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Abstract

Screening new compounds for potential bioactivities against cellular targets is vital for drug 

discovery and chemical safety. Transcriptomics offers an efficient approach for assessing 

global gene expression changes but interpreting chemical mechanisms from these data is often 

challenging. Connectivity mapping is a potential data-driven avenue for linking chemicals to 

mechanisms based on the observation that many biological processes are associated with unique 

gene expression signatures (gene signatures). However, mining the effects of a chemical on gene 

signatures for biological mechanisms is challenging because transcriptomic data contain thousands 

of noisy genes. New connectivity mapping approaches seeking to distinguish signal from noise 

continue to be developed, spurred by the promise of discovering chemical mechanisms, new drugs, 

and disease targets from burgeoning transcriptomic data. Here, we analyze these approaches in 

terms of diverse transcriptomic technologies, public databases, gene signatures, pattern-matching 

algorithms, and statistical evaluation criteria. To navigate the complexity of connectivity mapping, 

we propose a harmonized scheme to coherently organize and compare published workflows. We 

first standardize concepts underlying transcriptomic profiles and gene signatures based on various 

transcriptomic technologies such as microarrays, RNA-Seq, and L1000 and discuss the widely 

used data sources such as Gene Expression Omnibus (GEO), ArrayExpress, and MSigDB. Next, 

we generalize connectivity mapping as a pattern-matching task for finding similarity between 

a query (e.g., transcriptomic profile for new chemical) and a reference (e.g., gene signature 

of known target). Published pattern-matching approaches fall into two main categories: vector-

based use metrics like correlation, Jaccard index, etc., and aggregation-based use parametric 
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and non-parametric statistics (e.g., gene set enrichment analysis). The statistical methods for 

evaluating the performance of different approaches are described, along with comparisons reported 

in the literature on benchmark transcriptomic data sets. Lastly, we review connectivity mapping 

applications in toxicology, and offer guidance on evaluating chemical-induced toxicity with 

concentration-response transcriptomic data. In addition to serving as a high-level guide and 

tutorial for understanding and implementing connectivity mapping workflows, we hope this 

review will stimulate new algorithms for evaluating chemical safety and drug discovery using 

transcriptomic data.
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Introduction

Drug discovery and chemical safety require effective tools for screening new compounds 

for potential bioactivities against cellular targets. Transcriptomics is one of the widely used 

techniques for assessing the biological effects of chemicals through their impact on global 

gene expression.1 Because chemicals induce gene expression changes by interacting directly 

via receptor binding2 or indirectly by disrupting cellular homeostasis,3 inferring their targets 

from transcriptomic data is challenging. Connectivity mapping addresses this issue by 

measuring the similarity between transcriptomic profiles and gene signatures related to 

cellular targets using the “universal language” of genes.4,5 It assumes that transcriptomic 

profiles fingerprint biological samples, and similarity between profiles implies a common 
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mechanism. Transcriptomics evolved rapidly in the last two decades after sequencing 

the human genome.6 Beginning with cDNA spotted arrays,7 followed by high-density 

oligonucleotide arrays,8 and most recently RNA sequencing technology,9 transcriptomics 

has become more reproducible, reliable, and cost-effective.10 As a result, millions of 

transcriptomic profiles are now available in public domain repositories11,12 for thousands of 

conditions.4,13 Innovative tools are needed to uncover new relationships between chemicals, 

pathways, and diseases using this wealth of transcriptomic data. Connectivity mapping4 is an 

example of such a tool that can facilitate drug discovery,14 help repurpose existing drugs,15 

and produce safer chemicals.16

Connectivity mapping with transcriptomic data is one of many techniques in a rich 

landscape of computational methods for inferring the putative interactions between 

chemicals and biological targets or pathways. This landscape can be broadly divided 

into approaches based on binding, similarity, and machine learning (ML). Binding-based 

methods attempt to model physico-chemical interactions between a chemical and a protein 

target with three-dimensional structure data using molecular dynamics17,18 or, more 

recently, using ML.19 There have been impressive advances predicting new ligands for 

specific protein targets,20 and with predicted three-dimensional structures for all known 

proteins,21 virtually screening all chemicals against thousands of protein targets could be 

within reach.22

Connectivity mapping is conceptually related to other similarity-based approaches, which 

attempt to infer the properties of a new chemical using pair-wise similarity with chemicals 

of known properties, including physico-chemical properties or biological activities. If 

two chemicals have significant structural similarities, then similarity-based approaches 

assume they also have similar properties. Similarity-based approaches have two essential 

ingredients: a vector of attributes and a measure of similarity based on the attributes. 

Similarity-based pattern-matching techniques are also considered instance-based learning 

methods23 in ML, which includes approaches like k-nearest neighbor (KNN) classification. 

Chemical similarity-based approaches use molecular structure descriptors (such as extended 

connectivity fingerprints24) to represent chemicals and measure similarity using set 

operations (for a review of similarity measures, see Bero et al.25). For example, a query 

chemical can be searched against a database to find other structurally similar chemicals 

from which the unknown biological role can be inferred. Chemical structure-based similarity 

is widely used to infer molecular targets.26 One of the problems with using chemical 

similarity-based techniques is that minor alterations in structure can lead to drastic changes 

in their affinity for the same target, which are known as “activity cliffs” in structure-activity 

relationship (SAR) research.27 Another issue is that new structural categories of chemicals 

can be discovered or synthesized that have no existing analogues. If they bear insufficient 

resemblance to known chemicals, it is not possible to infer their properties based on 

structural similarity alone. Despite these limitations, structure-based automated prediction 

approaches28 are routinely used to fill data gaps for untested chemicals based on the known 

properties of analogues in the same local domains. More recently, structural and bioactivity 

similarity between chemicals has been used to infer the toxicity of untested chemicals.29–32
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Finding pair-wise similarities using biological and chemical descriptors is a practical 

strategy for inferring the properties of untested chemicals; however, if hundreds of chemicals 

are associated with different classes of biological activities (e.g., protein target, pathway 

activation, toxicity, etc.), then ML can be more effective. ML algorithms systematically 

mine patterns in data (i.e., vector representations of data derived from biological and 

chemical descriptors) to build accurate predictive models of various biological activities.33 

For example, ML algorithms mine chemical structure representations to build models, 

referred to as quantitative structure-activity relations (QSARs).34 QSAR models have been 

used to classify potential nuclear receptor activators,35,36 cellular stress responses,37,38 and 

toxicities.39,40 Similarly, ML algorithms mine transcriptomic data on chemicals (derived 

from different cellular contexts) to build models of biological mechanisms,41–44 and 

toxicities.45,46 Models derived by ML can predict the bioactivity or toxicity of new or 

untested chemicals using vector representations of data (i.e. attribute-value vectors that are 

used to train the model). Different ML methods have varying requirements for training data 

to produce reliable predictive models. Whereas similarity-based approaches such as KNN 

may only require a few examples because of their simplicity, more complex ML algorithms 

need varying amounts of training data to tune model parameters reliably. Furthermore, for 

in vivo toxicity prediction, it is also essential to consider the chemical dose, duration, and 

route of exposure. A systematic comparison of similarity-based and other ML algorithms is 

beyond the scope of this review.

Connectivity mapping may be considered an automated biological read-across47,48 

technique to infer properties of untested substances using transcriptomic profiles in place 

of chemical structure representations. Gene-based descriptors in transcriptomic profiles 

measure the expression of specific genes in the genome, just like structure descriptors 

capture the presence of substructural moieties in chemicals. Transcriptomic profiles, 

however, can capture the biological response to chemical treatments, genetic perturbations, 

or pathological conditions using continuous expression levels of genes in ways that chemical 

structure descriptors cannot. The ability of transcriptomics to capture a diverse array of 

physiological states also makes it a powerful tool for finding similarity-based connections. 

This review is a guide for navigating connectivity mapping in terms of the diverse array of 

technologies to generate transcriptomic profiles, define biological states using gene-based 

descriptors, and organize the plethora of algorithms to measure transcriptomic similarity.

Historical Background

Connectivity mapping originates from functional discovery studies,49 which aimed to 

interpret the molecular phenotypes of biological samples using transcriptomics.50,51 A 

pivotal study by Hughes et al. produced one of the earliest and largest compendia of 

transcriptomic profiles for 300 genetic and chemical perturbations in yeast.52 The authors 

used similarity between transcriptomic profiles to cluster known mutants, uncharacterized 

mutants, and pharmacologic agents. For example, deleting YER044c, an uncharacterized 

yeast open reading frame (ORF), produced transcriptional profiles similar to the sterol 

isomerase (ERG2) deletion mutant. Further experiments determined that the YER044c ORF 

encoded the endoplasmic reticulum protein (ERG28). Because ERG2 and ERG28 are both 

involved in ergosterol biosynthesis, their deletion mutants produced similar transcriptomic 
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profiles. Hughes et al. also showed transcriptomic responses to the drug fenpropimorph 

were similar to the responses due to ERG2 deletion mutants. This is not surprising 

as fenpropimorph is a fungicide that disrupts eukaryotic sterol biosynthesis pathways. 

Surprisingly, fenpropimorph was also a potent mammalian antagonist of sigma-1 receptor 

(SIGMAR1), which is involved in neuromodulatory pathways involved in pain. SIGMAR1 

antagonists are being explored as a novel class of analgesic agents for treating pain.53 

There is growing evidence that ERG2 disruptors in yeast are SIGMAR1 antagonists,54 and 

such pharmacological agents can be identified by connectivity mapping. The ability to link 

chemicals to mechanisms within and across species showed the value of transcriptomics 

as a “universal phenotype” for fingerprinting global biological states and of transcriptomic 

similarity to uncover novel relationships between chemicals and their targets.

Before connectivity mapping approaches, transcriptomics mainly identified differentially 

expressed genes between cases and controls using p-value and fold-change thresholds. 

Lists of differentially expressed genes helped identify statistically over-represented pathways 

(e.g., using Fisher’s Exact Test55) and provided insight into putative biological mechanisms 

(see Khatri and Draghici56, and Rivals et al.57)). However, because gene lists are sensitive 

to the choice of differential expression thresholds, using varying statistical cut-offs can 

produce inconsistent biological interpretations. Mootha et al. showed over-representation 

analysis of gene lists ignored the subtle yet coordinated regulation of gene sets relevant to 

a pathway. They found a gene set for the oxidative phosphorylation pathway “enriched” 

in diabetic versus healthy muscle tissues even though individual genes in the set were 

not significantly differentially expressed.58,59 Mootha et al.58 and Subramanian et al.59 

called this approach gene set enrichment analysis (GSEA). Other gene set analysis 

(GSA) approaches subsequently used for pathway, and function enrichment60–62 have been 

reviewed extensively elsewhere.56,57

The connectivity map (CMap) project, which gave rise to the eponymous “connectivity 

mapping” approach, was the first publicly available large-scale compendium of 

transcriptomic profiles generated by treating human cells with a library of small molecules.5 

Connectivity mapping used this compendium of 564 unique transcriptomic profiles for 164 

chemicals (Build 01 of the CMap database, which we refer to as CMap v1). Connectivity, or 

similarity, was measured using a modified version of GSEA for analyzing “gene signatures” 

derived from highly up- and down-regulated genes in the transcriptomic profiles (see Figure 

1). For example, Lamb et al.5 searched a signature of histone deacetylase (HDAC) inhibitors 

against the CMap v1 reference database. The HDAC inhibitor signature was derived from an 

independent study of HDAC inhibitors in bladder and breast cancer cells,63 which comprised 

eight up-regulated and five down-regulated genes (illustrated in Figure 1(a)). Searching 

the entire CMap v1 database (illustrated in Figure 1(e)) with this HDAC signature using 

GSEA (illustrated in Figure 1(c)), identified the most robust connections with vorinostat and 

trichostatin A (an example of such a match is shown in Figure (1(f)), both HDAC inhibitors. 

The ability of GSEA to link signatures of HDAC inhibitors from disparate experiments 

provided compelling evidence for the utility of connectivity mapping approaches.

In the second example, López et al. searched a gene signature of diet-induced obesity in 

rats.64 Using GSEA, they found a strong match between this signature and transcriptomic 
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profiles for troglitazone, rosiglitazone, and indomethacin, all peroxisome proliferator-

activated receptor gamma (PPARG) agonists. However, the directions of gene expression 

in the diet-induced obesity signature (i.e., up- and down-regulated genes) were found to be 

opposite to the directions of the genes in the profile for PPARG agonists. Such matches are 

referred to as “negative connections” as they have negative GSEA scores (see Figure 1(i) 

for a visual example of a negative connection). Interestingly, PPARG agonists are prescribed 

as hypolipidemic agents for the treatment of diabetes but can produce weight gain and liver 

injury as unwanted side effects. Thus, connectivity mapping revealed that the biological 

state of diet-induced obesity is “negatively connected” with PPARG-mediated hypolipidemic 

activity, notwithstanding differences in cells, treatment conditions, and gene expression 

assaying technologies. Finding negative connections between disease gene signatures and 

transcriptomic profiles of approved drugs forms the basis of some drug-repurposing 

approaches.15 These findings further demonstrated the utility of transcriptomic connectivity 

mapping for linking disease phenotypes with putative chemical treatments based on gene 

signatures. The initial success of connectivity mapping led to an expansion of the CMap 

(Build 02 of the CMap database, which we refer to as v2) to cover 1,309 chemicals and 

6,100 transcriptomic profiles.65

Connectivity mapping and toxicology

A key challenge in toxicology is evaluating the safety of chemicals by determining their 

potency and potential for activating molecular targets that can lead to adverse health 

outcomes.66 In computational toxicology, transcriptomic profiling is used to rapidly screen 

thousands of untested chemicals to identify their putative targets, mechanism of action, or 

other effects.10,67–69 This is because high-throughput transcriptomic profiling using mRNA 

sequencing (RNA-Seq),9 and more recently targeted RNA-Seq,70 are extremely promising 

and cost-effective approaches for generating transcriptomic profiles for tens of thousands 

of chemical treatments. Whether evaluating new chemical entities for drug discovery or 

untested environmental chemicals for public health protection, transcriptomic connectivity 

mapping is a robust and high-throughput alternative to the existing techniques.16 Therefore, 

it is essential to examine the landscape of connectivity mapping approaches, understand their 

operation transparently, and assess their utility for specific toxicology applications.

Harmonizing connectivity mapping approaches

Dozens of refinements or alternatives to connectivity mapping have been proposed and are 

reviewed elsewhere.71,72 In this review, we develop a coherent view of various connectivity 

mapping approaches with an emphasis on three main ingredients: a transcriptomic profile 

produced by a perturbagen, a gene signature associated with a biological state, and an 

approach for matching the profile with the signature. The connectivity mapping workflow 

can be generalized as a database search and retrieval operation (see Figure 1) in which 

a “query” object (Figure (1a)) is compared with an extensive collection of “reference” 

(Figure 1(b)) objects (from a reference database (Figure 1(e))) using a pattern matching 

algorithm (Figure 1(c)) to find the most similar “hits” (Figure 1(f) and (h))). We employ 

the generic term “object” to cover several kinds of gene set-based inputs (summarized 

visually in Figure 2) for pattern matching. The variation between the connectivity mapping 

approaches is explained by the differences in the choice of the query, the reference database, 
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and the pattern-matching algorithm. For example, Mootha et al.58 used a transcriptomic 

profile (derived from diabetic versus healthy muscle tissue) (Figure 2(a)) as the query, 

pathway-based gene sets (Figure 2 (e) and (d)) for the reference database, and GSEA for 

pattern-matching. On the other hand, Lamb et al.4 used gene signatures of HDAC inhibitors 

as the query, transcriptomic profiles as the reference database, and a modified version of 

GSEA. Although the workflow used by Mootha et al. is generally referred to as “pathway 

enrichment,” using the harmonized scheme presented here, we discuss how “enrichment” 

and “connectivity mapping” may be considered different types of similarity measures for 

comparing gene set objects comprised of gene signatures and transcriptomic profiles.

For example, the query object used by Lamb et al.5 was a gene signature derived from 

transcriptomic profiles of HDAC inhibitors in bladder and breast cancer cells.63 This gene 

signature for “HDAC inhibition” was defined by a set of up- and down-regulated genes 

(visualized in Figure 2(c)). In contrast, the reference objects were transcriptomic profiles 

(HYPERLINK Figure 2(a)) in the CMap v2 database. The similarity between the query 

gene signature for HDAC inhibition and each CMap v2 reference transcriptomic profile was 

measured using the same scoring metric as GSEA. Top-scoring matches with vorinostat and 

trichostatin A are both well-known HDAC inhibitors. In other words, GSEA “connected” the 

biological state of the query object, represented by a gene signature, with HDAC inhibition. 

This approach for connectivity mapping can be used in toxicity testing for new chemicals by 

generating gene signatures using transcriptomics, matching signatures with transcriptomic 

profiles for previously tested chemicals, and inferring putative connections with known 

chemicals’ mechanisms. Though connectivity mapping approaches measure the similarity 

between gene sets and transcriptomic profiles, there are subtle differences between them. 

First, Mootha et al. used a transcriptomic profile as the query object, whereas Lamb et al. 
used a gene signature. Second, Mootha et al. used pathway gene signatures, whereas Lamb 

et al. used transcriptomic profiles to define the reference database. Third, both approaches 

used slightly different similarity measures because they were comparing different types 

of objects. We believe that a harmonized scheme for encompassing the diverse array of 

published transcriptomic connectivity mapping approaches can be developed by formalizing 

the definition of query objects, reference objects, and similarity scoring measures.

Review outline

Although connectivity mapping can elucidate the mechanisms of action or toxicity of 

chemicals, the relative advantages of different approaches have not been discussed before. 

This review analyzes the gene set-based connectivity analysis pipeline in terms of reference 

database construction, gene signature generation, and similarity scoring measures. First, 

we provide a standardized terminology to describe the critical elements of gene set-based 

approaches to compare and highlight their unique contributions. Second, we introduce 

several transcriptomic and other data sources and outline the development of reference 

databases. Third, we discuss some of the main approaches for generating transcriptomic 

signatures. Fourth, we propose a detailed classification of connectivity scoring measures, 

including GSEA and other variants. Fifth, we describe approaches for evaluating confidence 

in results from connectivity mapping. Sixth, we consider different approaches for comparing 

the performance of different connectivity mapping algorithms. Finally, we discuss some of 
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the opportunities and challenges of applying connectivity mapping approaches to toxicology. 

Our objective is to provide a conceptual overview of the entire connectivity mapping 

process at multiple levels, including high-level visual summaries, a formal terminology for 

comparing all connectivity mapping approaches, and detailed explanations of algorithms.

Key concepts and terminology

To compare the diversity of gene set-based connectivity mapping approaches, we define 

the key concepts and introduce terminology used in the remainder of this review. We 

begin with a description of different types of technologies routinely used for transcriptomic 

data generation. Next, we define a transcriptomic profile as the global differential gene 

expression data and discuss how gene signatures are created from transcriptomic profiles. 

Then we describe the different types of gene signatures that encompass transcriptomic 

profiles and gene sets that define canonical pathways. Lastly, we introduce key concepts 

about the relationships between gene signatures and transcriptomic profiles, and then use 

them to formalize similarity scoring measures. A visual overview of the different terms and 

their definitions are provided in Figure 1 and Table 1, respectively.

Transcriptomic technologies and data

Transcriptomics measures global gene expression in a biological specimen, and the term 

was coined for RNA-Seq technology.73 Here we use transcriptomics to refer to any high-

throughput gene expression technology including, but not limited to, Affymetrix microarrays 

(used for building the CMap databases), the L1000 platform (using in the Library of 

Integrated Network-based Cellular Signatures (LINCS) database), and RNA-Seq technology. 

Transcriptomic data from different technologies are generally represented at four different 

levels: (L0) level 0 raw data specific to the assay technology, (L1) level 1 unnormalized 

mRNA data derived from raw data using assay-specific processes, (L2) level 2 normalized 

mRNA data, and (L3) level 3 differential gene expression data obtained by analyzing mRNA 

data between cases and controls. Each technology has varying needs for RNA purification 

but may or may not require complementary DNA (cDNA) synthesis. Affymetrix high-

density microarrays hybridize each mRNA in a sample with thousands of oligonucleotide 

probes. Each mRNA sequence is mapped to a set of probes (called a probeset) designed 

to optimize the sensitivity and specificity of measurements. Affymetrix microarray L0 data 

are images, called cell intensity files (CEL), which are processes using image analysis tools 

to produce L1 data. L1 data is normalized74 using one of the available approaches75,76 to 

estimate L2 data as logarithm (base 2) intensity value for each transcript. LINCS data are 

generated using the L1000 platform.77 The LINCS platform employs flow cytometry to 

measure the relative abundance of mRNAs that hybridize to Luminex beads tagged with 

fluorescent oligonucleotide probes (producing Luminex bead array data as L0 files). The L0 

flow cytometry data are deconvoluted to obtain L1 data, which are quantile-normalized to 

get L2 data on landmark genes (978) and imputed transcripts (12,336). RNA-Seq uses high-

throughput DNA-sequencing technology to directly read the cDNA in samples producing 

mRNA sequence fragments, known as “reads,” as raw FASTQ files (L0). Each read in L0 

is aligned with the known sequences of gene products or the entire genome to generate L1 

data (for a review of best practices, see Conesa et al.78). RNA-Seq technology continues 
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to evolve rapidly, and several modifications have been proposed to avoid cDNA synthesis 

(by using RNA directly) and to target specific genes (instead of sequencing all genes), 

including NPSeq,79 RASL-Seq,80 DRUG-Seq,81 and TempO-Seq.70 Such targeted RNA-Seq 

approaches can be cost-effective as they use oligonucleotide templates (also called probes) 

derived from specific regions in individual genes to measure their expression to produce 

L0 and L1 data. Validation studies have demonstrated the concordance between L1000 and 

microarrays,82 and targeted RNA-Seq, RNA-Seq, and microarrays83 for evaluating reference 

chemicals. The choice of transcriptomic platform comes down to reproducibility and cost. 

Therefore, new transcriptomic technologies that promise to lower the cost and efficiency of 

transcriptomic data generation continue to be developed (for example, see NanoString84).

Differential gene expression analysis

The L2 normalized mRNA data for each gene in the “cases” are compared with “controls” 

to calculate each gene’s differential expression. There are many statistical approaches 

for estimating confidence in each gene’s differential expression based on distributional 

intensity and count data assumptions.85–87 Batch-correction approaches can also improve 

differential expression estimates.88–90 The differential expression values for genes are 

reported as the ratio (or difference for log-transformed L2 data) between the cases (e.g., 

chemical treatments or diseased subjects) and the controls (e.g., untreated samples or normal 

subjects). Differential gene expression is generally reported in log2 fold-change (L2FC) 

units. When batch effects are significant, Z-scores offer another approach to estimating 

treatment effects. They can be averaged over batches and reported as moderated Z-scores.77 

L2FC values or Z-scores have the following interpretation: positive/negative values mean 

that a gene is up-/down-regulated in a case versus control. The set of differential expression 

values for all genes defines the L3 transcriptomics data.

Transcriptomic profile

We define L3 data as the differential transcriptomic profile (x) in which up- and down-

regulation of all genes are quantified (e.g., L2FC values or Z-scores) (Figure 2(a)). 

Transcriptomic technologies (e.g., Affymetrix, L1000, and RNA-Seq) measure mRNA 

in samples using different probes or sets of reads mapped to a unique set of genes 

(denoted as, g). Unique gene names, standardized using Entrez gene identifiers91 and 

Human Gene Nomenclature Committee (HGNC) codes92 (or other species-specific genome 

databases), enable a comparison of L3 transcriptomic data from diverse technologies. Each 

transcriptomic technology attempts to capture a broad subset of the entire list of genes for 

each species’ genome (denoted as, G = g1, g2, g3…, gj, … ) For the remainder of this review 

we ignore the differences in coverage of the genome and assume that the transcriptomic 

profile from any assay technology can be represented generally as a vector denoted as 

x, where x = [x1, x2, …, xi, …, xN], xi is the differential expression of one gene gi, N is the 

number of genes in the profile and gi ∈ G. Similarly, the significance scores associated with 

differential expression values for genes can also be represented as a vector denoted as p, 

where p = [p1, p2, p3, …pj, …pN], pi is the p-value associated with change in expression xi for 

gene gi.
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Extreme transcriptomic profile

Highly differentially expressed genes may be more informative than less differentially 

expressed ones. The extreme transcriptomic profile (xn) has been proposed as one possible 

approach for summarizing the most highly differentially expressed genes in x. Cheng et al. 

refer to this subspace of x as the “eXtreme” transcriptomic profile, where extreme connotes 

the selection of the most up- and down-regulated genes.72 First, x (Figure 2(a)) is sorted 

in order of differential expression values, which places the genes with the greatest up-/down-

regulation at the extremes. If the n+ and n− most up- and down-regulated genes in x are 

S+ and S−, respectively then the extreme transcriptomic profile xn = {xi | i ∈ Sn − ∪ Sn + }

(Figure 2(b). S+ and S− may be further restricted to genes in x that meet a p-value and/or 

fold-change threshold (Figure 2(b)). For example, one can define a 2-fold threshold for the 

magnitude of differential expression to identify S+ (i.e. log2(FC)>1) and a 2-fold decrease 

(i.e. log2(FC)<−1) to identify S−. In other words, an extreme transcriptomic profile can also 

be defined by selecting the top up- or down-regulated genes. In this case S+ is comprised 

of the n-most up-regulated genes (where n+=100, 200, 300, etc.), while S− is formed by the 

n-most down-regulated genes (n−=100, 200, 300, etc.).

Gene signatures

A gene signature is a list of genes (also known as a “gene set”) whose collective activity 

represents a fingerprint of a biological state (mechanism, pathway, disease, etc.). We discuss 

two main types of gene signatures in this review. First, we define a “directional” gene 

signature (DSn) as a set of up- and down-regulated genes derived from a transcriptomic 

profile. DSn can be formed by Sn +  and Sn −  (which are the n+ and n− most up- and 

down-regulated genes in x) used to define xn (i.e., DSn = up:Sn + , down:Sn − ) (Figure 

2(c)). For example, the eight up-regulated and five down-regulated genes associated with 

HDAC inhibition63 are an example of a directional signature (albeit with a different 

number of up- and down-regulated genes). Others have also used transcriptomic profiles 

in CMap v1 to generate gene signatures for treatments by including the 250 most up- and 

down-regulated genes.93 Second, a “non-directional” gene signature (S) (Figure 2(d)) is 

a collection of genes associated with a treatment, a pathway or phenotype in which the 

direction of differential expression is not known (or not considered). A non-directional 

gene signature can be formed by combining the up- and down-regulated genes in DSn

(i.e., S = S+ ∪ S−  (Figure 2e). Alternatively, it can be created from a canonical pathway 

(Figure 2(e)), which captures expert knowledge-based descriptions of biological networks 

in terms of the interactions between small molecules, proteins, and genes94 (Figure 

2(f)). So, a non-directional gene signature can be a list of genes in any given pathway 

(S = {g100, g2, g32, …, gi, …}; gi ∈ Patℎway). For example, Mootha et al. used the non-directional 

gene sets of canonical pathways to compare the transcriptomic profiles for diabetic vs 

healthy tissues, and identified a match with the oxidative phosphorylation pathway.58 For the 

remainder of this review, we refer to non-directional signatures simply as gene signatures or 

gene sets.
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Harmonizing gene signatures and transcriptomic profiles

Thus far, we have discussed four different concepts for representing biological states 

using gene expression: two types of transcriptomic profiles ({x, xn}) and two types of 

gene signatures ({DS, S}). We introduce the notion of a gene set object (denoted as O) 

to capture these four possible representations of biological state in terms of genes (i.e., 

O ∈ {x, xn, DSn, S}), and to encapsulate different mathematical operations that are needed 

to calculate transcriptomic similarity. As illustrated in Figure 2, a transcriptomic profile 

can be translated to a signature, but a signature can also be translated to a profile. 

For example, a hypothetical non-directional pathway signature SA = g1, g2, g5, …, gi, …, gn

contains a subset of the genes in G and can be represented as a binary vector 

xA = [1,1, 0,0, 1, …, 1, . . ] (that is, xA xi = 1ifi ∈ SA}). Similarly, a hypothetical directional 

signature DSB
n = {SB

+: g3, g4, g8, … ∪ SB
− = g2, g5, g7, … }, can be represented as the vector 

xB = [0, − 1,1, 1, − 1,0, − 1,1, …] (that is, xB =  {xi |xi = 1ifi ∈ SB
+,  xi = − 1ifi ∈ SB

−}).

Transcriptomic similarity measures

We can now define a similarity measure (SM) as a pattern-matching operation on a query 

object (Oq) and a reference object (Or) (SM(Oq, Or)) to produce a similarity (or connectivity) 

score (s) and, optionally, an associated significance score (p) (i.e., s, p = SM(Oq, Or)). The 

values of s and p measure the strength and the significance of the match between Oq and Or. 

The values of s and p are interpreted as follows: (i) high magnitude values of s suggest a 

high degree of similarity (positive) or dissimilarity (negative) whereas low absolute values 

of s imply low similarity/dissimilarity; and (ii) low values of p(p ≪ 1) are statistically 

significant whereas, high values of p have lower confidence. Therefore, a combination of the 

connectivity score and significance score determines the strength and the relevance of the 

match (also referred to as a “hit”). Most SM use mathematical (set and vector) operations 

to calculate s by comparing Oq and Or (which are discussed later and shown in Table 2). 

All SM use information about the genes that are in common between Oq and Or (using the 

set operation Oq⋂Or). Some approaches also use information about genes that are not in 

common between Oq and Or and we refer to these as the complement of O (denoted as O′), 
which is the set difference between Or and Oq(Oq

′ = Oq\Or) and similarly, the complement of 

Or (Or
′ = Or\Oq). The number of genes in Oq and Or are referred to as nq and nr, respectively. If 

Oq and Or are DS then n+, n−  are denoted as {nq
+, nq

−} and {nr
+, nr

−}, respectively.

Reference databases

We consider two main types of reference databases (R): transcriptomic databases that are 

comprised of a large compendium of transcriptomic profiles (Rx = {x1, x2, x3, …} ) (Figure 

4(d)), and gene signature databases Rs = {S1, S2, S3, …}  that contain extensive collections of 

gene sets (S or DS). First, we discuss large-scale reference transcriptomic databases that 

have been developed for connectivity mapping, including CMap,5 LINCS,95 and the Gene 

Expression Omnibus (GEO),11 which is another source of millions of transcriptomic profiles 

from thousands of experiments (albeit with diverse transcriptomic technologies). Second, we 
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discuss reference gene set databases focusing on knowledge-based canonical pathway gene 

sets and experimentally-derived directional gene sets.

Connectivity Map (CMap)

CMap v1 was initially developed to find relationships between chemicals, genes, and 

diseases.4 This dataset was produced by treating MCF7 (breast cancer), HL60 (leukemia), 

and SKMEL5 (melanoma) cell lines with 164 diverse chemicals at a 10 μM concentration 

for both 6 and 12 h. Transcriptional profiles were generated using Affymetrix GeneChip 

HGU133 measuring the levels of ~ 22,000 transcripts. In all, there were 564 unique 

transcriptomic profiles and 453 differential expression profiles (after comparing treatments 

and controls). Following the success of this approach, the same group produced CMap v2,65 

in which three cell lines (MCF7, PC3, and HL60) were treated with 1,309 chemicals for 6 

h to produce 6,100 differential expression profiles using the Affymetrix U133A GeneChip96 

containing 22,215 transcripts associated with 13,609 genes. The entire CMap v2 database 

contains 1,294 chemical differential expression profiles in MCF7 cells, 1,182 profiles in 

PC3 cells, and 1,078 profiles in HL60 cells and is available for download from The Broad 

Institute. The raw Affymetrix data are normalized and processed (as described earlier) to 

generate a set of transcriptomic profiles, Rx.

Library of Integrated Network-based Cellular Signatures (LINCS)

Following the success of the CMap v2 project, the U.S. National Institutes for Health (NIH) 

funded the LINCS Consortium to expand the reference transcriptome database to study 

genetic (single gene over-expression or knockdown) and chemical perturbations producing 

a database containing more than 1,000,000 profiles.77 To achieve this 1000-fold scale-up 

of CMap v2, the LINCS Consortium developed computational methods to analyze a large 

compendium of expression data (12,031 Affymetrix gene expression profiles from GEO) to 

identify a subset of genes that could predict the entire transcriptome. Their analysis showed 

that using just 978 “landmark” transcripts could predict the expression of 82% of all genes. 

The L1000 platform measures these 978 genes (or 1,058 probes) using Luminex bead-based 

technology. It is, therefore, possible to infer the expression levels of 12,336 genes from the 

landmark 978 genes, and the resulting transcriptomic profiles are available as moderated 

Z-scores. The LINCS project has produced 1,319,138 L1000 profiles for 19,811 chemicals 

and 7,494 genetic perturbations. The L0, L1, L2, and L3 LINCS data are available from 

GEO as dataset GSE92742 and can also be interactively (or programmatically) analyzed via 

a cloud-based system (http://clue.io).

Gene Expression Omnibus

The US National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO)11 database is a public domain repository of author-submitted transcriptomics data 

that conforms to the MIAME (minimum information about a microarray experiment) 

standard.97 Unlike CMap and LINCS, GEO is a repository of published experimental studies 

and transcriptomics platforms. In GEO, highly multiplexed transcriptomics assays (like the 

Affymetrix HGU133 GeneChip and The Broad Institute’s L1000 array) are “platforms,” 

individual transcriptomics profiles are “samples,” and large-scale experiments are stored as 
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a “series” of samples (like CMap v1, v2, and LINCS). A platform contains a set of probes 

directly linked to genes. The transcriptomic profile for a sample measures the levels for all 

probes. After substantial curation, a collection of biologically and statistically comparable 

samples in a series can be made available as a GEO DataSet. As of September 2021, 

GEO contains 4,348 DataSets, 160,597 series records, from 22,587 platforms and including 

4,628,210 samples. All data in GEO can be freely downloaded and analyzed using the R 

programming language98 via the GEOquery99 package or using the Python programming 

language using the BioPython100 package.

ArrayExpress

The European Bioinformatics Institute (EBI) ArrayExpress12,101,102 database is the 

European counterpart to GEO, which also stores transcriptomics data in a MIAME-

compliant format provided by authors in support of publications. In addition to 

transcriptomic data, ArrayExpress also maintains data from other molecule profiling 

technologies that include measurements of small molecules (metabolomics) and proteins 

(proteomics). Because metadata for transcriptomic profiles, including experimental model 

and treatment-related factors, are annotated using a controlled vocabulary,103 ArrayExpress 

can be more suitable for building automated computational workflows. Although initially 

intended as an integrated resource for all gene expression studies from GEO and the DNA 

Data Bank of Japan,104 the rapid growth of transcriptomics data has made this challenging. 

The lack of a central “index” of all transcriptomic studies makes it necessary to query 

ArrayExpress and GEO separately; however, some efforts have been undertaken to address 

this issue.105 Data in ArrayExpress can be searched and retrieved using the R ArrayExpress 

package106 and the Python BioServices package.107

Directional gene sets

With the availability of thousands of transcriptomics profiles in CMap, LINCS, GEO, and 

ArrayExpress,102 it is also feasible to automatically generate gene signatures for a rich 

range of biological contexts. Gene signatures have been automatically generated for many 

GEO datasets using detailed annotations of treatments.108–111 The specific genes included 

in a signature depend on the annotation of control (normal) and case (perturbed) samples 

in a study. Automated sample class interpretation (i.e., normal vs. perturbed) can be error-

prone due to inconsistent annotations. Therefore, it is essential to manually-curate sample 

annotations in large public transcriptomic databases to generate valid gene signatures, which 

is a resource-intensive task. A crowd-sourcing approach has been recently used to develop 

CRowd Extracted Expression of Differential Signatures (CREEDS),112 which contains DS
associated with 2,176 single gene perturbations, 828 disease signatures, and 875 single 

drug perturbations. The molecular signatures database (MSigDB) is another resource for 

DS associated with thousands of experimental perturbations 113,114. A subset of the C2 

collection of MSigDB v7.0 includes thousands of DS associated with chemical and genetic 

perturbations. The LINCS database also provides several predefined signatures for each 

perturbation derived from the landmark 978 genes and the complete set of inferred genes. 

One of the key challenges is identifying the parameters for constructing optimal gene 

signatures from transcriptomic profiles to find biologically relevant connections. We discuss 
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how signature size is one of the factors used in evaluating connectivity mapping approaches 

for addressing different biological questions.

Pathway and other gene sets

Pathway gene set databases can be constructed from canonical pathways that capture 

expert knowledge-based descriptions of biological processes. This has also been done 

comprehensively in MSigDB,113,114 which includes several canonical databases such as 

Reactome,115 Kyoto Encyclopedia for Genes and Genomes (KEGG),116 the National Cancer 

Institute (NCI) Pathway database117 and Gene Ontology.118 MSigDB also contains gene 

sets related to genetic and chemical perturbations, gene co-expression modules, transcription 

factor targets, etc., which are represented by S (or DS in some cases).

Connectivity scoring approaches

As stated earlier, gene set-based scoring can be stated generally as SM Oq, Or , where Oq is 

the input query, and Or is from a reference database, R. This operation can be categorized 

based on three main attributes: (i) the types of input arguments Oq and Or, (ii) the type of 

SM, and (iii) the source of R. First, the types of Oq and Or are defined by the possible 

pairs of inputs from x,  DS, S  (where we assume that x covers xn for brevity), which are 

expressed as ({Oq, Or}) including: (a) xq,  Sr  or Sq, xr  (b) DSq, xr  or xq, DSr , (c) xq, xr , 

(d) Sq,  Sr , (e) Sq, DSr  or DSq,  Sr , and (f) DSq, DSr . Although the order of the inputs 

distinguishes between the query and the reference, we add the subscript “q” or “r” to make 

the distinction explicit. Second, we categorize SM (Table 2) into two main groups, including 

“enrichment”-based statistical aggregation approaches, borrowing the terminology used by 

Irizarry et al.119 (denoted as SMa), and “vector”-based similarity metrics, which term was 

introduced first by Tanner and Agarwal120 (denoted as SMv). Aggregation-based approaches 

generally operate on signatures and profiles (i.e., input types (a) and (b)). On the other 

hand, vector-based methods operate on vectors (inputs of type (c)). Since S and DS can be 

transformed into vector representations (as described earlier), vector-based approaches can 

be applied to all kinds of inputs. Lastly, the reference databases are usually defined by Rx

(LINCS, CMap (v1 or v2), or GEO) and RS (MSigDB, CREEDS, etc.). We summarize some 

of the details of the approaches in Table 2, including the mathematical formulas for different 

SM. Lastly, we focus on the nature of the measures used to calculate s and discuss strategies 

for estimating p in the following section.

Aggregation-based enrichment scoring approaches

Matching transcriptomic profiles to pathway signatures: SMa(xq,  Sr)—These 

SMa match transcriptomic profiles of samples against reference pathway databases 

(Illustrated in Figure 3). They calculate differences in the distributions of differential 

expression values in xq for genes in Sr and genes in Sr
′ (where Sr

′ contains genes absent 

in Sr). These measures “aggregate” the values for differential expression in  xq across Sr and 

compare them with Sr
′ using different summary statistics to produce the output, s, which 

is referred to as an enrichment score (ES) because it determines whether the gene set 

represented by Sr is “enriched” in xq. Different scenarios for the matches between xq and 
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Sr are shown visually in Figure 3 to illustrate examples of high and low-scoring matches. 

If genes in Sr are concordant with highly up- and down-regulated genes in xq then the 

SMa produces a high s, which is shown by four examples: (i) strong connections: genes 

in the Sr are concordant with highly up- and down-regulated genes in xq, (ii) positive 

connections: genes in the Sr are concordant with highly up-regulated genes in xq, (iii) 

negative connections: genes in the Sr are concordant with highly down-regulated genes in xq, 

and (iv) no connection: genes in Sr are discordant with up- and down-regulated genes in xq

then the SM .  SMa(xq,  Sr) distinguish between positive and negative connections and aim to 

produce s that can rank connections by strength in descending order of magnitude.

Different SMa are distinguished by the approaches for scoring Sr and xq. For example, the 

absolute sum of values for differentially expressed genes values in xq may be much greater 

for Sr than in Sr′121. Alternatively, the (absolute) mean value of the differential expression 

in xq may be much greater or lower for Sr than in Sr′. In calculating aggregate scores 

for Sr and Sr′, expression values can be measured using q-values (differential expression 

p-values adjusted for multiple testing) as is the case in the expression signature analysis tool 

(EXALT).122 The two sample Student’s t-test is another approach for determining whether 

the differential expression values for genes in xq are statistically significantly different 

between Sr and Sr
′.119 Many parametric aggregation-based enrichment scoring approaches 

use t-tests,123–125 ANOVA,126 Z-scores,127 logistic regression,128 random-sets,129 and 

standardized Chi-Squared scores.119 Significance analysis of function and expression 

(SAFE) implements several parametric methods.130 If the differential expression values for 

genes in xq between Sr and Sr
′ are not distributed normally then parametric aggregation-based 

enrichment scoring methods may not work. In such cases using non-parametric approaches 

such as the Wilcoxon rank sum statistics130,131 or the max-mean statistic132 may be more 

appropriate.

There are three main versions of GSEA, and they are all based on a non-parametric 

aggregation approach. We discuss the first two versions of GSEA here as they are both of 

type SMa(xq, Sr). The first version, which we refer to as GSEAa,
58 calculated a Kolmogrov-

Smirnov (KS)-like statistic (“running sum statistic”) by comparing the sorted xq with Sr

as follows: (i) create a vector y and update its values using the sorted xq, (ii) if gene 

gi ∈ xq ∧ gi ∈ Sr yi = w, where w = 1 (iii) if gene gi ∈ xq ∧ gi ∉ Sr yi = w′ where w′ < 0 is 

a penalty, and (iv) calculate the empirical cumulative distribution of y (or “running sum”), 

yc = ∑i = 1
k ∑j < i

⬚ yj, and (v) then ESa = max yc . We refer to the output s of GSEAa as ESa, 

high values of which suggest enrichment of Sr in xq. It is important to note that GSEAa 

only used information about the rank of genes in xq based on differential expression (using 

signal-to-noise ratio and not L2FC values). The second version, GSEAb,59 extended GSEAa 

by using the magnitude of differential expression to calculate w(w = |xj|b

∑i ∈ Sr |xi|b
, where b = 1) 

and using a penalty adjusted to the size of the gene set (w′ = 1
N − n , where there are N genes 

in xq and n genes in Sr). We refer to the output s of GSEAb as ESb. The GSEAb approach is 

implemented in sscMap133 and in GSVA.134

Shah et al. Page 15

Chem Res Toxicol. Author manuscript; available in PMC 2023 November 21.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Connectivity scoring: SMa(DSq, xr)—The development of CMap required a new 

type of similarity measure for matching directional signatures (DSq) with transcriptomic 

profiles (xr) (illustrated in Figure 1). The core ideas in SMa(DSq, xr), which we refer to 

as GSEAc, are an extension of SMa(xq,  Sr), but the aggregation-based metrics compare 

differences in the distributions of differential expression values in xr for genes in Sq
+ vs Sq

+′

(i.e., up-regulated) with Sq
− vs Sq

−′ (i.e., down-regulated), respectively. Therefore, GSEAc is 

a similarity measure of the form SMa(DSq, xr), and its output s is called a “connectivity” 

score.5 Three scenarios for the matches between Sq
d and xr are shown in Figure 1 to 

illustrate three extreme cases of connectivity. First, if genes in Sq
+ and Sq

− are concordant 

with highly up- and down-regulated genes in xr, respectively, then the SMa produces s > 0
(labeled “positive connection” in Figure 1(f)). Second, if genes in Sq

− and Sq
+ are concordant 

with highly up- and down-regulated genes in xr, respectively, then the SMa produces s < 0
(labeled “negative connection” in Figure 1(h)). Third, if genes in Sq

− and Sq
+ are distributed 

randomly with respect to highly up- and down-regulated genes in xr, respectively, then 

the SMa produces s = 0 (labeled “no connection” in Figure 1(g)). The description of the 

GSEAc approach5 suggests that GSEAb was used to calculate enrichment for the up- 

(ESb
+ = SMa(x, S+)) and down-regulated genes (ESb

− = SMa(x, S−)) separately to determine 

overall connectivity score, ESc = ESb
+ − ESb

−. Connections between the inputs are positive if 

ESc > 0 and negative if ESc < 0 . If ESb
+ and ESb

− have the same sign, however, then weak or 

no connections are implied. Iorio et al proposed the Inverse Total Enrichment Score (TES)93 

using GSEAc (TES = 1 − ESc
2 ). Iorio et al. used the TES to search DSq (n+ = 250, n− = 250) 

against CMap v2 to calculate drug-induced gene expression profile similarity (DIPS). A 

weighted connectivity score (WTCS) based on GSEAc is also used to analyze connections 

between a signature and the LINCS reference database. The WTCS is like the TES in that a 

separate ES is calculated for the up- and down-regulated genes.135

Vector-based similarity scoring approaches SMv(xq, xr)
Vector-based approaches use different similarity measures to calculate s between vector 

representations of the gene set objects, Oq and Or. Most types of similarity measures136 

can be used to measure the similarity between xq and xr. For instance, the dot product of 

xq and xr (xq ⋅ xr) is the most straightforward measure of similarity. Cosine similarity scales 

the dot product by the product of the magnitudes, which can be interpreted geometrically 

as the angle between xq and xr (Cos= xq ⋅ xr
|xq | |xr|). The extreme values for cosine similarity are 

−1, 0, 1, which correspond to the situation in which the input vectors are antiparallel, 

orthogonal (unrelated), and parallel, respectively. Most connectivity scores produced by 

vector-based similarity approaches can be interpreted in the same way as enrichment scores. 

First, when the up- and down-regulated genes in the query and the reference profiles are 

highly concordant, then xq and xr are parallel, producing high positive scores (like “positive 

connections” in Figure 1(f)). Second, when the up- and down-regulated genes in the query 

and the reference profiles have no overlap, then xq and xr are orthogonal (or independent), 

producing low scores (like “no connections” shown in Figure 1(g)). Third, when the up- 

and down-regulated genes in the query profile are matched with the down- and up-regulated 
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genes, respectively, in the reference profile, high negative connectivity scores are produced 

(like “negative connections” shown in Figure 1(h)).

The first application of cosine similarity was based on using “extreme” transcriptomic 

profiles (described earlier), and the corresponding similarity measure was referred to as the 

extreme cosine score (XCos).137 Instead of cosine similarity, the correlation has also been 

used by several groups to calculate connectivity. Geneva120 uses Pearson and Spearman 

correlation coefficients between xq and xr and Zhang et al. use rank sum correlation to 

calculate connectivity scores.138 ProfileChaser108 also uses Pearson’s correlation but uses 

the p-value of differentially expressed genes in xq as weights.

The Jaccard index139 (or Jaccard similarity) is an even more straightforward approach for 

calculating the distance between binary representations of xq and xr (calculated using the 

Jaccard index as J xq, xr = xq ∩ xr
xq ∪ xr

;  0 ≤ s ≤ 1) or using the equivalent gene signatures, Sq and 

Sr (calculated as J Sq, Sr = Sq ∩ Sr
Sq ∪ Sr

). Because the Jaccard index does not consider directional 

fingerprints, it only produces positive values of s. In CREEDS,112 on the other hand, the 

authors describe an approach to evaluate directional signatures using the signed Jaccard 

index (SJI) (given in Table 2).

Estimating significance of transcriptomic similarity scores

Evaluating confidence in similarity scores is important for determining the biological 

relevance of matches between Oq and Or. Confidence in each similarity score can be 

estimated as the probability (p) of observing a value of s  =  SM(Oq, Or) given the background 

distribution of s (ψ(s)). ψ(s) can be estimated empirically by permutation testing. There are 

several different ways in which R can be permuted, and they depend on the choice of a 

null hypothesis. If the null hypothesis is based on genes in Oq alone the approach is called 

“self-contained,” but if the genes include the complement Oq
′ then the approach is called 

“competitive”.138 A self-contained null hypothesis states that no genes in a signature are 

differentially expressed. On the other hand, a competitive hypothesis tests whether genes 

outside the signature are at least as differentially expressed as the genes within the signature. 

Another important question is whether the randomization procedure breaks the correlations 

between genes,140 leading to apparently more statistically significant but less biologically 

relevant matches.

Instead of permutation-testing, it is also possible to derive ψ(s) using an extensive 

transcriptomic profile database. For instance, in Geneva120 s is calculated (separately for 

each vector similarity measure) using the CMap v1 database to derive a true ψ(s), which is 

used to estimate p0. In connectivity mapping based on LINCS, the authors avoid deriving 

p0 based on permutation testing to preserve the correlation structure between genes. Instead 

they use the entire R to determine ψ(s) and then calculate the proportion of reference profiles 

with a similar connectivity score, which they call the tau score (τ).141
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Evaluating transcriptomic similarity matching approaches

Given the breadth of techniques involved in connectivity mapping, one approach for 

evaluating their utility is to compare their performance using objective criteria. For most 

new connectivity mapping methods, this means evaluating performance by scoring hits 

between gene set objects from reference data sets using one of the baseline approaches 

(which are generally GSEAb and GSEAc). Alternatively, the performance of connectivity 

mapping can also be framed as a classification problem. For example, Mootha et al.58 

analyzed differentially expressed genes from diabetic muscle samples and “classified” them 

as relevant for oxidative phosphorylation. This approach can be generalized for evaluating 

connectivity mapping; however, it requires an annotated set of positive and negative 

examples in reference databases.

One of the challenges in evaluating connectivity mapping approaches is that there are no 

gold-standard data sets of chemicals and targets. For example, the Anatomical Therapeutic 

Chemical (ATC) classification142 organizes drugs hierarchically based on four levels: 

the organ system at the top level, then therapeutic characteristics, and then the specific 

mechanism at level 4. One approach for classifying mechanisms by connectivity mapping 

developed by Iorio et al.93 used TES to identify similar drugs in CMap v2. They constructed 

a “drug network” based on connectivity scores and evaluated significance based on random 

pairs in CMap v2. Next, they determined whether similarity in the network predicted 

similarity in drug mechanisms labeled by ATC codes. After evaluating performance using 

the area under the receiver operating characteristic (AUROC) curve, they showed that 

close neighbors in the network shared mechanisms. While this analysis did not objectively 

compare different SM, it paved the way for using ATC codes and AUROC curve analysis for 

evaluating the results. Similarity scores between transcriptomic profiles of chemicals labeled 

with ATC scores have been objectively based on their known mechanisms or relationships 

with protein targets.15,121 However, the ATC scheme is specific to drugs and may not help 

evaluate the broader environmental chemical space.

The first evaluation of connectivity mapping approaches for predicting drug mechanisms 

was based on CMap v2 as the reference database with drug mechanisms labeled using ATC 

codes.72 This work compared mean-centering and differential expression analysis (based 

on treated and control samples) for creating the transcriptomic reference database, a range 

of signature sizes, different connectivity scoring methods (TES, GSEA, XCos), and used 

AUROC curves to compare the performance of these approaches for classifying ATC level 

4 codes. Instead of using the area under the entire ROC curve, Cheng et al. measured the 

partial area under the curve (AUC) for a false positive rate of less than 0.1 (AUC0.1). 

Based on AUC0.1, the XCos vector similarity method outperformed KS and TES using gene 

signatures comprised of 100 up- and 100 down-regulated genes.

Transcriptomic Connectivity Mapping in Toxicology

Determining the potency and potential of chemicals for activating molecular targets that can 

lead to adverse health outcomes is a key challenge in toxicology.66 Though high-throughput 

screening (HTS) formats such as ToxCast 143,144 are more cost-effective than animal testing; 

there are far too many chemicals in commerce to evaluate using multiple HTS assays. High-
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throughput approaches such as RNA-Seq,9 and, more recently, TempO-Seq,70 are extremely 

promising and cost-effective for generating transcriptomic profiles for tens of thousands of 

chemical treatments. Connectivity mapping can be used to evaluate the potential targets 

and the off-target effects of a new drug or a chemical. Whether considering new chemical 

entities for drug discovery or untested environmental chemicals for public health protection, 

transcriptomic connectivity mapping is a robust and high-throughput alternative to the 

existing techniques.16 With a deadline of eliminating the use of mammalian test results by 

2035,145 developing new approach methodologies (NAMs), which could efficiently provide 

information about chemical hazards and risks without using whole animals,146 is imperative 

for protecting public health and the environment. Connectivity mapping using transcriptomic 

data is a NAM-based methodology that will aid in realizing this vision.

Connectivity mapping has been used to characterize ecotoxicological chemical stressors 

using fish transcriptomic data.147 The authors constructed a reference database for 55 

treatment conditions using transcriptomics data from fathead minnow and zebrafish (using a 

variety of gene expression platforms). Chemicals in the reference database were annotated 

with mechanisms using molecular initiating events (MIEs) in adverse outcome pathways 

(AOPs). Then they used sscMap133 to find connections between gene signatures derived 

from new samples and profiles in the reference database. De Abrew et al. investigated the 

mode of action (MOA) for 34 different chemicals using transcriptomic profiles measured in 

MCF7, Ishikawa, HepaRG, and HepG2 cells by comparing them with the CMap v2 database 

by similarity using hierarchical clustering and identified biologically-relevant connections.48 

More recently, we have used multiple connectivity mapping methods presented in this 

review to solve three problems. First, we evaluated the reproducibility of transcriptional 

effects for reference chemicals in primary rat hepatocytes using TempO-Seq and Affymetrix 

data from OpenTG Gates.69 We found that Jaccard and cosine similarity was more accurate 

than GSEAc for correctly matching extreme transcriptomic profiles of chemicals produced 

by TempO-Seq and Affymetrix technologies. Second, we successfully used GSEAc to 

calculate the concentration-dependent effects of chemicals on pathways and directional 

signatures68 using an approach illustrated in Figure 4. Third, we developed consensus 

signatures of stress response pathways and used GSEAc to match them with transcriptomic 

profiles for reference perturbagens.148 These studies suggest the feasibility of applying 

connectivity mapping to evaluate environmental chemical toxicities using transcriptomics 

data.

Using connectivity mapping to evaluate the potential off-target effects of drugs or effects 

of environmental chemicals requires a computational pipeline with six components. First, 

a database containing gene signatures corresponding to the transcriptional effects of 

reference chemicals and canonical pathways. Large-scale transcriptomic data sets such 

as CMap,4 LINCS,95 and GEO11 can be used to create a reference gene signature 

(Rs = {DS1, DS2, …}) database annotated with (a) uniquely identified chemicals149 and 

known mechanisms,150 or (b) thousands of genetic perturbations. To cover a broad set 

of transcriptional perturbations, gene signatures (S) associated with canonical pathways, 

expression modules, and transcription factors (e.g., MSigDB114) should also be included in 

Rs. Second, the transcriptomic profiles and signatures for untested environmental chemicals 
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must be produced using one of the high-throughput transcriptomic technologies. Third, 

multiple connectivity mapping tools should be used to search the signatures against the 

reference transcriptomic databases to identify potential hits and to infer their putative 

targets. Fourth, for each chemical, the concentration-dependence of s (and significance) 

must be analyzed to confidently establish a relationship with each putative target (if the 

transcriptomic data have been generated across multiple concentrations of test chemicals) 

(Figure 4). Fifth, the performance of the entire connectivity mapping approach must be 

systematically evaluated with a benchmark set of chemicals with known targets in order to 

develop best practices to ensure confidence in predictions. Lastly, in vitro potency values 

estimated from concentration-response analysis of chemicals must be extrapolated to oral 

equivalent doses using toxicokinetic modeling. Recently, Harrill et al. have successfully 

implemented and tested many components of this workflow in a pilot study in which 44 

chemicals were tested in MCF7 cells in concentration-response using TempO-Seq.68

The choice of similarity measure is essential in applying connectivity mapping 

to toxicology. Systematically comparing GSEA with other vector and aggregation-

based approaches using benchmark data suggests that it has either similar or lower 

performance.119,120,123,126,127 Our initial findings also suggest that vector-based approaches 

combined with extreme transcriptomic profiles match chemicals to their known molecular 

targets more accurately than GSEA.69,151 On the other hand, aggregation-based approaches 

could be more suitable for concentration-response modeling (see Figure 4) to estimate 

biological pathway activating concentrations.68 Given the many steps involved in 

connectivity mapping workflows, further research on the contribution of different factors, 

including the choice of similarity measures, is necessary.

Discussion

The reproducibility,152 scalability,9,70 and broad biological coverage of transcriptomics 

make it feasible to profile millions of biological samples for chemical treatments, genetic 

manipulations, and diseases.5,11,95 In toxicology, connectivity mapping is being used 

to identify the putative targets of new chemicals,48,69,147 to determine their impact 

on ecological and human health via adverse outcome pathways,153 to demonstrate 

the robustness and reproducibility of transcriptional effects across different studies and 

technology platforms,69 and to estimate biological pathway activating concentrations.68 This 

makes transcriptomic data-driven connectivity mapping a powerful tool for screening the 

many thousands of chemicals in commerce154 for putative effects and potency estimates for 

a broad array of cellular pathways.

One of the potential novel applications of connectivity mapping is to provide potential 

biological analogues47,48 when a new chemical lacks structurally similar substances. In 

such cases, using transcriptomic profiles in place of structure descriptors can rapidly 

identify possible mechanisms, and other properties, for untested chemicals using reference 

databases.69

This review provides a systematic analysis of the key elements of connectivity mapping 

and a detailed tutorial to build workflows for evaluating chemical-induced toxicity using 
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transcriptomic data. First, we proposed a coherent terminology to formalize diverse 

transcriptomic technologies (microarrays, L1000 and RNA-Seq). This terminology forms 

the basis of a uniform framework to represent transcriptomic profiles and produce gene 

signatures from them. Second, we used our proposed terminology to discuss some of the 

most widely used data sources for transcriptomic profiles (CMap, GEO, and LINCS) and 

gene signatures (MSigDB and CREEDS). Third, we formalized the connectivity mapping 

workflow in terms of a database search and retrieval task in which a query object is 

searched against a reference database using similarity measures to identify “hits.” Fourth, 

we classified published connectivity mapping approaches into two broad categories of 

similarity measures: vector-based and aggregation-based approaches. While vector-based 

approaches resemble similarity metrics used in other domains (e.g., cheminformatics), 

aggregation-based approaches are a new class of algorithms for measuring the similarity 

between transcriptomic profiles and gene signatures. Fifth, we reviewed the performance of 

aggregation and vector approaches reported in the literature on benchmark transcriptomic 

data sets. Beyond serving as a review of connectivity mapping approaches, we believe this 

manuscript can serve as a practical guide for implementing workflows by integrating public 

domain data and computational tools.

There are many limitations of connectivity mapping methods that should be addressed 

by future research to improve the utility of these approaches to toxicology and related 

disciplines. We summarize these into four broad categories: defining signatures of 

biological states, curating new benchmark data sets for evaluating connectivity mapping 

approaches, devising novel sensitive and specific similarity measures, and developing 

computational workflows that standardize and enable reproducible workflows. New 

strategies for developing reliable gene signatures will be vital for successfully applying 

connectivity mapping to interpret biological effects from transcriptomic profiles. First, 

there is considerable redundancy in published signatures (e.g., MSigDB113), which can 

produce multiple hits when searching transcriptomic profiles. Searching transcriptomic 

profiles against redundant signatures produces related hits that can hide the subtle but 

more biologically relevant effects. For example, there are dozens of signatures in MSigDB 

associated with DNA damage response, oxidative stress response, unfolded protein response, 

and other cellular stress response pathways. One approach for reducing redundancy is to 

aggregate related signatures into “consensus” signatures.155 Indeed, the idea of developing 

such consensus signatures is embodied in the Hallmark Signature collection of MSigDB.114 

Second, published signatures may not wholly encompass the full range of phenomena 

observed in transcriptomic data. Using transcriptomic profiles for more extensive collections 

of chemical and genetic perturbations (e.g., from CMap, LINCS, etc.), it may be possible 

to fingerprint a more comprehensive array of chemical mechanisms or putative biomarkers 

of toxicity156 as gene signatures. Early transcriptomic technologies were limited by data 

reproducibility,157 which reduced their utility in finding reliable biomarkers. Although 

dealing with biological variability is still a challenge,158 technological advancements are 

improving data quality,68,69,152 making it feasible to transform transcriptomic profiles for 

specific perturbagens into gene signatures that can be used for connectivity mapping more 

reliably (e.g., shown visually in Figure 2). Therefore, additional research is necessary for 

combining profiles for a chemical (e.g., for different concentrations and time points) or for 
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chemicals with similar mechanisms to develop new gene signatures. ML techniques could 

aid the development of such signatures when there are a sufficient number of profiles,159 

simple statistical approaches may be adequate if there are just a handful of profiles to 

form such signatures.155 The problem is that similarity-based methods, such as connectivity 

mapping, require a sufficient number of relevant descriptors but are notoriously sensitive to 

irrelevant descriptors.23 The number of genes necessary for producing an accurate signature 

for identifying a specific mechanism from transcriptomic data can only be defined by 

empirical evaluation. For example, Lee et al. compared chemical-induced gene signatures 

(from primary rat hepatocytes using TempO-Seq data) of increasing sizes using different 

connectivity scoring approaches with a legacy data set (Affymetrix data from Open TG-

GATES160) with varying results by chemical, mechanism, and treatment concentration.69 

As expected, 8 and 200 μM of WY14643, which is a peroxisome-proliferator activated 

receptor alpha (PPARα) agonist, produced hits with other PPARα activators in Open TG-

GATES. Similarly, valproic acid (400 and 10,000 μM) produced hits with other PPARα 
activators in Open TG-GATES using different vector-based approaches. On the other hand, 

even a 1000 μM acetaminophen treatment did not find any relevant matches. While using 

concentration-response data could avoid false negatives, optimizing the choice and number 

of genes included in signatures plays an important role in finding mechanisms of chemicals 

with subtle transcriptional effects.

The robustness of connectivity mapping approaches for differentiating actual biological 

signals from the noise requires further systematic evaluations using benchmark 

transcriptomics data sets derived from chemicals with known bioactivities studied in 

appropriate cell types using relevant concentrations and exposure durations. Although 

the ATC classification142 helps annotate drugs, this scheme is not ideal for annotating 

environmental chemicals. Other efforts are underway to integrate evidence about chemical 

bioactivity from disparate structured150 and unstructured151 sources to define potential 

reference chemicals for specific molecular and cellular targets. Once chemicals have been 

assigned to different classes of targets, then transcriptomic profiles for these chemicals 

can be retrieved from CMap, LINCS, or GEO to build gene signatures using the 

approaches discussed earlier. While connectivity mapping with these reference signatures 

can help assign putative targets or pathways to untested chemicals with high sensitivity, 

confident assessment of specificity is still challenging. Therefore, further work on improving 

specificity, by either finding additional perturbagens that do not activate a given target (i.e., 

negatives) or by using different randomization strategies to create “null” chemicals, is also 

important. Lastly, new software tools are needed for implementing different connectivity 

mapping workflows that can be tailored to specific problems and executed efficiently for 

large-scale data sets.

We have attempted to organize the spectrum of connectivity mapping approaches into 

vector- and aggregation-based approaches. Vector-based similarity measures are widely used 

in cheminformatics for finding chemical analogs using structure descriptors. Interestingly, 

vector approaches are also helpful in matching transcriptomic profiles and gene signatures. 

On the other hand, aggregation-based methods are unique to analyzing transcriptomic data, 

with GSEA as one of the most widely used techniques. Systematic comparisons of GSEA 

with other vector and aggregation-based approaches using benchmark data suggest that it 
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may not always be the most accurate method.119,120,123,126,127 For toxicology applications, 

our findings to date suggest that vector-based approaches are more effective for identifying 

putative molecular targets,69,151 but aggregation-based approaches are more suitable for 

concentration-response modeling (see Figure 4) to estimate biological pathway activating 

concentrations.68 Further research into the relative merits of vector- and aggregation-based 

approaches for toxicology applications could address some of these questions.

Novel connectivity mapping approaches beyond vector- and aggregation-based techniques 

are under active development, and two promising research areas are worth mentioning. First, 

dimensionality reduction of transcriptomic profiles to find more biologically meaningful 

latent representations (e.g., for molecular targets) could overcome some challenges in 

finding optimal gene signatures from noisy data. For instance, probabilistic connectivity 

mapping (ProbCMap161) uses latent factor models, which aggregate information across 

genes using different statistical models to construct a low-dimension representation 

of transcriptomic profiles. ProbCMap uses group factor analysis,162 sparse factor 

analysis,163 and Bayesian principal components analysis to generate low-dimensional 

vector representations of transcriptomic profiles and measure similarity between them 

using Pearson correlation. More recently, deep learning methods164 based on multilayer 

artificial neural networks are enabling an exciting wave of novel data-driven approaches 

to elucidate latent representations of biological mechanisms from transcriptomic data 165 

and even predict transcriptomic signatures based on transcription factor activity.166 Second, 

traditional gene signatures can be enhanced with computational approaches for analyzing 

genetic regulatory and signaling networks167–169 to predict the activation of transcription 

factors from transcriptomic data.170 Although we have not described these two approaches 

systematically in this review, the background and formal basis for analyzing connectivity 

mapping will help readers to place these in context. Our future work will expand on new 

connectivity mapping strategies based on deep learning and network analysis for identifying 

molecular targets of chemicals and drugs using transcriptomic data.

Conclusion

Connectivity mapping assumes that if two transcriptomic profiles are similar, it is due to 

a common biological state or process. If two chemicals produce similar transcriptomic 

profiles, then it could mean that they act via similar mechanisms. Therefore, connectivity 

mapping can infer the putative molecular targets of new chemicals based on existing 

chemicals or the toxicological properties of new chemicals based on known toxicants.16 

Connectivity mapping can be used for finding biological analogues,48 for determining the 

mechanism of action,69,147 and estimating pathway activating concentrations for chemicals 

by coupling similarity scores with concentration-response modeling.68 This review provides 

the relevant background and in-depth explanation of connectivity mapping workflows to 

address toxicology problems. It also lays out a roadmap for future research to address 

current challenges. This work is a conceptual overview for those interested in learning about 

the utility of connectivity mapping in the context of NAMs, practitioners interested in using 

connectivity mapping pipelines in their workflows, and researchers interested in developing 

novel approaches that advance the state-of-the-art.
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Figure 1. 
Overview of connectivity mapping as a pattern matching between (a) query and (b) 

reference using a (c) similarity measure illustrating different types of matches (f, g, and 

h). (a) The query is a directional gene signature (DS = {S+, S−}) signified by a set of 

up-regulated genes (S+ shown as red circles) and a set of down-regulated genes (S− shown 

as blue circles). (b) The reference is a transcriptomic profile x shown as a vector of log2 

transformed fold-change (L2FC) values for each gene (blue and red colors represent down- 

and up-regulation, respectively). (c) The similarity measure (SM) for scoring the match 

between DS and x. (d) A collection of predefined signatures representing sets of genes (e.g., 

involved in pathways). (e) A collection of transcriptomic profiles for a set of perturbagens. 

(f) “Positive connection” between DS and x when S+ and S− are correlated with up- and 

down-regulated genes in x. A positive connection is a match found when SM DS, x > 0. 

(g) “No connection” between DS and x when S+ and S− are uncorrelated with up- and 

down-regulated genes in x (where SM DS, x ≈ 0). (h) “Negative connection” between DS
and x when S+ and S− are anti-correlated with up- and down-regulated genes in x. A 

negative connection is a match found when SM DS, x < 0.
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Figure 2. 
Representing transcriptomic profiles and gene signatures. (a) A transcriptomic profile x
shown as a vector of log2 transformed fold-change (L2FC) values for each gene (blue and 

red colors represent down- and up-regulation, respectively). (b) An extreme transcriptomic 

profile xn is defined by selecting the n most up- and down-regulated genes in x (shown 

as red and blue squares, respectively). (c) A directional signature (DSn) is defined by 

transforming all up- and down-regulated genes in xn to 1 and −1, respectively. The 

directional signature (DSn = {S+, S−}), is signified by a set of up-regulated genes (S+

shown as red circles) and a set of down-regulated genes (S− shown as blue circles). (d) A 

non-directional signature (Sn) is derived from DSn by ignoring the direction of expression 

changes for all genes (all genes are shown as black circles). (e) A pathway containing a 

collection of proteins can be represented by a set of genes (which encode the proteins) and 

defined as a non-directional signature (S). (f) A causal network comprised of interacting 

proteins can be represented simply by a collection of genes (which can be represented as S. 

(g) A transcriptomic database is a collection of x. (h) A bioactivity signature database is a 

collection formed by one or more of the following types of signatures: xn, DS, DSn, S, and 

Sn.
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Figure 3. 
Overview of connectivity mapping as a pattern matching between (a) transcriptomic profile 

query and (b) non-directional signature reference using a (c) similarity measure showing 

illustrative examples of matches (f, g, h, and i). (a) The query is a transcriptomic profile 

x shown as a vector of log2 transformed fold-change (L2FC) values for each gene (blue 

and red colors represent down- and up-regulation, respectively). (b) The reference is a 

non-directional gene signature (S) signified by a set of genes (shown as black circles). (c) 

The similarity measure (SM) for scoring the match between x and S. (d) A collection of 

transcriptomic profiles for a set of perturbagens. (e) A collection of predefined signatures 

representing sets of genes (e.g., involved in pathways). (f) “Connection” between x and S is 

when most up- and down-regulated genes in x match S (observed when |SM x, S | > 0). (g) 

A “positive connection” between x and S is when mostly up-regulated genes in x are present 

in S (observed when SM x, S > 0). (h) “No connection” between x and S is when genes 

in S are randomly distributed across x (where SM x, S ≈ 0). (i) A “negative connection” 

between x and S is when mostly down-regulated genes in x are present in S (observed when 

SM x, S < 0).
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Figure 4. 
Overview of connectivity mapping for estimating chemical concentration-dependent scores 

for a signature. (a) The query is a non-directional gene signature (S) signified by a set 

of genes (shown as black circles). (b) The reference is a transcriptomic profile x shown 

as a vector of log2 transformed fold-change (L2FC) values for each gene (blue and red 

colors represent down- and up-regulation, respectively). (c) The similarity measure (SM) 

for scoring the match between S and x. (d) A transcriptomic database (Rx) comprised of a 

collection of x for multiple chemicals and concentrations (Conc). Rx is visualized as a matrix 

in which the rows represent genes, the columns show chemical concentrations, and the 

values in each column are x. For example, the outlined box in the matrix signifies eight x for 

each of the concentrations of a chemical. (e) Concentration-response analysis of similarity 

scores between S and x(SM S, x ) for each x of chemical shown in (d). The ordinate and 

abscissa show the similarity scores and the concentrations of the chemical, respectively. A 

null distribution (Null Dist.) of similarity scores (shown on the right of the graph along the 

ordinate axis) is generated by permuting Rx and calculating SM S, x  for all random profiles. 

The standardized similarity scores (Z) (calculated using the null distribution and shown as 

“+” symbols) are analyzed by curve-fitting. The fitted concentration-response curve (blue) 

is used to estimate the benchmark concentration (BMC) corresponding to the benchmark 

response (BMR) value of Z=1.
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Table 1.

Glossary of transcriptomic terminology presented in this review.

Transcriptomics Transcriptomics is defined as the measurement of large-scale (“global”) gene (g) expression in a biological 
sample including all genes or a representative subset of genes in the genome of a species (denoted as, 
G = g1, g2, g3, …, gj, … ). Each gene is transcribed into one or more messenger RNA (mRNA) molecules.

Transcriptomic 
technologies

Transcriptomic technologies use different approaches to measure global gene expression by quantifying individual 
mRNA molecules. Most technologies synthesize complementary DNA (cDNA) from mRNA and use complementary 
oligonucleotide probes to specifically detect cDNA by hybridization. Examples of transcriptomic technologies include: 
microarrays, L1000 and RNA-Seq.

Transcriptomic 
data

Transcriptomic data (or gene expression data) from different technologies is generated from biological samples under 
different experimental conditions including normal vs. diseased, control vs. treated, etc. Two frequent types of treatments 
are chemical and genetic perturbations involving the knock-out or over-expression of specific genes. Transcriptomic data 
can be represented by at least four main levels where the higher levels of data are derived from the lower levels: raw data 
specific to the assay technology (L0), unnormalized mRNA data derived from L0 data using assay-specific processing 
(L1), normalized mRNA data that captures the absolute levels of expression for genes and is comparable across the study 
(L2), differential expression data that captures the change in mRNA levels from the control (and may have associated 
statistical significance scores) that is comparable across studies (L3).

Transcriptomic 
profile

We define the transcriptomic profile (x) as the L3 transcriptomic data that captures differential expression values, e.g. 
log2 fold-changes (L2FC), Z-scores, p-values, q-values, etc. x = [x1, x2, …, xi, …, xN] where xi is the differential 
expression of one gene gi, there are N genes in the profile and gi ∈ G. If available, the significance scores 
associated with differential expression values for genes can also be represented as a vector denoted as p, where 
p = [p1, p2, p3, …pj, …pN], pi is the p-value associated with the change in expression xi for gene gi.

Extreme 
transcriptomic 
profile

We define the extreme transcriptomic profile (xn) as one that contains the most differentially expressed genes in x. The 

n most up-regulated genes (n+) and most down-regulated genes (n−) are denoted as S+ and S−, respectively. Then 

xn = {xi | i ∈ Sn − ∪ Sn + }.

Directional gene 
signature A directional gene signature (DSn) can be a list of the most differentially expressed genes in x (in other words, the 

genes in xn} associated with a biological state. Therefore, it is defined as: DSn = Sn − ∪ Sn + . Directional gene 

signatures can be defined based on other approaches and may not contain an equal set of up- and down-regulated genes.

Gene signature A gene signature (S) is a list of genes whose activity defines a biological state. S = g100, g2, g32, …, gi, … ; gi ∈ G. 

Therefore, S can be defined as a list of genes/proteins in a canonical pathway or by the genes in xn or DSn.

Gene set object We define a gene set object (O) as the most general concept for a transcriptomic profile (x), an extreme transcriptomic 

profile (xn), a directional gene signature (DSn) or a gene signature (S) i.e. O = {x, xn, DSn, S}. Although we 

have introduced DSn, S  as lists and x as vectors all can be represented as vectors. For example, a hypothetical 
non-directional pathway signature SA = g1, g2, g5, …, gi, …, gn  only contains a subset of the genes in G and 
can be represented as a binary vector xA = [1,1, 0,0, 1, …, 1, . . ] (that is, x i = 1 if i ∈ SA). Similarly, a 

hypothetical directional signature DSB
n = {SB

+: g3, g4, g8, … ∪ SB
− = g2, g5, g7, … }, can be represented as the 

vector xB = [0, − 1,1, 1, − 1,0, − 1,1, …] (that is, x i = 1 if i ∈ SB
+; x i = − 1 if i ∈ SB

−
).
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Table 2.

Summary of connectivity mapping methods

Type Method Query Ref Publications

Aggregation-based
 SMa

eXtreme Sum (XS) Sq xr or xr
n Cheng et al. 2014

eXtreme Mean Sq xr or xr
n

T-statistic (TS) Sq xr Tian et al. 2005; Goeman et al. 2004, 2005

Ranksum statistic (RS) Sq xr
Barry, Nobel, and Wright 2005; Gower, Spira, and Lenburg 
2011

GSEAa xq Sr Mootha et al. 2003

GSEAb xq Sr Subramanian et al. 2005

GSEAc DSq xr Subramanian et al. 2007

Total enrichment score (TES) DSq xr Iorio, Tagliaferri, and Bernardo 2009

Vector-based
 SMv

Pearson correlation xq or xq
n xr or xr

n Tenenbaum et al. 2008

Spearman Correlation xq or xq
n xr or xr

n Tanner and Agarwal 2008; Zhang et al. 2009

Cosine xq or xq
n xr or xr

n Cheng et al. 2012

Jaccard index (JI) Sq Sr

Signed Jaccard (SJI) Sq
+, Sq

− Sr
+, Sr

− Zichen Wang et al. 2016
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