′-bi­pyridine was synthesized, characterized by X-ray crystallographic analysis and studied by Hirshfeld surface analysis. 1.

2. Structural commentary

Complex 1 (Fig. 1) crystallizes in the monoclinic system in the P21/c space group. The CuII atom has a distorted octa­hedral environment with the central copper atom coordinated by N2O4 donor sets. The Cu—N bond lengths range from 2.0071 (18) to 2.0131 (18) Å and the N1—Cu1—N2 angle is 80.58 (7)° (Table 1). The Cu1—Ocarboxyl­ate distances are 1.842 (17)–2.2988 (18) Å. The Cu—O and Cu—N values are very close to those reported for copper(II) complexes involving benzoate (BZA) as a ligand, for example [Cu(BZA)2(bipy)(H2O)] [Cu—O = 1.9951 (12)–1.9633 (12) Å and Cu—N = 2.0064 (14)–2.0111 (13) Å; Devereux et al., 2007]. This indicates that the presence of the methyl substituent has little or no effect on the Cu—O and Cu—N bond lengths. The 3-mb ligand defined by O3/O4/C9–C16 is disordered over two orientations related by an approximately 180° rotation.

Figure 1.

Figure 1

Mol­ecular structure of complex 1 with ellipsoids drawn at the 50% probability level. Only the major component of disorder is shown.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.85 1.93 2.643 (3) 140
O5—H5B⋯O4a i 0.85 2.09 2.694 (10) 128
C20—H20⋯O4a ii 0.93 2.40 3.324 (10) 171
C23—H23⋯O4a ii 0.93 2.51 3.405 (7) 163
C18—H18⋯O2iii 0.93 2.51 3.371 (4) 154
C24—H24⋯O6ii 0.93 2.36 3.200 (5) 151
C26—H26⋯O3a 0.93 2.48 2.984 (13) 115
C17—H17⋯O1 0.93 2.59 3.093 (3) 115
C7—H7⋯O6 0.93 2.72 3.405 (6) 131

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

3. Supra­molecular features

In the crystal, hydrogen bonding between H atoms of the coord­in­ated water mol­ecule and the O atoms of the coordinated 3-mb (O5—H5B⋯O4) leads to the formation of a linear chain in the b-axis direction (Fig. 2 and Table 1). The chains inter­digitate with other chains related by a screw-axis, connected via C—H⋯O inter­actions between O atoms of the 3-mb ligand and H atoms of the bipy ligand (Table 1), further consolidating the crystal. The occupancy of the solvent water (H6A—O6—H6B) refined to 0.68, which seems to be due to water escaping the crystal through the channels that run along the b-axis direction.

Figure 2.

Figure 2

Partial view of the packing arrangement in compound 1 showing O—H⋯O inter­actions along the b-axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016) for compounds containing only Cu, O, N, C, and H resulted in 634 compounds containing bipy and 15 compounds containing 3-mb. In both lists, a dimeric compound containing bipy and 3-mb was identified (refcode PIGZAH; Li et al., 2007). Other related compounds are AJEFEB (Wen, 2009), DUDYIN (He et al., 2019), FERCOV (Wang et al., 2005), GELXAX (Stephenson & Hardie, 2006), LEBOR (Tian et al., 2011), QETNEJ (Chen et al., 2006) and TOFZIZ (Gopalakrishnan et al., 2014).

5. Hirshfeld surface analysis

CrystalExplorer (Turner et al., 2017) was used for Hirshfeld surface analysis and to generate the fingerprint plots. The purpose of using Hirshfeld surfaces, mapped onto d norm, is to provide additional insight into inter­molecular inter­actions. Close contacts shorter than van der Waals radii are shown as red spots on the surface. The closest contacts are responsible for directional supra­molecular inter­actions. The blue areas in the surface map represent weak contacts that are longer than the sum of the van der Waals radii. The Hirshfeld surface mapped onto d norm, is presented in Fig. 3. It displays several red spots due to O—H⋯O and C—H⋯O contacts. The intense spot near the coordinated water mol­ecule in the complex is assigned to the O5—H5⋯O hydrogen bond, as confirmed by the X-ray analysis (Table 1). Fingerprint plots for the contacts are shown in Fig. 4. The contributions of the H⋯H (Fig. 4 b), H⋯C/C⋯H (Fig. 4 c) and H⋯O/O⋯H (Fig. 4 d) contacts are 56.8, 21.7 and 13.7%, respectively.

Figure 3.

Figure 3

Hirshfeld surface map for the title complex.

Figure 4.

Figure 4

Fingerprint plot of the title compound showing all inter­actions and delineated into the most important inter­molecular contacts.

6. Synthesis and crystallization

3-Methyl­benzoic acid (4 mmol, 0.54 g) and sodium hydroxide (4 mmol, 0.16 g) in water (20 ml) were added to a solution of Cu(NO3)2·3H2O (2 mmol, 0.48 g) in water (20 ml) under stirring. A solution of 2,2′-bi­pyridine (2 mmol, 0.3 g) in EtOH (25 ml) was added and the color changed from greenish blue to blue. The precipitate was filtered off, washed with water and dried. Blue single crystals of the title complex suitable for X-ray diffraction studies were obtained after evaporation of an ethanol solution after several days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. One of the 3-methyl­benzoates (O3/O4/C9–C16) is disordered over two positions related by a 180° rotation. The occupancies of the two components refined to 0.664 (4):0.336 (4). The occupancy of the water mol­ecule H6A–O6–H6B refined to 0.680 (10). The coordinates of the ordered water atom were refined with U iso(H) = 1.5U eq(O). All other H atoms were positioned geometrically and refined as riding with U iso(H) = 1.2–1.5U eq(parent atom).

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(C8HH7O2)2(C10H8N2)(H2O)]·0.68H2O
M r 520.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 16.754 (3), 7.0021 (12), 22.103 (4)
β (°) 106.522 (6)
V3) 2485.9 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 63716, 6171, 4874
R int 0.035
(sin θ/λ)max−1) 0.670
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.106, 1.09
No. of reflections 6171
No. of parameters 418
No. of restraints 347
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.40

Computer programs: APEX2 (Bruker, 2013), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023006904/dj2063sup1.cif

e-79-00804-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006904/dj2063Isup2.hkl

e-79-00804-Isup2.hkl (490.7KB, hkl)

CCDC reference: 2117143

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker APEXII CCD diffractometer.

supplementary crystallographic information

Crystal data

[Cu(C8HH7O2)2(C10H8N2)(H2O)]·0.68H2O F(000) = 1079
Mr = 520.26 Dx = 1.390 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.754 (3) Å Cell parameters from 9233 reflections
b = 7.0021 (12) Å θ = 2.5–26.6°
c = 22.103 (4) Å µ = 0.92 mm1
β = 106.522 (6)° T = 293 K
V = 2485.9 (8) Å3 Block, blue
Z = 4 0.20 × 0.15 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer Rint = 0.035
φ and ω scans θmax = 28.5°, θmin = 2.5°
63716 measured reflections h = −22→22
6171 independent reflections k = −9→9
4874 reflections with I > 2σ(I) l = −29→29

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.6967P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
6171 reflections Δρmax = 0.30 e Å3
418 parameters Δρmin = −0.40 e Å3
347 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.34763 (2) 0.84495 (4) 0.31767 (2) 0.03879 (9)
O1 0.32781 (10) 0.7602 (3) 0.39681 (8) 0.0519 (4)
O2 0.26638 (14) 1.0161 (2) 0.42229 (9) 0.0664 (5)
N1 0.47164 (11) 0.8619 (2) 0.35426 (8) 0.0391 (4)
N2 0.38047 (11) 0.8817 (2) 0.23762 (8) 0.0377 (4)
C1 0.27773 (13) 0.8419 (3) 0.42213 (10) 0.0392 (4)
C2 0.23017 (13) 0.7151 (3) 0.45422 (9) 0.0372 (4)
C3 0.18273 (14) 0.7973 (3) 0.48953 (10) 0.0422 (5)
H3 0.182368 0.929463 0.493519 0.051*
C4 0.13590 (17) 0.6878 (4) 0.51900 (12) 0.0563 (6)
C5 0.1379 (2) 0.4918 (5) 0.51221 (15) 0.0735 (9)
H5 0.107167 0.415128 0.531672 0.088*
C6 0.1844 (2) 0.4077 (4) 0.47736 (17) 0.0801 (10)
H6 0.184782 0.275525 0.473485 0.096*
C7 0.23037 (18) 0.5186 (4) 0.44812 (13) 0.0571 (6)
H7 0.261503 0.461430 0.424335 0.069*
C8 0.0844 (2) 0.7820 (6) 0.55660 (18) 0.0969 (12)
H8A 0.113429 0.775074 0.600751 0.145*
H8B 0.031860 0.717351 0.548780 0.145*
H8C 0.074998 0.913325 0.544171 0.145*
O3 0.2315 (6) 0.7725 (11) 0.2675 (5) 0.0456 (16) 0.664 (4)
O4 0.2993 (4) 0.4976 (13) 0.2761 (4) 0.0443 (13) 0.664 (4)
C9 0.2338 (3) 0.5930 (10) 0.2581 (4) 0.0401 (12) 0.664 (4)
C10 0.1531 (2) 0.4981 (6) 0.2230 (2) 0.0427 (9) 0.664 (4)
C11 0.0787 (3) 0.5949 (7) 0.21325 (19) 0.0493 (9) 0.664 (4)
H11 0.079230 0.717697 0.229388 0.059* 0.664 (4)
C12 0.0028 (3) 0.5143 (9) 0.1799 (2) 0.0644 (12) 0.664 (4)
C13 0.0051 (3) 0.3318 (9) 0.1573 (3) 0.0746 (14) 0.664 (4)
H13 −0.044531 0.273815 0.135003 0.090* 0.664 (4)
C14 0.0781 (3) 0.2330 (8) 0.1666 (2) 0.0792 (13) 0.664 (4)
H14 0.077331 0.110027 0.150537 0.095* 0.664 (4)
C15 0.1529 (3) 0.3148 (7) 0.1996 (2) 0.0616 (11) 0.664 (4)
H15 0.202420 0.247440 0.206067 0.074* 0.664 (4)
C16 −0.0769 (3) 0.6241 (10) 0.1687 (3) 0.099 (2) 0.664 (4)
H16A −0.100922 0.642619 0.124164 0.148* 0.664 (4)
H16B −0.065780 0.745972 0.189242 0.148* 0.664 (4)
H16C −0.115080 0.553947 0.185422 0.148* 0.664 (4)
O3' 0.2373 (12) 0.789 (2) 0.2796 (10) 0.040 (2) 0.336 (4)
O4' 0.2799 (8) 0.498 (3) 0.2621 (9) 0.047 (3) 0.336 (4)
C9' 0.2241 (6) 0.618 (2) 0.2594 (9) 0.042 (2) 0.336 (4)
C10' 0.1349 (5) 0.5677 (11) 0.2262 (4) 0.0430 (16) 0.336 (4)
C11' 0.1173 (5) 0.3862 (12) 0.2021 (4) 0.0552 (16) 0.336 (4)
H11' 0.160250 0.298071 0.207060 0.066* 0.336 (4)
C12' 0.0359 (6) 0.3330 (15) 0.1703 (6) 0.068 (2) 0.336 (4)
C13' −0.0260 (6) 0.4669 (14) 0.1651 (5) 0.067 (2) 0.336 (4)
H13' −0.080912 0.432829 0.145436 0.081* 0.336 (4)
C14' −0.0089 (5) 0.6484 (14) 0.1879 (4) 0.0641 (19) 0.336 (4)
H14' −0.051704 0.737327 0.182021 0.077* 0.336 (4)
C15' 0.0720 (4) 0.7003 (13) 0.2197 (4) 0.0503 (16) 0.336 (4)
H15' 0.083741 0.822434 0.236369 0.060* 0.336 (4)
C16' 0.0144 (7) 0.1356 (13) 0.1463 (5) 0.090 (3) 0.336 (4)
H16D −0.002135 0.136810 0.101007 0.135* 0.336 (4)
H16E −0.030539 0.088314 0.160979 0.135* 0.336 (4)
H16F 0.062117 0.054395 0.161428 0.135* 0.336 (4)
C17 0.51321 (16) 0.8587 (4) 0.41546 (12) 0.0524 (6)
H17 0.483401 0.844910 0.444839 0.063*
C18 0.59886 (18) 0.8753 (4) 0.43692 (14) 0.0647 (7)
H18 0.626326 0.873196 0.479876 0.078*
C19 0.64208 (17) 0.8947 (4) 0.39341 (15) 0.0650 (8)
H19 0.699777 0.905457 0.406664 0.078*
C20 0.60063 (14) 0.8983 (3) 0.33014 (13) 0.0507 (6)
H20 0.629658 0.911990 0.300250 0.061*
C21 0.51485 (13) 0.8811 (3) 0.31178 (11) 0.0369 (4)
C22 0.46312 (13) 0.8851 (3) 0.24534 (10) 0.0370 (4)
C23 0.49461 (16) 0.8923 (3) 0.19373 (12) 0.0492 (6)
H23 0.551776 0.893392 0.199385 0.059*
C24 0.4399 (2) 0.8979 (4) 0.13391 (13) 0.0593 (7)
H24 0.459856 0.901430 0.098753 0.071*
C25 0.35603 (19) 0.8982 (4) 0.12654 (12) 0.0591 (7)
H25 0.318396 0.904644 0.086519 0.071*
C26 0.32842 (16) 0.8888 (3) 0.17930 (11) 0.0501 (6)
H26 0.271393 0.887348 0.174260 0.060*
O5 0.33408 (13) 1.1632 (2) 0.33836 (11) 0.0676 (5)
H5A 0.311059 1.174260 0.367935 0.101*
H5B 0.299885 1.215072 0.306576 0.101*
O6 0.4289 (3) 0.4219 (8) 0.4465 (3) 0.119 (2) 0.680 (10)
H6A 0.441 (6) 0.309 (10) 0.446 (4) 0.178* 0.680 (10)
H6B 0.435 (6) 0.490 (13) 0.478 (4) 0.178* 0.680 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03652 (14) 0.03638 (15) 0.04663 (16) 0.00129 (11) 0.01693 (11) 0.00307 (11)
O1 0.0532 (9) 0.0548 (10) 0.0559 (10) 0.0099 (8) 0.0286 (8) 0.0131 (8)
O2 0.1003 (15) 0.0395 (10) 0.0768 (13) 0.0003 (9) 0.0534 (12) 0.0043 (9)
N1 0.0404 (9) 0.0344 (9) 0.0418 (10) −0.0003 (7) 0.0107 (8) −0.0015 (7)
N2 0.0392 (9) 0.0334 (9) 0.0409 (9) −0.0016 (7) 0.0118 (7) 0.0026 (7)
C1 0.0423 (11) 0.0412 (12) 0.0339 (10) 0.0002 (9) 0.0105 (8) 0.0004 (9)
C2 0.0405 (11) 0.0386 (11) 0.0321 (10) −0.0017 (9) 0.0095 (8) −0.0013 (8)
C3 0.0492 (12) 0.0418 (12) 0.0359 (11) 0.0028 (10) 0.0126 (9) −0.0023 (9)
C4 0.0593 (15) 0.0674 (18) 0.0479 (14) −0.0020 (13) 0.0244 (12) −0.0018 (12)
C5 0.088 (2) 0.0661 (19) 0.080 (2) −0.0222 (16) 0.0450 (17) 0.0024 (16)
C6 0.120 (3) 0.0390 (14) 0.097 (2) −0.0164 (16) 0.056 (2) −0.0061 (15)
C7 0.0755 (17) 0.0394 (13) 0.0652 (16) −0.0015 (12) 0.0343 (14) −0.0083 (12)
C8 0.104 (3) 0.112 (3) 0.102 (3) 0.003 (2) 0.073 (2) −0.006 (2)
O3 0.0315 (18) 0.047 (2) 0.055 (4) 0.0020 (17) 0.007 (2) 0.005 (2)
O4 0.035 (3) 0.0400 (18) 0.057 (4) 0.002 (2) 0.011 (2) 0.006 (2)
C9 0.038 (2) 0.044 (2) 0.044 (2) −0.006 (2) 0.0222 (19) 0.007 (2)
C10 0.0408 (19) 0.051 (2) 0.0411 (17) −0.0051 (17) 0.0202 (15) 0.0005 (18)
C11 0.0437 (19) 0.063 (2) 0.0424 (18) −0.005 (2) 0.0149 (15) −0.0017 (19)
C12 0.049 (2) 0.092 (3) 0.049 (2) −0.014 (2) 0.0094 (19) −0.002 (2)
C13 0.066 (3) 0.096 (3) 0.058 (3) −0.029 (3) 0.011 (2) −0.010 (2)
C14 0.088 (3) 0.077 (3) 0.072 (3) −0.023 (3) 0.023 (2) −0.022 (2)
C15 0.064 (2) 0.059 (2) 0.065 (2) −0.010 (2) 0.024 (2) −0.0119 (19)
C16 0.041 (2) 0.159 (6) 0.085 (3) 0.001 (3) 0.000 (2) −0.008 (4)
O3' 0.035 (4) 0.046 (4) 0.041 (5) −0.001 (3) 0.015 (3) −0.006 (3)
O4' 0.032 (5) 0.050 (4) 0.054 (7) 0.001 (4) 0.005 (4) 0.010 (4)
C9' 0.036 (3) 0.048 (4) 0.044 (3) 0.000 (3) 0.018 (3) 0.005 (3)
C10' 0.038 (3) 0.053 (4) 0.043 (3) −0.007 (3) 0.020 (3) 0.000 (3)
C11' 0.051 (3) 0.065 (3) 0.053 (3) −0.009 (3) 0.021 (3) −0.003 (3)
C12' 0.058 (4) 0.084 (4) 0.060 (4) −0.019 (4) 0.016 (3) −0.005 (3)
C13' 0.054 (4) 0.089 (4) 0.055 (4) −0.024 (4) 0.010 (3) −0.002 (4)
C14' 0.046 (3) 0.087 (4) 0.058 (4) −0.002 (4) 0.012 (3) 0.000 (4)
C15' 0.038 (3) 0.066 (4) 0.048 (3) −0.002 (3) 0.014 (2) −0.003 (3)
C16' 0.088 (6) 0.093 (7) 0.084 (6) −0.028 (5) 0.017 (5) −0.025 (5)
C17 0.0596 (15) 0.0513 (14) 0.0447 (13) −0.0019 (12) 0.0123 (11) −0.0024 (11)
C18 0.0619 (16) 0.0594 (17) 0.0576 (16) −0.0058 (13) −0.0075 (13) −0.0029 (13)
C19 0.0416 (13) 0.0574 (16) 0.085 (2) −0.0084 (12) 0.0003 (13) 0.0048 (15)
C20 0.0394 (12) 0.0397 (12) 0.0741 (17) −0.0039 (9) 0.0179 (12) 0.0059 (11)
C21 0.0387 (10) 0.0227 (9) 0.0512 (12) −0.0009 (8) 0.0160 (9) 0.0010 (8)
C22 0.0446 (11) 0.0198 (9) 0.0494 (12) −0.0021 (8) 0.0177 (9) 0.0015 (8)
C23 0.0557 (14) 0.0368 (12) 0.0641 (16) −0.0040 (10) 0.0312 (12) −0.0008 (11)
C24 0.094 (2) 0.0431 (13) 0.0502 (15) −0.0102 (13) 0.0362 (15) −0.0023 (11)
C25 0.0802 (19) 0.0492 (14) 0.0423 (13) −0.0130 (13) 0.0084 (13) 0.0026 (11)
C26 0.0501 (13) 0.0444 (13) 0.0507 (14) −0.0057 (10) 0.0061 (11) 0.0054 (10)
O5 0.0899 (14) 0.0395 (9) 0.0894 (14) 0.0115 (9) 0.0516 (12) 0.0108 (9)
O6 0.103 (3) 0.113 (4) 0.157 (5) 0.023 (3) 0.064 (3) 0.043 (4)

Geometric parameters (Å, º)

Cu1—O3' 1.842 (17) C16—H16A 0.9600
Cu1—O1 1.9628 (16) C16—H16B 0.9600
Cu1—N1 2.0072 (18) C16—H16C 0.9600
Cu1—O3 2.011 (8) O3'—C9' 1.275 (8)
Cu1—N2 2.0131 (18) O4'—C9' 1.248 (8)
Cu1—O5 2.2988 (18) C9'—C10' 1.509 (7)
O1—C1 1.269 (3) C10'—C11' 1.377 (8)
O2—C1 1.235 (3) C10'—C15' 1.381 (8)
N1—C17 1.334 (3) C11'—C12' 1.396 (9)
N1—C21 1.346 (3) C11'—H11' 0.9300
N2—C26 1.336 (3) C12'—C13' 1.378 (9)
N2—C22 1.346 (3) C12'—C16' 1.488 (10)
C1—C2 1.499 (3) C13'—C14' 1.367 (10)
C2—C7 1.382 (3) C13'—H13' 0.9300
C2—C3 1.387 (3) C14'—C15' 1.387 (8)
C3—C4 1.385 (3) C14'—H14' 0.9300
C3—H3 0.9300 C15'—H15' 0.9300
C4—C5 1.382 (4) C16'—H16D 0.9600
C4—C8 1.510 (4) C16'—H16E 0.9600
C5—C6 1.373 (4) C16'—H16F 0.9600
C5—H5 0.9300 C17—C18 1.382 (4)
C6—C7 1.377 (4) C17—H17 0.9300
C6—H6 0.9300 C18—C19 1.365 (4)
C7—H7 0.9300 C18—H18 0.9300
C8—H8A 0.9600 C19—C20 1.373 (4)
C8—H8B 0.9600 C19—H19 0.9300
C8—H8C 0.9600 C20—C21 1.383 (3)
O3—C9 1.277 (5) C20—H20 0.9300
O4—C9 1.250 (5) C21—C22 1.478 (3)
C9—C10 1.508 (5) C22—C23 1.387 (3)
C10—C11 1.380 (5) C23—C24 1.379 (4)
C10—C15 1.384 (5) C23—H23 0.9300
C11—C12 1.395 (6) C24—C25 1.367 (4)
C11—H11 0.9300 C24—H24 0.9300
C12—C13 1.377 (7) C25—C26 1.373 (4)
C12—C16 1.499 (7) C25—H25 0.9300
C13—C14 1.369 (7) C26—H26 0.9300
C13—H13 0.9300 O5—H5A 0.8517
C14—C15 1.383 (6) O5—H5B 0.8515
C14—H14 0.9300 O6—H6A 0.82 (7)
C15—H15 0.9300 O6—H6B 0.82 (7)
O3'—Cu1—O1 86.6 (7) C10—C15—H15 120.4
O3'—Cu1—N1 170.4 (5) C12—C16—H16A 109.5
O1—Cu1—N1 94.41 (7) C12—C16—H16B 109.5
O1—Cu1—O3 91.9 (4) H16A—C16—H16B 109.5
N1—Cu1—O3 164.9 (3) C12—C16—H16C 109.5
O3'—Cu1—N2 96.6 (7) H16A—C16—H16C 109.5
O1—Cu1—N2 168.42 (7) H16B—C16—H16C 109.5
N1—Cu1—N2 80.58 (7) C9'—O3'—Cu1 114.1 (12)
O3—Cu1—N2 90.7 (3) O4'—C9'—O3' 124.5 (10)
O3'—Cu1—O5 98.8 (5) O4'—C9'—C10' 119.3 (9)
O1—Cu1—O5 93.69 (7) O3'—C9'—C10' 116.1 (9)
N1—Cu1—O5 90.69 (7) C11'—C10'—C15' 120.5 (7)
O3—Cu1—O5 102.7 (2) C11'—C10'—C9' 118.6 (7)
N2—Cu1—O5 96.79 (7) C15'—C10'—C9' 120.9 (7)
C1—O1—Cu1 123.87 (15) C10'—C11'—C12' 120.8 (8)
C17—N1—C21 118.7 (2) C10'—C11'—H11' 119.6
C17—N1—Cu1 126.13 (17) C12'—C11'—H11' 119.6
C21—N1—Cu1 115.18 (14) C13'—C12'—C11' 117.7 (8)
C26—N2—C22 119.2 (2) C13'—C12'—C16' 120.1 (8)
C26—N2—Cu1 125.89 (16) C11'—C12'—C16' 122.0 (9)
C22—N2—Cu1 114.78 (14) C14'—C13'—C12' 121.9 (8)
O2—C1—O1 124.6 (2) C14'—C13'—H13' 119.1
O2—C1—C2 118.7 (2) C12'—C13'—H13' 119.1
O1—C1—C2 116.66 (19) C13'—C14'—C15' 120.1 (8)
C7—C2—C3 119.0 (2) C13'—C14'—H14' 119.9
C7—C2—C1 121.8 (2) C15'—C14'—H14' 119.9
C3—C2—C1 119.2 (2) C10'—C15'—C14' 118.9 (8)
C4—C3—C2 121.8 (2) C10'—C15'—H15' 120.5
C4—C3—H3 119.1 C14'—C15'—H15' 120.5
C2—C3—H3 119.1 C12'—C16'—H16D 109.5
C5—C4—C3 117.6 (2) C12'—C16'—H16E 109.5
C5—C4—C8 121.9 (3) H16D—C16'—H16E 109.5
C3—C4—C8 120.4 (3) C12'—C16'—H16F 109.5
C6—C5—C4 121.5 (3) H16D—C16'—H16F 109.5
C6—C5—H5 119.3 H16E—C16'—H16F 109.5
C4—C5—H5 119.3 N1—C17—C18 122.6 (3)
C5—C6—C7 120.2 (3) N1—C17—H17 118.7
C5—C6—H6 119.9 C18—C17—H17 118.7
C7—C6—H6 119.9 C19—C18—C17 118.3 (3)
C6—C7—C2 119.9 (2) C19—C18—H18 120.9
C6—C7—H7 120.1 C17—C18—H18 120.9
C2—C7—H7 120.1 C18—C19—C20 120.2 (2)
C4—C8—H8A 109.5 C18—C19—H19 119.9
C4—C8—H8B 109.5 C20—C19—H19 119.9
H8A—C8—H8B 109.5 C19—C20—C21 118.7 (2)
C4—C8—H8C 109.5 C19—C20—H20 120.7
H8A—C8—H8C 109.5 C21—C20—H20 120.7
H8B—C8—H8C 109.5 N1—C21—C20 121.6 (2)
C9—O3—Cu1 105.6 (6) N1—C21—C22 114.54 (18)
O4—C9—O3 122.6 (5) C20—C21—C22 123.8 (2)
O4—C9—C10 120.4 (5) N2—C22—C23 121.0 (2)
O3—C9—C10 117.0 (5) N2—C22—C21 114.65 (18)
C11—C10—C15 119.4 (4) C23—C22—C21 124.4 (2)
C11—C10—C9 120.1 (4) C24—C23—C22 119.0 (2)
C15—C10—C9 120.5 (4) C24—C23—H23 120.5
C10—C11—C12 122.1 (5) C22—C23—H23 120.5
C10—C11—H11 119.0 C25—C24—C23 119.7 (2)
C12—C11—H11 119.0 C25—C24—H24 120.2
C13—C12—C11 116.9 (5) C23—C24—H24 120.2
C13—C12—C16 122.1 (5) C24—C25—C26 118.8 (2)
C11—C12—C16 121.0 (5) C24—C25—H25 120.6
C14—C13—C12 122.0 (5) C26—C25—H25 120.6
C14—C13—H13 119.0 N2—C26—C25 122.4 (2)
C12—C13—H13 119.0 N2—C26—H26 118.8
C13—C14—C15 120.5 (5) C25—C26—H26 118.8
C13—C14—H14 119.8 Cu1—O5—H5A 109.4
C15—C14—H14 119.8 Cu1—O5—H5B 109.3
C14—C15—C10 119.2 (5) H5A—O5—H5B 104.4
C14—C15—H15 120.4 H6A—O6—H6B 126 (9)
Cu1—O1—C1—O2 −36.8 (3) O4'—C9'—C10'—C15' −176.9 (19)
Cu1—O1—C1—C2 143.68 (16) O3'—C9'—C10'—C15' −1 (2)
O2—C1—C2—C7 170.4 (2) C15'—C10'—C11'—C12' 0.4 (13)
O1—C1—C2—C7 −10.0 (3) C9'—C10'—C11'—C12' −179.2 (10)
O2—C1—C2—C3 −7.7 (3) C10'—C11'—C12'—C13' −1.1 (17)
O1—C1—C2—C3 171.8 (2) C10'—C11'—C12'—C16' −177.2 (10)
C7—C2—C3—C4 0.3 (4) C11'—C12'—C13'—C14' 2.3 (19)
C1—C2—C3—C4 178.4 (2) C16'—C12'—C13'—C14' 178.5 (11)
C2—C3—C4—C5 0.1 (4) C12'—C13'—C14'—C15' −2.7 (17)
C2—C3—C4—C8 −179.4 (3) C11'—C10'—C15'—C14' −0.7 (13)
C3—C4—C5—C6 −0.2 (5) C9'—C10'—C15'—C14' 178.9 (9)
C8—C4—C5—C6 179.3 (3) C13'—C14'—C15'—C10' 1.9 (14)
C4—C5—C6—C7 0.0 (6) C21—N1—C17—C18 0.3 (3)
C5—C6—C7—C2 0.4 (5) Cu1—N1—C17—C18 −178.59 (19)
C3—C2—C7—C6 −0.5 (4) N1—C17—C18—C19 −0.3 (4)
C1—C2—C7—C6 −178.6 (3) C17—C18—C19—C20 0.3 (4)
Cu1—O3—C9—O4 −2.8 (14) C18—C19—C20—C21 −0.3 (4)
Cu1—O3—C9—C10 177.9 (6) C17—N1—C21—C20 −0.3 (3)
O4—C9—C10—C11 168.3 (9) Cu1—N1—C21—C20 178.71 (16)
O3—C9—C10—C11 −12.4 (11) C17—N1—C21—C22 −179.34 (19)
O4—C9—C10—C15 −12.5 (11) Cu1—N1—C21—C22 −0.3 (2)
O3—C9—C10—C15 166.7 (9) C19—C20—C21—N1 0.3 (3)
C15—C10—C11—C12 −0.5 (7) C19—C20—C21—C22 179.3 (2)
C9—C10—C11—C12 178.6 (5) C26—N2—C22—C23 −1.2 (3)
C10—C11—C12—C13 0.4 (8) Cu1—N2—C22—C23 174.20 (16)
C10—C11—C12—C16 −178.6 (5) C26—N2—C22—C21 178.66 (18)
C11—C12—C13—C14 −0.2 (9) Cu1—N2—C22—C21 −5.9 (2)
C16—C12—C13—C14 178.7 (6) N1—C21—C22—N2 4.1 (2)
C12—C13—C14—C15 0.2 (10) C20—C21—C22—N2 −174.88 (19)
C13—C14—C15—C10 −0.2 (8) N1—C21—C22—C23 −175.98 (19)
C11—C10—C15—C14 0.4 (7) C20—C21—C22—C23 5.0 (3)
C9—C10—C15—C14 −178.7 (5) N2—C22—C23—C24 0.6 (3)
O1—Cu1—O3'—C9' −89.7 (18) C21—C22—C23—C24 −179.2 (2)
N2—Cu1—O3'—C9' 79.1 (18) C22—C23—C24—C25 0.7 (4)
O5—Cu1—O3'—C9' 177.1 (17) C23—C24—C25—C26 −1.4 (4)
Cu1—O3'—C9'—O4' −3 (3) C22—N2—C26—C25 0.5 (3)
Cu1—O3'—C9'—C10' −178.4 (11) Cu1—N2—C26—C25 −174.38 (19)
O4'—C9'—C10'—C11' 3 (2) C24—C25—C26—N2 0.8 (4)
O3'—C9'—C10'—C11' 178.4 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O2 0.85 1.93 2.643 (3) 140
O5—H5B···O4ai 0.85 2.09 2.694 (10) 128
C20—H20···O4aii 0.93 2.40 3.324 (10) 171
C23—H23···O4aii 0.93 2.51 3.405 (7) 163
C18—H18···O2iii 0.93 2.51 3.371 (4) 154
C24—H24···O6ii 0.93 2.36 3.200 (5) 151
C26—H26···O3a 0.93 2.48 2.984 (13) 115
C17—H17···O1 0.93 2.59 3.093 (3) 115
C7—H7···O6 0.93 2.72 3.405 (6) 131

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1.

Funding Statement

Funding for this research was provided by: Salahaddin University-Erbil.

References

  1. Abuhijleh, A. L. (2010). J. Mol. Struct. 980, 201–207.
  2. Bruker (2013). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, J., Jiang, Y., Shi, H., Peng, Y., Fan, X. & Li, C. (2020). Eur. J. Physiol. 472, 1415–1429. [DOI] [PubMed]
  4. Chen, P.-K., Che, Y.-X. & Zheng, J. M. (2006). Chin. J. Struct. Chem. (Jiegou Huaxue) 25, 1427-1430.
  5. De Freitas, J., Wintz, H., Hyoun Kim, J., Poynton, H., Fox, T. & Vulpe, C. (2003). BioMetals, 16, 185–197. [DOI] [PubMed]
  6. Devereux, M., O’Shea, D., O’Connor, M., Grehan, H., Connor, G., McCann, M., Rosair, G., Lyng, F., Kellett, A., Walsh, M., Egan, D. & Thati, B. (2007). Polyhedron, 26, 4073–4084.
  7. Gopalakrishnan, M., Senthilkumar, K., Rao, P. R., Siva, R. & Palanisami, N. (2014). Inorg. Chem. Commun. 46, 54–59.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. He, X., Chen, F., Zhang, D., Li, Y., Yang, H.-L. & Zhang, X.-Q. (2019). Z. Anorg. Allg. Chem. 645, 1341–1348.
  10. Kansız, S., Qadir, M. Q., Dege, N. & Faizi, S. H. (2021). J. Mol. Struct. 1230, 129916–129916.
  11. Li, W., Li, C.-H., Yang, Y.-Q. & Kuang, Y.-F. (2007). Wuji Huaxue Xuebao, 23, 1264.
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Patel, M. N., Dosi, P. A. & Bhatt, B. S. (2012). J. Coord. Chem. 65, 3833–3844.
  14. Saini, A., Sharma, R. P., Kumar, S., Venugopalan, P., Gubanov, A. I. & Smolentsev, A. I. (2015). Polyhedron, 100, 155–163.
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Stephenson, M. D. & Hardie, M. J. (2006). Dalton Trans. pp. 3407–3417. [DOI] [PubMed]
  18. Tamura, H., Imai, H., Kuwahara, J. & Sugiura, Y. (1987). J. Am. Chem. Soc. 109, 6870–6871.
  19. Tian, D., Zhou, Y., Guan, L. & Zhang, H. (2011). J. Coord. Chem. 64, 565–573.
  20. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer17. The University of Western Australia.
  21. Wang, P., Moorefield, C. N., Panzer, M. & Newkome, G. R. (2005). Chem. Commun. pp. 465–467. [DOI] [PubMed]
  22. Wen, G.-L. (2009). Z. Krist. New Cryst. Struct. 224, 495–497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023006904/dj2063sup1.cif

e-79-00804-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006904/dj2063Isup2.hkl

e-79-00804-Isup2.hkl (490.7KB, hkl)

CCDC reference: 2117143

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES