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Abstract

Screening new compounds for potential bioactivities against cellular targets is vital for drug
discovery and chemical safety. Transcriptomics offers an efficient approach for assessing

global gene expression changes but interpreting chemical mechanisms from these data is often
challenging. Connectivity mapping is a potential data-driven avenue for linking chemicals to
mechanisms based on the observation that many biological processes are associated with unique
gene expression signatures (gene signatures). However, mining the effects of a chemical on gene
signatures for biological mechanisms is challenging because transcriptomic data contain thousands
of noisy genes. New connectivity mapping approaches seeking to distinguish signal from noise
continue to be developed, spurred by the promise of discovering chemical mechanisms, new drugs,
and disease targets from burgeoning transcriptomic data. Here, we analyze these approaches in
terms of diverse transcriptomic technologies, public databases, gene signatures, pattern-matching
algorithms, and statistical evaluation criteria. To navigate the complexity of connectivity mapping,
we propose a harmonized scheme to coherently organize and compare published workflows. We
first standardize concepts underlying transcriptomic profiles and gene signatures based on various
transcriptomic technologies such as microarrays, RNA-Seq, and L1000 and discuss the widely
used data sources such as Gene Expression Omnibus (GEO), ArrayExpress, and MSigDB. Next,
we generalize connectivity mapping as a pattern-matching task for finding similarity between

a query (e.g., transcriptomic profile for new chemical) and a reference (e.g., gene signature

of known target). Published pattern-matching approaches fall into two main categories: vector-
based use metrics like correlation, Jaccard index, etc., and aggregation-based use parametric
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and non-parametric statistics (e.g., gene set enrichment analysis). The statistical methods for
evaluating the performance of different approaches are described, along with comparisons reported
in the literature on benchmark transcriptomic data sets. Lastly, we review connectivity mapping
applications in toxicology, and offer guidance on evaluating chemical-induced toxicity with
concentration-response transcriptomic data. In addition to serving as a high-level guide and
tutorial for understanding and implementing connectivity mapping workflows, we hope this
review will stimulate new algorithms for evaluating chemical safety and drug discovery using

transcriptomic data.
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Introduction

Drug discovery and chemical safety require effective tools for screening new compounds
for potential bioactivities against cellular targets. Transcriptomics is one of the widely used
techniques for assessing the biological effects of chemicals through their impact on global
gene expression.! Because chemicals induce gene expression changes by interacting directly
via receptor binding? or indirectly by disrupting cellular homeostasis, inferring their targets
from transcriptomic data is challenging. Connectivity mapping addresses this issue by
measuring the similarity between transcriptomic profiles and gene signatures related to
cellular targets using the “universal language” of genes.*® It assumes that transcriptomic
profiles fingerprint biological samples, and similarity between profiles implies a common
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mechanism. Transcriptomics evolved rapidly in the last two decades after sequencing

the human genome.® Beginning with cDNA spotted arrays,’ followed by high-density
oligonucleotide arrays,8 and most recently RNA sequencing technology,? transcriptomics
has become more reproducible, reliable, and cost-effective.10 As a result, millions of
transcriptomic profiles are now available in public domain repositories!112 for thousands of
conditions.*13 Innovative tools are needed to uncover new relationships between chemicals,
pathways, and diseases using this wealth of transcriptomic data. Connectivity mapping® is an
example of such a tool that can facilitate drug discovery,}4 help repurpose existing drugs,1®
and produce safer chemicals.16

Connectivity mapping with transcriptomic data is one of many techniques in a rich
landscape of computational methods for inferring the putative interactions between
chemicals and biological targets or pathways. This landscape can be broadly divided

into approaches based on binding, similarity, and machine learning (ML). Binding-based
methods attempt to model physico-chemical interactions between a chemical and a protein
target with three-dimensional structure data using molecular dynamics!”:18 or, more
recently, using ML.19 There have been impressive advances predicting new ligands for
specific protein targets,20 and with predicted three-dimensional structures for all known
proteins,2! virtually screening all chemicals against thousands of protein targets could be
within reach.22

Connectivity mapping is conceptually related to other similarity-based approaches, which
attempt to infer the properties of a new chemical using pair-wise similarity with chemicals
of known properties, including physico-chemical properties or biological activities. If

two chemicals have significant structural similarities, then similarity-based approaches
assume they also have similar properties. Similarity-based approaches have two essential
ingredients: a vector of attributes and a measure of similarity based on the attributes.
Similarity-based pattern-matching techniques are also considered instance-based learning
methods?3 in ML, which includes approaches like k-nearest neighbor (KNN) classification.
Chemical similarity-based approaches use molecular structure descriptors (such as extended
connectivity fingerprints24) to represent chemicals and measure similarity using set
operations (for a review of similarity measures, see Bero et a/2%). For example, a query
chemical can be searched against a database to find other structurally similar chemicals
from which the unknown biological role can be inferred. Chemical structure-based similarity
is widely used to infer molecular targets.26 One of the problems with using chemical
similarity-based techniques is that minor alterations in structure can lead to drastic changes
in their affinity for the same target, which are known as “activity cliffs” in structure-activity
relationship (SAR) research.2” Another issue is that new structural categories of chemicals
can be discovered or synthesized that have no existing analogues. If they bear insufficient
resemblance to known chemicals, it is not possible to infer their properties based on
structural similarity alone. Despite these limitations, structure-based automated prediction
approaches?8 are routinely used to fill data gaps for untested chemicals based on the known
properties of analogues in the same local domains. More recently, structural and bioactivity
similarity between chemicals has been used to infer the toxicity of untested chemicals.29-32
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Finding pair-wise similarities using biological and chemical descriptors is a practical
strategy for inferring the properties of untested chemicals; however, if hundreds of chemicals
are associated with different classes of biological activities (e.g., protein target, pathway
activation, toxicity, etc.), then ML can be more effective. ML algorithms systematically
mine patterns in data (i.e., vector representations of data derived from biological and
chemical descriptors) to build accurate predictive models of various biological activities.33
For example, ML algorithms mine chemical structure representations to build models,
referred to as quantitative structure-activity relations (QSARs).34 QSAR models have been
used to classify potential nuclear receptor activators,3%36 cellular stress responses,3’+38 and
toxicities.3%40 Similarly, ML algorithms mine transcriptomic data on chemicals (derived
from different cellular contexts) to build models of biological mechanisms,*1~44 and
toxicities.4>46 Models derived by ML can predict the bioactivity or toxicity of new or
untested chemicals using vector representations of data (i.e. attribute-value vectors that are
used to train the model). Different ML methods have varying requirements for training data
to produce reliable predictive models. Whereas similarity-based approaches such as KNN
may only require a few examples because of their simplicity, more complex ML algorithms
need varying amounts of training data to tune model parameters reliably. Furthermore, for
in vivotoxicity prediction, it is also essential to consider the chemical dose, duration, and
route of exposure. A systematic comparison of similarity-based and other ML algorithms is
beyond the scope of this review.

Connectivity mapping may be considered an automated biological read-across*7:48
technique to infer properties of untested substances using transcriptomic profiles in place
of chemical structure representations. Gene-based descriptors in transcriptomic profiles
measure the expression of specific genes in the genome, just like structure descriptors
capture the presence of substructural moieties in chemicals. Transcriptomic profiles,
however, can capture the biological response to chemical treatments, genetic perturbations,
or pathological conditions using continuous expression levels of genes in ways that chemical
structure descriptors cannot. The ability of transcriptomics to capture a diverse array of
physiological states also makes it a powerful tool for finding similarity-based connections.
This review is a guide for navigating connectivity mapping in terms of the diverse array of
technologies to generate transcriptomic profiles, define biological states using gene-based
descriptors, and organize the plethora of algorithms to measure transcriptomic similarity.

Historical Background

Connectivity mapping originates from functional discovery studies,*® which aimed to
interpret the molecular phenotypes of biological samples using transcriptomics.>%:51 A
pivotal study by Hughes et a/. produced one of the earliest and largest compendia of
transcriptomic profiles for 300 genetic and chemical perturbations in yeast.52 The authors
used similarity between transcriptomic profiles to cluster known mutants, uncharacterized
mutants, and pharmacologic agents. For example, deleting YER044c, an uncharacterized
yeast open reading frame (ORF), produced transcriptional profiles similar to the sterol
isomerase (ERG2) deletion mutant. Further experiments determined that the YER044c ORF
encoded the endoplasmic reticulum protein (ERG28). Because ERG2 and ERG28 are both
involved in ergosterol biosynthesis, their deletion mutants produced similar transcriptomic
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profiles. Hughes et al. also showed transcriptomic responses to the drug fenpropimorph
were similar to the responses due to ERG2 deletion mutants. This is not surprising

as fenpropimorph is a fungicide that disrupts eukaryotic sterol biosynthesis pathways.
Surprisingly, fenpropimorph was also a potent mammalian antagonist of sigma-1 receptor
(SIGMARL1), which is involved in neuromodulatory pathways involved in pain. SIGMAR1
antagonists are being explored as a novel class of analgesic agents for treating pain.>3
There is growing evidence that ERG2 disruptors in yeast are SIGMAR1 antagonists,>* and
such pharmacological agents can be identified by connectivity mapping. The ability to link
chemicals to mechanisms within and across species showed the value of transcriptomics
as a “universal phenotype” for fingerprinting global biological states and of transcriptomic
similarity to uncover novel relationships between chemicals and their targets.

Before connectivity mapping approaches, transcriptomics mainly identified differentially
expressed genes between cases and controls using p-value and fold-change thresholds.
Lists of differentially expressed genes helped identify statistically over-represented pathways
(e.g., using Fisher’s Exact Test>®) and provided insight into putative biological mechanisms
(see Khatri and Draghici®®, and Rivals ef a/°")). However, because gene lists are sensitive
to the choice of differential expression thresholds, using varying statistical cut-offs can
produce inconsistent biological interpretations. Mootha et al. showed over-representation
analysis of gene lists ignored the subtle yet coordinated regulation of gene sets relevant to
a pathway. They found a gene set for the oxidative phosphorylation pathway “enriched”

in diabetic versus healthy muscle tissues even though individual genes in the set were

not significantly differentially expressed.?8:>% Mootha et a/°® and Subramanian et a/.>°
called this approach gene set enrichment analysis (GSEA). Other gene set analysis

(GSA\) approaches subsequently used for pathway, and function enrichment®%-62 have been
reviewed extensively elsewhere.%6:57

The connectivity map (CMap) project, which gave rise to the eponymous “connectivity
mapping” approach, was the first publicly available large-scale compendium of
transcriptomic profiles generated by treating human cells with a library of small molecules.®
Connectivity mapping used this compendium of 564 unique transcriptomic profiles for 164
chemicals (Build 01 of the CMap database, which we refer to as CMap v1). Connectivity, or
similarity, was measured using a modified version of GSEA for analyzing “gene signatures”
derived from highly up- and down-regulated genes in the transcriptomic profiles (see Figure
1). For example, Lamb er a/® searched a signature of histone deacetylase (HDAC) inhibitors
against the CMap v1 reference database. The HDAC inhibitor signature was derived from an
independent study of HDAC inhibitors in bladder and breast cancer cells,%3 which comprised
eight up-regulated and five down-regulated genes (illustrated in Figure 1(a)). Searching

the entire CMap v1 database (illustrated in Figure 1(e)) with this HDAC signature using
GSEA (illustrated in Figure 1(c)), identified the most robust connections with vorinostat and
trichostatin A (an example of such a match is shown in Figure (1(f)), both HDAC inhibitors.
The ability of GSEA to link signatures of HDAC inhibitors from disparate experiments
provided compelling evidence for the utility of connectivity mapping approaches.

In the second example, Lopez et al. searched a gene signature of diet-induced obesity in
rats.54 Using GSEA, they found a strong match between this signature and transcriptomic
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profiles for troglitazone, rosiglitazone, and indomethacin, all peroxisome proliferator-
activated receptor gamma (PPARG) agonists. However, the directions of gene expression

in the diet-induced obesity signature (i.e., up- and down-regulated genes) were found to be
opposite to the directions of the genes in the profile for PPARG agonists. Such matches are
referred to as “negative connections” as they have negative GSEA scores (see Figure 1(i)

for a visual example of a negative connection). Interestingly, PPARG agonists are prescribed
as hypolipidemic agents for the treatment of diabetes but can produce weight gain and liver
injury as unwanted side effects. Thus, connectivity mapping revealed that the biological
state of diet-induced obesity is “negatively connected” with PPARG-mediated hypolipidemic
activity, notwithstanding differences in cells, treatment conditions, and gene expression
assaying technologies. Finding negative connections between disease gene signatures and
transcriptomic profiles of approved drugs forms the basis of some drug-repurposing
approaches.1® These findings further demonstrated the utility of transcriptomic connectivity
mapping for linking disease phenotypes with putative chemical treatments based on gene
signatures. The initial success of connectivity mapping led to an expansion of the CMap
(Build 02 of the CMap database, which we refer to as v2) to cover 1,309 chemicals and
6,100 transcriptomic profiles.5

Connectivity mapping and toxicology

A key challenge in toxicology is evaluating the safety of chemicals by determining their
potency and potential for activating molecular targets that can lead to adverse health
outcomes.®® In computational toxicology, transcriptomic profiling is used to rapidly screen
thousands of untested chemicals to identify their putative targets, mechanism of action, or
other effects.10:67-69 This is because high-throughput transcriptomic profiling using mRNA
sequencing (RNA-Seq),® and more recently targeted RNA-Seq,’0 are extremely promising
and cost-effective approaches for generating transcriptomic profiles for tens of thousands
of chemical treatments. Whether evaluating new chemical entities for drug discovery or
untested environmental chemicals for public health protection, transcriptomic connectivity
mapping is a robust and high-throughput alternative to the existing techniques.18 Therefore,
it is essential to examine the landscape of connectivity mapping approaches, understand their
operation transparently, and assess their utility for specific toxicology applications.

Harmonizing connectivity mapping approaches

Dozens of refinements or alternatives to connectivity mapping have been proposed and are
reviewed elsewhere.”1.72 In this review, we develop a coherent view of various connectivity
mapping approaches with an emphasis on three main ingredients: a transcriptomic profile
produced by a perturbagen, a gene signature associated with a biological state, and an
approach for matching the profile with the signature. The connectivity mapping workflow
can be generalized as a database search and retrieval operation (see Figure 1) in which

a “query” object (Figure (1a)) is compared with an extensive collection of “reference”
(Figure 1(b)) objects (from a reference database (Figure 1(e))) using a pattern matching
algorithm (Figure 1(c)) to find the most similar “hits” (Figure 1(f) and (h))). We employ
the generic term “object” to cover several kinds of gene set-based inputs (summarized
visually in Figure 2) for pattern matching. The variation between the connectivity mapping
approaches is explained by the differences in the choice of the query, the reference database,
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and the pattern-matching algorithm. For example, Mootha et a/°8 used a transcriptomic
profile (derived from diabetic versus healthy muscle tissue) (Figure 2(a)) as the query,
pathway-based gene sets (Figure 2 (e) and (d)) for the reference database, and GSEA for
pattern-matching. On the other hand, Lamb er a/* used gene signatures of HDAC inhibitors
as the query, transcriptomic profiles as the reference database, and a modified version of
GSEA. Although the workflow used by Mootha et a/. is generally referred to as “pathway
enrichment,” using the harmonized scheme presented here, we discuss how “enrichment”
and “connectivity mapping” may be considered different types of similarity measures for
comparing gene set objects comprised of gene signatures and transcriptomic profiles.

For example, the query object used by Lamb et a/°> was a gene signature derived from
transcriptomic profiles of HDAC inhibitors in bladder and breast cancer cells.83 This gene
signature for “HDAC inhibition” was defined by a set of up- and down-regulated genes
(visualized in Figure 2(c)). In contrast, the reference objects were transcriptomic profiles
(HYPERLINK Figure 2(a)) in the CMap v2 database. The similarity between the query
gene signature for HDAC inhibition and each CMap v2 reference transcriptomic profile was
measured using the same scoring metric as GSEA. Top-scoring matches with vorinostat and
trichostatin A are both well-known HDAC inhibitors. In other words, GSEA “connected” the
biological state of the query object, represented by a gene signature, with HDAC inhibition.
This approach for connectivity mapping can be used in toxicity testing for new chemicals by
generating gene signatures using transcriptomics, matching signatures with transcriptomic
profiles for previously tested chemicals, and inferring putative connections with known
chemicals’ mechanisms. Though connectivity mapping approaches measure the similarity
between gene sets and transcriptomic profiles, there are subtle differences between them.
First, Mootha et a/. used a transcriptomic profile as the query object, whereas Lamb et al.
used a gene signature. Second, Mootha ef al. used pathway gene signatures, whereas Lamb
et al. used transcriptomic profiles to define the reference database. Third, both approaches
used slightly different similarity measures because they were comparing different types

of objects. We believe that a harmonized scheme for encompassing the diverse array of
published transcriptomic connectivity mapping approaches can be developed by formalizing
the definition of query objects, reference objects, and similarity scoring measures.

Review outline

Although connectivity mapping can elucidate the mechanisms of action or toxicity of
chemicals, the relative advantages of different approaches have not been discussed before.
This review analyzes the gene set-based connectivity analysis pipeline in terms of reference
database construction, gene signature generation, and similarity scoring measures. First,

we provide a standardized terminology to describe the critical elements of gene set-based
approaches to compare and highlight their unique contributions. Second, we introduce
several transcriptomic and other data sources and outline the development of reference
databases. Third, we discuss some of the main approaches for generating transcriptomic
signatures. Fourth, we propose a detailed classification of connectivity scoring measures,
including GSEA and other variants. Fifth, we describe approaches for evaluating confidence
in results from connectivity mapping. Sixth, we consider different approaches for comparing
the performance of different connectivity mapping algorithms. Finally, we discuss some of
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the opportunities and challenges of applying connectivity mapping approaches to toxicology.
Our objective is to provide a conceptual overview of the entire connectivity mapping

process at multiple levels, including high-level visual summaries, a formal terminology for
comparing all connectivity mapping approaches, and detailed explanations of algorithms.

Key concepts and terminology

To compare the diversity of gene set-based connectivity mapping approaches, we define
the key concepts and introduce terminology used in the remainder of this review. We

begin with a description of different types of technologies routinely used for transcriptomic
data generation. Next, we define a transcriptomic profile as the global differential gene
expression data and discuss how gene signatures are created from transcriptomic profiles.
Then we describe the different types of gene signatures that encompass transcriptomic
profiles and gene sets that define canonical pathways. Lastly, we introduce key concepts
about the relationships between gene signatures and transcriptomic profiles, and then use
them to formalize similarity scoring measures. A visual overview of the different terms and
their definitions are provided in Figure 1 and Table 1, respectively.

Transcriptomic technologies and data

Transcriptomics measures global gene expression in a biological specimen, and the term
was coined for RNA-Seq technology.’® Here we use transcriptomics to refer to any high-
throughput gene expression technology including, but not limited to, Affymetrix microarrays
(used for building the CMap databases), the L1000 platform (using in the Library of
Integrated Network-based Cellular Signatures (LINCS) database), and RNA-Seq technology.
Transcriptomic data from different technologies are generally represented at four different
levels: (LO) level O raw data specific to the assay technology, (L1) level 1 unnormalized
mMRNA data derived from raw data using assay-specific processes, (L2) level 2 normalized
mRNA data, and (L3) level 3 differential gene expression data obtained by analyzing mRNA
data between cases and controls. Each technology has varying needs for RNA purification
but may or may not require complementary DNA (cDNA) synthesis. Affymetrix high-
density microarrays hybridize each mRNA in a sample with thousands of oligonucleotide
probes. Each mRNA sequence is mapped to a set of probes (called a probeset) designed

to optimize the sensitivity and specificity of measurements. Affymetrix microarray LO data
are images, called cell intensity files (CEL), which are processes using image analysis tools
to produce L1 data. L1 data is normalized’ using one of the available approaches’/6 to
estimate L2 data as logarithm (base 2) intensity value for each transcript. LINCS data are
generated using the L1000 platform.”” The LINCS platform employs flow cytometry to
measure the relative abundance of mRNAs that hybridize to Luminex beads tagged with
fluorescent oligonucleotide probes (producing Luminex bead array data as LO files). The LO
flow cytometry data are deconvoluted to obtain L1 data, which are quantile-normalized to
get L2 data on landmark genes (978) and imputed transcripts (12,336). RNA-Seq uses high-
throughput DNA-sequencing technology to directly read the cDNA in samples producing
MRNA sequence fragments, known as “reads,” as raw FASTQ files (LO). Each read in LO

is aligned with the known sequences of gene products or the entire genome to generate L1
data (for a review of best practices, see Conesa et a/.’®). RNA-Seq technology continues
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to evolve rapidly, and several modifications have been proposed to avoid cDNA synthesis
(by using RNA directly) and to target specific genes (instead of sequencing all genes),
including NPSeq,’”® RASL-Seq,80 DRUG-Seq,8! and TempO-Seq.”? Such targeted RNA-Seq
approaches can be cost-effective as they use oligonucleotide templates (also called probes)
derived from specific regions in individual genes to measure their expression to produce

L0 and L1 data. Validation studies have demonstrated the concordance between L1000 and
microarrays,2 and targeted RNA-Seq, RNA-Seq, and microarrays®3 for evaluating reference
chemicals. The choice of transcriptomic platform comes down to reproducibility and cost.
Therefore, new transcriptomic technologies that promise to lower the cost and efficiency of
transcriptomic data generation continue to be developed (for example, see NanoString84).

Differential gene expression analysis

The L2 normalized mRNA data for each gene in the “cases” are compared with “controls”
to calculate each gene’s differential expression. There are many statistical approaches

for estimating confidence in each gene’s differential expression based on distributional
intensity and count data assumptions.85-87 Batch-correction approaches can also improve
differential expression estimates.88-90 The differential expression values for genes are
reported as the ratio (or difference for log-transformed L2 data) between the cases (e.g.,
chemical treatments or diseased subjects) and the controls (e.g., untreated samples or normal
subjects). Differential gene expression is generally reported in log2 fold-change (L2FC)
units. When batch effects are significant, Z-scores offer another approach to estimating
treatment effects. They can be averaged over batches and reported as moderated Z-scores.’’
L2FC values or Z-scores have the following interpretation: positive/negative values mean
that a gene is up-/down-regulated in a case versus control. The set of differential expression
values for all genes defines the L3 transcriptomics data.

Transcriptomic profile

We define L3 data as the differential transcriptomic profile (x) in which up- and down-
regulation of all genes are quantified (e.g., L2FC values or Z-scores) (Figure 2(a)).
Transcriptomic technologies (e.g., Affymetrix, L1000, and RNA-Seq) measure mRNA

in samples using different probes or sets of reads mapped to a unique set of genes

(denoted as, g). Unique gene names, standardized using Entrez gene identifiers®® and
Human Gene Nomenclature Committee (HGNC) codes®2 (or other species-specific genome
databases), enable a comparison of L3 transcriptomic data from diverse technologies. Each
transcriptomic technology attempts to capture a broad subset of the entire list of genes for
each species’ genome (denoted as, G = {g.. &, &...» g;....}) For the remainder of this review
we ignore the differences in coverage of the genome and assume that the transcriptomic
profile from any assay technology can be represented generally as a vector denoted as

x, where x = [x;, x,, ..., x,, ..., xy], x; is the differential expression of one gene g, N is the
number of genes in the profile and g € G. Similarly, the significance scores associated with
differential expression values for genes can also be represented as a vector denoted as p,
where p = [p,, p», p5» ... D;» ... Pyl pi IS the p-value associated with change in expression x; for

gene g.
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Extreme transcriptomic profile

Highly differentially expressed genes may be more informative than less differentially
expressed ones. The extreme transcriptomic profile (x™) has been proposed as one possible
approach for summarizing the most highly differentially expressed genes in x. Cheng et al.
refer to this subspace of x as the “eXtreme” transcriptomic profile, where extreme connotes
the selection of the most up- and down-regulated genes.”2 First, x (Figure 2(a)) is sorted

in order of differential expression values, which places the genes with the greatest up-/down-
regulation at the extremes. If the n* and »~ most up- and down-regulated genes in x are
s*and 57, respectively then the extreme transcriptomic profile x" = {x,li € {s"~ us"* |}

(Figure 2(b). s* and s~ may be further restricted to genes in x that meet a p-value and/or
fold-change threshold (Figure 2(b)). For example, one can define a 2-fold threshold for the
magnitude of differential expression to identify S* (i.e. log2(FC)>1) and a 2-fold decrease
(i.e. log2(FC)<-1) to identify S™. In other words, an extreme transcriptomic profile can also
be defined by selecting the top up- or down-regulated genes. In this case s is comprised

of the n-most up-regulated genes (where n+=100, 200, 300, etc.), while S~ is formed by the
n-most down-regulated genes (»—=100, 200, 300, etc.).

Gene signatures

A gene signature is a list of genes (also known as a “gene set”) whose collective activity
represents a fingerprint of a biological state (mechanism, pathway, disease, etc.). We discuss
two main types of gene signatures in this review. First, we define a “directional” gene
signature (DS™) as a set of up- and down-regulated genes derived from a transcriptomic
profile. DS™ can be formed by s” ™ and s ~ (which are the »* and »~ most up- and
down-regulated genes in x) used to define x" (i.e., DS" = {up: " ¥, down: 5" ~ }) (Figure
2(c)). For example, the eight up-regulated and five down-regulated genes associated with
HDAC inhibition®3 are an example of a directional signature (albeit with a different
number of up- and down-regulated genes). Others have also used transcriptomic profiles
in CMap v1 to generate gene signatures for treatments by including the 250 most up- and
down-regulated genes.?3 Second, a “non-directional” gene signature (S) (Figure 2(d)) is

a collection of genes associated with a treatment, a pathway or phenotype in which the
direction of differential expression is not known (or not considered). A non-directional
gene signature can be formed by combining the up- and down-regulated genes in D.S"
(i.e, S= {S+ U S‘} (Figure 2¢e). Alternatively, it can be created from a canonical pathway

(Figure 2(e)), which captures expert knowledge-based descriptions of biological networks

in terms of the interactions between small molecules, proteins, and genes®* (Figure

2(f)). So, a non-directional gene signature can be a list of genes in any given pathway

(S = {&100 & &3> ---» & --- }; & € Pathway). For example, Mootha et a/. used the non-directional
gene sets of canonical pathways to compare the transcriptomic profiles for diabetic vs
healthy tissues, and identified a match with the oxidative phosphorylation pathway.>8 For the
remainder of this review, we refer to non-directional signatures simply as gene signatures or
gene sets.
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Harmonizing gene signhatures and transcriptomic profiles

Thus far, we have discussed four different concepts for representing biological states
using gene expression: two types of transcriptomic profiles ({x, x""}) and two types of
gene signatures ({ DS, S}). We introduce the notion of a gene set object (denoted as O)
to capture these four possible representations of biological state in terms of genes (i.e.,
0 € {x,x", DS", §}), and to encapsulate different mathematical operations that are needed
to calculate transcriptomic similarity. As illustrated in Figure 2, a transcriptomic profile
can be translated to a signature, but a signature can also be translated to a profile.

For example, a hypothetical non-directional pathway signature S, = {g, g &s -++» &» -+-» &}
contains a subset of the genes in G and can be represented as a binary vector
x,=[1,1,0,0,1,...,1, . .1 (that is, {x,|x, = 1ifi € S,}). Similarly, a hypothetical directional
signature DS5 = {S}:{g: &5 &, .-} U S5 = {8 & & ...} }, Can be represented as the vector
x;=[0, = 1,1,1, = 1,0, = 1,1,...] (that is, x, = {x,|x, = lifi € S}, x, = — lifi € S;}).

Transcriptomic similarity measures

We can now define a similarity measure (.SM) as a pattern-matching operation on a query
object (0,) and a reference object (0,) (SM(O,, 0,)) to produce a similarity (or connectivity)
score (s) and, optionally, an associated significance score (p) (i.e., (s, p) = SM(0O,, 0,)). The
values of s and p measure the strength and the significance of the match between 0O, and O..
The values of s and pare interpreted as follows: (i) high magnitude values of s suggest a
high degree of similarity (positive) or dissimilarity (negative) whereas low absolute values
of s imply low similarity/dissimilarity; and (ii) low values of p(p <« 1) are statistically
significant whereas, high values of p have lower confidence. Therefore, a combination of the
connectivity score and significance score determines the strength and the relevance of the
match (also referred to as a “hit”). Most S M use mathematical (set and vector) operations
to calculate s by comparing 0, and O, (which are discussed later and shown in Table 2).

All sM use information about the genes that are in common between O, and O, (using the
set operation O,( O,). Some approaches also use information about genes that are not in
common between 0, and O, and we refer to these as the complement of O (denoted as 0’),
which is the set difference between O, and 0,(0, = 0,\0,) and similarly, the complement of
O, (0, = 0)\0,). The number of genes in O, and O, are referred to as n, and n,, respectively. If
0, and O, are DS then {n*,n~} are denoted as {n;,n;} and {n', n’}, respectively.

Reference databases

We consider two main types of reference databases (R): transcriptomic databases that are
comprised of a large compendium of transcriptomic profiles (R, = {x,, x,, x5, ...} ) (Figure
4(d)), and gene signature databases R, = {.S,, 5., S, ...} that contain extensive collections of
gene sets (S or DS). First, we discuss large-scale reference transcriptomic databases that
have been developed for connectivity mapping, including CMap,® LINCS,% and the Gene
Expression Omnibus (GEO),11 which is another source of millions of transcriptomic profiles
from thousands of experiments (albeit with diverse transcriptomic technologies). Second, we
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discuss reference gene set databases focusing on knowledge-based canonical pathway gene
sets and experimentally-derived directional gene sets.

Connectivity Map (CMap)

CMap v1 was initially developed to find relationships between chemicals, genes, and
diseases.* This dataset was produced by treating MCF7 (breast cancer), HL60 (leukemia),
and SKMELS5 (melanoma) cell lines with 164 diverse chemicals at a 10 uM concentration
for both 6 and 12 h. Transcriptional profiles were generated using Affymetrix GeneChip
HGU133 measuring the levels of ~ 22,000 transcripts. In all, there were 564 unique
transcriptomic profiles and 453 differential expression profiles (after comparing treatments
and controls). Following the success of this approach, the same group produced CMap v2,6°
in which three cell lines (MCF7, PC3, and HL60) were treated with 1,309 chemicals for 6

h to produce 6,100 differential expression profiles using the Affymetrix U133A GeneChip%
containing 22,215 transcripts associated with 13,609 genes. The entire CMap v2 database
contains 1,294 chemical differential expression profiles in MCF7 cells, 1,182 profiles in
PC3 cells, and 1,078 profiles in HL60 cells and is available for download from The Broad
Institute. The raw Affymetrix data are normalized and processed (as described earlier) to
generate a set of transcriptomic profiles, R..

Library of Integrated Network-based Cellular Signatures (LINCS)

Following the success of the CMap v2 project, the U.S. National Institutes for Health (NIH)
funded the LINCS Consortium to expand the reference transcriptome database to study
genetic (single gene over-expression or knockdown) and chemical perturbations producing
a database containing more than 1,000,000 profiles.”” To achieve this 1000-fold scale-up

of CMap v2, the LINCS Consortium developed computational methods to analyze a large
compendium of expression data (12,031 Affymetrix gene expression profiles from GEO) to
identify a subset of genes that could predict the entire transcriptome. Their analysis showed
that using just 978 “landmark” transcripts could predict the expression of 82% of all genes.
The L1000 platform measures these 978 genes (or 1,058 probes) using Luminex bead-based
technology. It is, therefore, possible to infer the expression levels of 12,336 genes from the
landmark 978 genes, and the resulting transcriptomic profiles are available as moderated
Z-scores. The LINCS project has produced 1,319,138 L1000 profiles for 19,811 chemicals
and 7,494 genetic perturbations. The L0, L1, L2, and L3 LINCS data are available from
GEO as dataset GSE92742 and can also be interactively (or programmatically) analyzed via
a cloud-based system (http://clue.io).

Gene Expression Omnibus

The US National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO)!! database is a public domain repository of author-submitted transcriptomics data
that conforms to the MIAME (minimum information about a microarray experiment)
standard.®” Unlike CMap and LINCS, GEO is a repository of published experimental studies
and transcriptomics platforms. In GEO, highly multiplexed transcriptomics assays (like the
Affymetrix HGU133 GeneChip and The Broad Institute’s L1000 array) are “platforms,”
individual transcriptomics profiles are “samples, ”and large-scale experiments are stored as
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a “series” of samples (like CMap v1, v2, and LINCS). A platform contains a set of probes
directly linked to genes. The transcriptomic profile for a sample measures the levels for all
probes. After substantial curation, a collection of biologically and statistically comparable
samples in a series can be made available as a GEO DataSet. As of September 2021,

GEO contains 4,348 DataSets, 160,597 series records, from 22,587 platforms and including
4,628,210 samples. All data in GEO can be freely downloaded and analyzed using the R
programming language®8 via the GEOquery9® package or using the Python programming
language using the BioPython1 package.

ArrayExpress

The European Bioinformatics Institute (EBI) ArrayExpressi2101.102 gatabase is the
European counterpart to GEO, which also stores transcriptomics data in a MIAME-
compliant format provided by authors in support of publications. In addition to
transcriptomic data, ArrayExpress also maintains data from other molecule profiling
technologies that include measurements of small molecules (metabolomics) and proteins
(proteomics). Because metadata for transcriptomic profiles, including experimental model
and treatment-related factors, are annotated using a controlled vocabulary,103 ArrayExpress
can be more suitable for building automated computational workflows. Although initially
intended as an integrated resource for all gene expression studies from GEO and the DNA
Data Bank of Japan,104 the rapid growth of transcriptomics data has made this challenging.
The lack of a central “index” of all transcriptomic studies makes it necessary to query
ArrayExpress and GEO separately; however, some efforts have been undertaken to address
this issue.105 Data in ArrayExpress can be searched and retrieved using the R ArrayExpress
packagel% and the Python BioServices package.197

Directional gene sets

With the availability of thousands of transcriptomics profiles in CMap, LINCS, GEO, and
ArrayExpress,102 it is also feasible to automatically generate gene signatures for a rich
range of biological contexts. Gene signatures have been automatically generated for many
GEO datasets using detailed annotations of treatments.108-111 The specific genes included
in a signature depend on the annotation of control (normal) and case (perturbed) samples

in a study. Automated sample class interpretation (i.e., normal vs. perturbed) can be error-
prone due to inconsistent annotations. Therefore, it is essential to manually-curate sample
annotations in large public transcriptomic databases to generate valid gene signatures, which
is a resource-intensive task. A crowd-sourcing approach has been recently used to develop
CRowd Extracted Expression of Differential Signatures (CREEDS),112 which contains DS
associated with 2,176 single gene perturbations, 828 disease signatures, and 875 single

drug perturbations. The molecular signatures database (MSigDB) is another resource for
DS associated with thousands of experimental perturbations 113114 A subset of the C2
collection of MSigDB v7.0 includes thousands of DS associated with chemical and genetic
perturbations. The LINCS database also provides several predefined signatures for each
perturbation derived from the landmark 978 genes and the complete set of inferred genes.
One of the key challenges is identifying the parameters for constructing optimal gene
signatures from transcriptomic profiles to find biologically relevant connections. We discuss
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how signature size is one of the factors used in evaluating connectivity mapping approaches
for addressing different biological questions.

Pathway and other gene sets

Pathway gene set databases can be constructed from canonical pathways that capture

expert knowledge-based descriptions of biological processes. This has also been done
comprehensively in MSigDB,113.114 which includes several canonical databases such as
Reactome, 1% Kyoto Encyclopedia for Genes and Genomes (KEGG),116 the National Cancer
Institute (NCI) Pathway databasell” and Gene Ontology.18 MSigDB also contains gene
sets related to genetic and chemical perturbations, gene co-expression modules, transcription
factor targets, etc., which are represented by .S (or D.S in some cases).

Connectivity scoring approaches

As stated earlier, gene set-based scoring can be stated generally as SM(0,, 0,), where O, is
the input query, and O, is from a reference database, R. This operation can be categorized
based on three main attributes: (i) the types of input arguments O, and 0, (ii) the type of
SM, and (iii) the source of R. First, the types of 0, and O, are defined by the possible

pairs of inputs from {x, DS, S} (where we assume that x covers x” for brevity), which are
expressed as ({O,, 0,}) including: (a) {x,, S.} or {S,,x,} (b) {DS,,x.} or {x,, DS.}, (C){x,, x.},
d) {s, S (e) S, DS,} or {DS,, S.} and (f) {DS,, DS,}. Although the order of the inputs
distingmshes between the query and the reference, we add the subscript “q” or “r” to make
the distinction explicit. Second, we categorize SM (Table 2) into two main groups, including
“enrichment”-based statistical aggregation approaches, borrowing the terminology used by
Irizarry et a/11° (denoted as SM.), and “vector’-based similarity metrics, which term was
introduced first by Tanner and Agarwal'20 (denoted as SM,). Aggregation-based approaches
generally operate on signatures and profiles (i.e., input types (a) and (b)). On the other

hand, vector-based methods operate on vectors (inputs of type (c)). Since S and DS can be
transformed into vector representations (as described earlier), vector-based approaches can
be applied to all kinds of inputs. Lastly, the reference databases are usually defined by R,
(LINCS, CMap (v1 or v2), or GEO) and R (MSigDB, CREEDS, etc.). We summarize some
of the details of the approaches in Table 2, including the mathematical formulas for different
SM. Lastly, we focus on the nature of the measures used to calculate s and discuss strategies
for estimating p in the following section.

Aggregation-based enrichment scoring approaches

Matching transcriptomic profiles to pathway signatures: S M, (x,, .S,)—These
SM, match transcriptomic profiles of samples against reference pathway databases
(Iustrated in Figure 3). They calculate differences in the distributions of differential
expression values in x, for genes in .S, and genes in S, (where S, contains genes absent

in S.). These measures “aggregate” the values for differential expression in x, across S, and
compare them with S, using different summary statistics to produce the output, s, which

is referred to as an enrichment score (ES) because it determines whether the gene set
represented by S, is “enriched” in x,. Different scenarios for the matches between x, and
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S, are shown visually in Figure 3 to illustrate examples of high and low-scoring matches.

If genes in .S, are concordant with highly up- and down-regulated genes in x, then the

SM, produces a high s, which is shown by four examples: (i) strong connections: genes

in the .S, are concordant with highly up- and down-regulated genes in x,, (ii) positive
connections: genes in the S, are concordant with highly up-regulated genes in x,, (iii)
negative connections: genes in the S, are concordant with highly down-regulated genes in x,,
and (iv) no connection: genes in S, are discordant with up- and down-regulated genes in x,
then the SM . SM (x,, S,) distinguish between positive and negative connections and aim to
produce s that can rank connections by strength in descending order of magnitude.

Different S M, are distinguished by the approaches for scoring .S, and x,. For example, the
absolute sum of values for differentially expressed genes values in x, may be much greater
for S, than in 5,121, Alternatively, the (absolute) mean value of the differential expression
in x, may be much greater or lower for S, than in S,’. In calculating aggregate scores

for S, and S,’, expression values can be measured using g-values (differential expression
p-values adjusted for multiple testing) as is the case in the expression signature analysis tool
(EXALT).122 The two sample Student’s t-test is another approach for determining whether
the differential expression values for genes in x, are statistically significantly different
between S, and S..119 Many parametric aggregation-based enrichment scoring approaches
use t-tests,123-125 ANOVA, 126 Z-scores, 127 logistic regression,128 random-sets,12% and
standardized Chi-Squared scores.119 Significance analysis of function and expression
(SAFE) implements several parametric methods.30 If the differential expression values for
genes in x, between .S, and .S, are not distributed normally then parametric aggregation-based
enrichment scoring methods may not work. In such cases using non-parametric approaches
such as the Wilcoxon rank sum statistics130:131 or the max-mean statistic132 may be more
appropriate.

There are three main versions of GSEA, and they are all based on a non-parametric
aggregation approach. We discuss the first two versions of GSEA here as they are both of
type SM,(x,, S,). The first version, which we refer to as GSEAa,58 calculated a Kolmogrov-
Smirnov (KS)-like statistic (“running sum statistic”) by comparing the sorted x, with S,

as follows: (i) create a vector y and update its values using the sorted x,, (ii) if gene
gE€X,ANgES —y=w wWherew=1(iii)ifgene g e x,Ag & S.— y, = w Where w’ <0 is
a penalty, and (iv) calculate the empirical cumulative distribution of y (or “running sum”),
ye =Y 3y, and (v) then ES, = max(yc). We refer to the output s of GSEA, as ES,,
high values of which suggest enrichment of .S, in x,. It is important to note that GSEA,
only used information about the rank of genes in x, based on differential expression (using
signal-to-noise ratio and not L2FC values). The second version, GSEA,,%9 extended GSEA,

b

by using the magnitude of differential expression to calculate w(w = Lb, where b = 1)
:ES,Ixi

and using a penalty adjusted to the size of the gene set (v’ = N;_n where there are N genes

in x, and n genes in ). We refer to the output s of GSEA, as ESy,. The GSEAy, approach is
implemented in sscMap?33 and in GSVA.134
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Connectivity scoring: SM,(D.S,, x,)—The development of CMap required a new
type of similarity measure for matching directional signatures (D.S,) with transcriptomic
profiles (x,) (illustrated in Figure 1). The core ideas in SM, (DS,, x,), which we refer to

as GSEA, are an extension of SM,(x,, S,), but the aggregation-based metrics compare
differences in the distributions of differential expression values in x, for genes in S vs S,
(i.e., up-regulated) with .S; vs .S;" (i.e., down-regulated), respectively. Therefore, GSEA. is
a similarity measure of the form SM.(DS,, x,), and its output s is called a “connectivity”
score.® Three scenarios for the matches between ¢ and x, are shown in Figure 1 to
illustrate three extreme cases of connectivity. First, if genes in S} and S, are concordant
with highly up- and down-regulated genes in x,, respectively, then the SM, produces s > 0
(labeled “positive connection” in Figure 1(f)). Second, if genes in S; and S, are concordant
with highly up- and down-regulated genes in x,, respectively, then the SM, produces s < 0
(labeled “negative connection” in Figure 1(h)). Third, if genes in S, and S; are distributed
randomly with respect to highly up- and down-regulated genes in x,, respectively, then

the SM, produces s = 0 (labeled “no connection” in Figure 1(g)). The description of the
GSEA, approach® suggests that GSEA}, was used to calculate enrichment for the up-

(ES; = SM(x,5T)) and down-regulated genes (ES; = SM,(x, S™)) separately to determine
overall connectivity score, ES, = ES; — ES,. Connections between the inputs are positive if
ES. > 0and negative if ES. < 0. If ES; and ES;, have the same sign, however, then weak or
no connections are implied. lorio et al proposed the Inverse Total Enrichment Score (TES)?3

using GSEA; (TES =1 - %) lorio et al. used the TES to search DS, (n™ = 250, n~ = 250)

against CMap v2 to calculate drug-induced gene expression profile similarity (DIPS). A
weighted connectivity score (WTCS) based on GSEA is also used to analyze connections
between a signature and the LINCS reference database. The WTCS is like the TES in that a
separate ES is calculated for the up- and down-regulated genes.13

Vector-based similarity scoring approaches SM (x,, x,)

Vector-based approaches use different similarity measures to calculate s between vector
representations of the gene set objects, 0, and 0,. Most types of similarity measures!36
can be used to measure the similarity between x, and x,. For instance, the dot product of
x, and x, (x, - x,) is the most straightforward measure of similarity. Cosine similarity scales

the dot product by the product of the magnitudes, which can be interpreted geometrically
Xg* X,
lx, 1 1x,l

as the angle between x, and x, (Cos= ). The extreme values for cosine similarity are

-1, 0, 1, which correspond to the situation in which the input vectors are antiparallel,
orthogonal (unrelated), and parallel, respectively. Most connectivi