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Abstract

Technological advances now make it possible to study a patient from multiple angles with high-

dimensional, high-throughput multi-scale biomedical data. In oncology, massive amounts of data 

are being generated ranging from molecular, histopathology, radiology to clinical records. The 

introduction of deep learning has significantly advanced the analysis of biomedical data. However, 

most approaches focus on single data modalities leading to slow progress in methods to integrate 

complementary data types. Development of effective multimodal fusion approaches is becoming 

increasingly important as a single modality might not be consistent and sufficient to capture 

the heterogeneity of complex diseases to tailor medical care and improve personalised medicine. 

Many initiatives now focus on integrating these disparate modalities to unravel the biological 

processes involved in multifactorial diseases such as cancer. However, many obstacles remain, 

including lack of usable data as well as methods for clinical validation and interpretation. Here, 

we cover these current challenges and reflect on opportunities through deep learning to tackle data 

sparsity and scarcity, multimodal interpretability, and standardisation of datasets.

Introduction

Over the past decades, technological innovations have transformed the healthcare domain 

with ever-growing availability of clinical data supporting diagnosis and care. Medicine is 

moving towards gathering multimodal patient data, especially in the context of age-related 

chronic diseases such as cancer1, 2. Integrating different data modalities can enhance our 

understanding of cancer3, 4, but also paves the way for precision medicine which promises 

individualised diagnosis, prognosis, treatment and care1, 5, 6.

Increasingly, we are moving from the traditional one-size-fits-all approach to more targeted 

testing and treatment. While molecular pathology revolutionised precision oncology, the first 

FDA-cleared companion diagnostic (CDx) assays relied on simpler molecular methods, and 

most assays focused on a single-gene of interest7, 8. However, advances in next-generation 

sequencing (NGS) now allow for multi-target CDx assays which are becoming more 

prevalent8, 9. The continuing cost reduction make it possible to simultaneously profile 

thousands of genomic regions hinting that soon multi-target panels could be run at a similar 
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price point to that of testing 5 to 10 targets individually10. Multi-target tests not only 

conserve time and tissue, but also have the potential to identify complex genetic interactions, 

thereby enhancing our understanding of tumour biology. While NGS is still in full swing, a 

third wave of technologies featuring single-molecule, long-read and real-time sequencing is 

already on the rise. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies allow 

to assemble and explore genomes at unprecedented resolution and speed11. This technology 

was recently used in a clinical setting to diagnose rare genetic diseases with a turnaround 

rate of only 8 hours12. Since cancer often is multicausal, the area of precision oncology 

greatly benefits from these developments.

At the same time, histopathology and radiology have been critical tools in clinical decision-

making during cancer management13, 14. Histopathological evaluation enables the study of 

tissue architecture and remains the gold standard for cancer diagnosis15. More recently, 

significant progress in whole slide imaging (WSI) has led to a transition from traditional 

histopathology methods towards digital pathology16. Digital pathology, the process of 

“digitising” conventional glass slides to virtual images, has many practical advantages 

over more traditional approaches, including speed, more straightforward data storage and 

management, remote access and shareability, and highly accurate, objective, and consistent 

readouts. On the other end of the spectrum is radiographic imaging, a non-invasive method 

for detecting and classifying cancer lesions. In particular Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI) scans are useful for generating 3D images of 

(pre)malignant lesions.

Ongoing improvements in artificial intelligence (AI) and advanced machine learning (ML) 

techniques have had major impacts on these cancer imaging ecosystems, especially in 

diagnostic and prognostic disciplines17. Current annotation of histopathological slides 

heavily relies on specialised pathologists. Leveraging image-based AI applications would 

not only alleviate the pathologists’ workload but also has the potential for more 

efficient, reproducible, and accurate spatial analysis capturing information beyond visual 

perception17–19. Radiomics and pathomics refer to fields focusing on the quantitative 

analysis of radiological or histopathological digital images, respectively, with the aim 

of extracting quantitative features that can be used for clinical decision-making20. This 

extraction used to be done with standard statistical methods, but more advanced deep 

learning (DL) frameworks like convolutional neural networks (CNN), deep autoencoders 

(DAN) and vision transformers (ViTs) are now available for automated, high-throughput 

feature extraction21–24. Automatic assessment of deterministic objective features has 

enabled the quantification of tumour microenvironments (TME) at unprecedented speed and 

scale. In addition to the quantification of known hand-crafted salient features without inter-

observer variability, DL also has the ability to discover unknown features and relationships 

that can provide biological insights and improve disease characterisation25. A notable 

radiomics study in lung cancer found that DL features captured prognostic signatures, both 

within and beyond the tumour region, that correlated with cell cycle and transcriptional 

processes26. Despite DL’s diverse capacity, one of the main challenges is the need for large 

datasets to train, test and validate its algorithms. But, due to ethical restrictions and the 

labour intensity to annotate clinical images, most studies only have limited access to large 

cohorts that contain ground truth labelled data27.
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Under the 21st Century Cures Act28, the FDA set a goal to advance precision medicine 

where the patient is at the centre of care. This act defines timelines for discovery, 

development, and delivery, and requires the fusion of evidence across modalities, with 

the provision that this must include real-world data and patient experience. Technological 

advances initiated an era where clinical data is being captured from multiple sources at 

unprecedented pace, ranging from medical images to genomics data and patient-generated 

health data (PGHD). Together with successes in AI, this opens the opportunity and necessity 

to analyse many data types with these advanced tools to better inform decision-making 

and improve patient care. To date, the FDA has cleared and approved several AI-based 

software as a medical device (SaMD)29. Together with the publication of their recent 

AI/ML white paper30 the FDA wants to highlight their intention to develop a regulatory 

framework for these highly iterative, autonomous, and continuously learning algorithms 

as well as for the specific data types necessary to assure safety and effectiveness. Some 

proposed considerations for data inclusion are (i) relevance to the clinical problem and 

current clinical practice, (ii) data acquisition in a consistent, generalisable, and clinically 

relevant manner, (iii) appropriate definition and separation of training, tuning and test sets, 

and (iv) appropriate level of transparency of the algorithm and its output to users.

Integration of AI functionalities in medical applications has increased in recent years31. 

However, so far most methods focused on only one specific data type at a time, leading to 

slow progress in approaches to integrate complementary data types with many remaining 

questions about the technical, analytical and clinical aspect of multimodal integration32–35. 

To advance precision oncology, healthcare AI should not only inform about cancer incidence 

and tumour growth, but must identify the optimal treatment path, accounting for treatment-

related side effects, socioeconomic factors, and care goals. Precision medicine can therefore 

only be achieved by merging complex and diverse multimodal data that span space and 

time. Single data modalities can be noisy or incomplete, but when combined with redundant 

signals from other modalities they can be more sensitive and robust to diagnose, prognose 

and assign treatments. Multimodal data are now being collected, providing a resource 

for biomarker discovery36–39. For cancer, both prognostic and predictive biomarkers are 

of interest. While the former provides information on the patient’s diagnosis and overall 

outcome, the latter informs about treatment decisions and response40.

Here, we argue that several sources of routinely collected medical data are not used to 

their full potential for diagnosing and treating cancer patients, because they are studied 

mostly in isolation instead of in an integrated fashion. These are: (i) electronic health 

records (EHR), (ii) molecular data, (iii) digital pathology and (iv) radiographic images. 

When combined, these data modalities provide a wealth of complementary, redundant, and 

harmonious information that can be exploited to better stratify patient populations and 

provide individualised care (Fig. 1). In the next sections, we discuss both challenges and 

opportunities for multimodal biomarker discovery as it applies to cancer patients. We cover 

strategies for data fusion and examine approaches to address data sparsity and scarcity, data 

orchestration and model interpretability.
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The need for multimodal data fusion in oncology

Despite huge investments in cancer research and improved diagnosis and treatments, cancer 

prognosis is still bleak. Predictive models based on single modalities offer a limited view 

of disease heterogeneity and might not provide sufficient information to stratify patients 

and capture the full range of events that take place in response to treatments41, 42. For 

example, although immunotherapeutic methods like antibody-drug conjugates (ADCs) and 

adoptive cell therapy (ACT) (e.g. T-cell receptor (TCR) and chimeric antigen receptor 

T-cell (CAR-T) therapy) have shown to be very promising, response rates vary dramatically 

depending on the tumour subtype43 and the TME44. Various TME elements play a role in 

tumour development, but also in therapeutic response. Furthermore, the cellular composition 

of the TME dynamically evolves with tumour progression and in response to anticancer 

treatments45, 46. The increasing application of immunotherapy underlines the need for (i) a 

deeper understanding of the TME and (ii) multimodal approaches that allow longitudinal 

TME monitoring during disease progression and therapeutic intervention47.

Currently, biomarker discovery is mainly based on molecular data48. Increasing 

implementation of genomics and proteomic technologies in a clinical setting has led to 

growing availability, but also growing complexity, of molecular data8. Large consortia like 

The Cancer Genome Atlas (TCGA) and Genomic Data Commons (GDC) have gathered and 

standardised large datasets, accumulating petabytes of genomic, expression and proteomics 

data37, 49, 50. Barriers for NGS assay development, validation, and routine implementation 

remain due to many factors, such as tumour heterogeneity, sampling bias and interpretation 

of the results. Clinically accepted performance requirements are also often cancer-specific 

and depend on where in the care trajectory and for what specific purpose (e.g. diagnostic, 

stratification, drug response or treatment decision) tests are used51. As relevant as molecular 

data are for precision medicine, they discard tissue architecture, spatial and morphological 

information.

Although lower in resolution than genomic information, both WSI and radiographic images 

potentially harness orthogonal and complementary information. Digital pathology with 

WSIs provides data about the cellular and morphological architecture in a visual way 

for pathologists to interpret and can provide key information about the TME’s spatial 

heterogeneity using image analysis and spatial statistics52. Similarly, radiographic images 

like MRIs or CT scans provide visual data of the tissue morphology and 3D structure53.

Integration of data modalities that cover different scales of a patient has the potential to 

capture synergistic signals that identify both intra- and inter-patient heterogeneity critical 

for clinical predictions54–56. For example, the 2016 WHO classification of tumours of 

the central nervous system (CNS) revisited the guidelines to classify diffuse gliomas 

recommending histopathological diagnosis in combination with molecular markers (e.g. 

IDH1/2 mutation status), as each modality alone is insufficient to explain patient outcome 

variance32, 33. Of late, some reports also suggest the use of DNA-methylation-based 

classification of CNS tumors34, 35.

The need for integrative modelling is increasingly emphasised. In 2015, a report from 

Ritchie et al. highlighted that “approaches to combine multiple data types provide a more 
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comprehensive understanding of complex genotype-phenotype associations than analysis of 
one dataset”57. The last years, there have been several attempts to develop multimodal 

approaches, to a great degree stimulated by community-driven competitions such as 

DREAM and Kaggle (i.e. http://dreamchallenges.org/ and https://www.kaggle.com/). But 

more work is needed to integrate routinely collected data modalities into clinical decision 

systems.

Data fusion strategies for multimodal biomarker discovery

The age of precision medicine demands powerful computational techniques to handle high-

dimensional multimodal patient data. Each data source has strengths and limitations in its 

creation, analysis, and interpretation that must be addressed.

Medical images, whether 2D in histopathology or 3D in radiology, contain dense 

information that is encoded at multiple scales. Importantly, they contain high spatial 

correlation and any successful approach needs to take this into account58. So far, the 

best performing methods have been based on DL, and specifically CNNs59–61. Continuous 

improvement in detection, segmentation, classification, and spatial characterisation means 

that these methods are becoming a crucial part of cancer biomarker algorithms.

EHRs comprise various data types ranging from structured data such as medications, 

diagnosis codes, vital signs, or lab tests, to unstructured data in the form of clinical 

notes, patient emails, and detailed clinical processes. Natural language processing (NLP) 

algorithms that can extract useful clinical information from structured and unstructured EHR 

data are being developed. A recent study showed the feasibility and power of such ML 

tools in a lung cancer cohort to reliably extract important prognostic factors embedded 

in the EHRs 62. Structured EHR sources are the easiest to process. Usually, this data is 

embedded into a lower dimensional vector space and fed as input to a recurrent neural 

network (RNNs). Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

are the most popular RNN architectures for this purpose63–65. While structured EHR data 

have obvious value, integration with insights from unstructured clinical data has shown 

to greatly improve clinical phenotyping66. Fortunately, advances in NLP now make it 

possible mine the unstructured narratives of patient records. One way to process this 

data is to convert free text to medical concepts and create lower dimensional “concept 

embeddings”. Older methods such as Word2Vec67 and GloVe68 have almost been overtaken 

by “contextualised embeddings” like ELMo69 and BERT70–72. While ELMo uses RNNs, 

BERT is based on transformers, a neural architecture that has revolutionised the NLP 

field since its inception73. To unlock EHRs’ full potential, more appropriate techniques are 

needed combining structured and unstructured information, while accounting for the noise 

and inaccuracies that are common to these data74. In this regard, the concept of transfer 

learning for extracting clinical information from EHRs has gained a lot of traction75.

Effective fusion methods must integrate high-dimensional multimodal biomedical data, 

ranging from quantitative features to images and text76. Representing raw data in a 

workable format remains challenging as ML methods do not readily accept unvectorised 

data. A multimodal representation thus poses many difficulties. Different modalities measure 

distinct unmatched features with different underlying distributions and dimensionalities. 
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Also, not all modalities and observations have the same level of confidence, noise, or 

information quality77. Multimodal fusion often suffers from dealing with wide feature 

matrices originating from very few samples with many features across modalities. Often 

advanced feature extraction methods such as kernel-based methods, graphical models, or 

NNs are needed prior to or as part of the data fusion process to reduce the dimensionality 

while preserving most of the salient biological signals77–80. Meaningful feature descriptions 

are the critical backbone of any model.

A major decision that must be made is at what specific modelling stage the data fusion takes 

place: (i) early, (ii) intermediate or (iii) late (Fig. 2)81–83. Early fusion is characterised by 

concatenating feature vectors of different data modalities and only requires the training of 

a single model (Fig. 2a). In contrast, late fusion is based on developing models on each 

data modality separately and integrating their single predictions with specific averaging, 

weighting, or other mechanisms (Fig. 2c). Not only does late fusion allow the use of 

a different, often more suitable, model for each modality but it also makes it more 

straightforward to handle situations when some modalities are missing in the data. However, 

fusion at the late stage ignores possible synergies between different modalities84.

While both early and late fusion approaches are model-agnostic, they are not specifically 

designed to cope with or take full advantage of multiple modalities. Anything between 

early and late fusion is defined as intermediate or joint data fusion84. Intermediate fusion 

does not merge input data, nor develops separate models for each modality, but instead 

involves the development of inference algorithms to generate a joint multimodal low-level 

feature representation that retains the signal and properties of each individual modality (Fig. 

2b). Although dedicated inference algorithms must be developed for each model type, this 

approach attempts to exploit the advantages of both early and late fusion79, 83. One key 

difference with early fusion is that the loss is propagated back to the inference algorithms 

during training, thus creating updated feature representations per training iteration84. 

Although this allows to model complex interactions between modalities, techniques need 

to be in place to prevent overfitting on the training cohort. Importantly, there is currently no 

decisive evidence that one fusion strategy is superior, and the choice of a specific approach 

is usually empirically based on the available data and task84.

Advances in multimodal biomarkers for patient stratification

Multi-omics data fusion—Although a single omics technology provides insights into the 

profile of a tumour, one technique alone does not fully capture the underlying biology. 

The rising collection of large cohorts of multi-omics cancer data has spurred several 

efforts to fuse multi-omics data to fully grasp the tumour profile and several models for 

survival and risk prediction have been proposed4, 6, 56, 85–93. The TCGA research network 

also published numerous papers investigating the integration of genomic, transcriptomic, 

epigenomic and proteomic data for multiple cancer types94–96. Also for therapy response 

and drug combination predictions, multi-omics ML methods proved their value over 

traditional unimodal models97–100. Although various multi-omics fusion strategies now 

exist, one single method will not be optimal for all research questions and data types, 

and sometimes adding more omics layers can even negatively impact performance101. Each 
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strategy has its own strengths and weaknesses, and careful selection of effective approaches 

should be based on the purpose and available data types57.

Multi-scale data fusion—Similar efforts as for multi-omics data fusion have been 

explored for multi-scale data89, 102–107. For example, Cheerla et al. used an intermediate 

fusion strategy to integrate histopathology, clinical, and expression data to predict patient 

survival for multiple cancer types. For each modality, an unsupervised encoder compressed 

the data into a single feature vector per patient. These feature vectors were aggregated into 

a joint representation allowing possible absence of one or more modalities48. Similarly, 

another study proposed a late fusion strategy to classify lung cancer. Using RNAseq, 

miRNAseq, WSI, copy number variation, and DNA-methylation they achieved better 

performance than obtained by each individual modality108. A few examples exist that show 

the potential of radiology to further refine patient stratification109–111. However, due to 

its high dimensionality and computational demands, so far most studies have avoided its 

inclusion112.

Imaging genomics & Radiogenomics—When possible, molecular tumour information 

is nowadays used in cancer prognosis and treatment decisions. Interestingly, multiple studies 

have shown that phenotypes derived from medical images can act as proxies or biomarkers 

of molecular phenotypes like an EGFR mutation in lung cancer113–115. This discovery 

immediately gave rise to an emerging field called “radiogenomics”, the study of directly 

linking image features to underlying molecular properties116. For example, Itakura et al. 
used MRI phenotypes to define subtypes of glioblastoma associated with molecular pathway 

activity117. Also for breast cancer, the value of radiogenomics for risk prediction and better 

subtype stratification has been shown118–120.

Current challenges and future directions for multimodal data fusion

Use of multimodal data models is likely the only way to advance precision oncology, 

but many challenges exist to realise their full potential. Although data availability is the 

main driver of multimodal data fusion, it also poses its major barrier. DL requires large 

amounts of data and data sparsity and scarcity both present serious challenges, especially for 

biomedical data. In clinical practice there are often different types of data missing between 

patients as not all patients might have all modalities due to cost, insurance coverage, 

material availability and lack of systemic collection procedures amongst others. To become 

relevant in an oncology setting, methods need to be able to handle different patterns of 

missing modalities. Fortunately, various interpolation, imputation and matrix completion 

algorithms have already been successfully applied for clinical data. These can range from 

basic methods including mean/median substitution, regression, k-nearest neighbour, and 

tree-based methods to more advanced algorithms like multiple imputation, multivariate 

imputation by chained equations or NN like RNN, LSTM and GANs121–123. Also, with the 

recent successes in DL techniques, dedicated fusion approaches are becoming available that 

allow joint representations that can handle incomplete or missing modalities48, 124–129.

However, there are two major hurdles to advance these efforts. Firstly, the depth of data 

per patient, i.e. many observables per patient are routinely generated and stored, but typical 
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cohort sizes of patients are relatively small. Emerging evidence highlights that these cohorts 

are often biased, representing patients from higher socioeconomic status with continuous 

access to care and high levels of patient engagement130, 131. Limiting analyses to patients 

with complete data will lead to model overfitting, bias, and poor generalisation. Secondly, 

the lack of large ‘golden labelled’ cohorts with matched multimodal data, mainly due to 

the intense labour to annotate cancer datasets combined with privacy concerns. Luckily, 

also here DL algorithms are starting to be developed. One popular approach is data 

augmentation132–135, which can include basic data transformations as well as generation 

of synthetic data, but also other strategies such as semi-supervised learning136–139, active 

learning140, 141, transfer learning139, 142–144, and automated annotation145, 146 have shown to 

be promising avenues to overcome labelled data scarcity.

Despite its potential, a critical roadblock for the widespread adoption of DL in a clinical 

setting is the lack of well-defined methods for model interpretation. While DL can extract 

predictive features from complex data, these are usually abstract, and it is not always 

apparent if they are clinically relevant147. To be useful in clinical decision-making, models 

need to undergo extensive testing, be interpretable, and their predictions need to be 

accompanied by confidence or uncertainty measures148, 149. Only then will they be relevant 

for and adopted by clinical practitioners.

Interpretation of black box models is a heavily investigated topic and some methods for 

post-hoc explanations have been proposed147, 150. In histopathology, most work focuses on 

extracting the most informative tiles by selecting those with the highest model confidence or 

by visualising tiles that are most relevant to the final prediction (Fig. 3a). For interpreting 

model predictions at higher resolution, the most relevant regions can be highlighted using 

gradient-based interpretation methods like Grad-CAM (Fig. 3b)151. Similarly, for molecular 

data, predictive features can be determined and visualised via Shapley Additive Explanation 

(SHAP)-based methods (Fig. 3d,e)150, 152–154.

Multimodal data adds additional complexity and needs careful evaluation of appropriate 

methods before scaling to multimodal interpretability. However, multimodal approaches 

are starting to emerge with encouraging solutions not only for interpretability but also for 

discovery of associations between modalities147, 150. Note that the aforementioned methods 

specify why a model makes a specific decision, but do not explain the used features. 

Additional strategies could be leveraged to further unravel biological insights. For example, 

selected tiles could be overlayed with Hover-Net155 to segment and classify nuclei to 

evaluate predominant cell types (Fig. 3c, unpublished data).

Standardisation will lead to more uniform and complete datasets, which are easier to process 

and fuse with other sources and will be much more interpretable on their own. TCGA is 

probably the best known and most used resource37, but many other initiatives are underway 

to structurally capture clinical, genomics, imaging, and pathological data for oncology, such 

as The Cancer Imaging Archive (TCIA)36 and the Genomics Pathology Imaging Collection 

(GPIC)38. Together, these efforts have the shared aim to process, analyse and share data 

using a community-embraced standard in a FAIR (findable, accessible, interoperable, and 

reusable) way156. This will not only promote reproducibility and transparency, but also 
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encourages reutilisation and optimisation of existing work. However, the volume and 

complexity of multimodal biomedical data makes it increasingly difficult to produce and 

share FAIR data and current solutions often require specific expertise and resources157. 

Furthermore, some modalities such as EHRs are not only extremely difficult to standardise 

and share, but also very expensive to obtain by researchers158, 159. Efforts like OMOP aim at 

tackling this issue by harmonising EHR data across institutes and countries160, 161. To make 

progress in multimodal studies, there is a dire need for data orchestration platforms157, but 

also appropriate regulatory frameworks to preserve patients’ privacy162.

The importance of biomedical multimodal data fusion becomes increasingly apparent as 

more clinical and experimental data becomes available. To tackle the multimodal-specific 

obstacles, multiple methods and frameworks have been proposed and are currently heavily 

explored. While often still problem-specific and experimental, the field is gaining knowledge 

to evaluate and define what methods excel given specific conditions and data modalities. 

DL approaches have only touched a limited range of potential applications, mainly because 

of the challenges inherent to the current state of health care data as discussed above, again 

emphasising the need for large collaborative data standardisation and sharing efforts. In this 

space, competitions such as DREAM and Kaggle have been an effective concept for making 

standardised multimodal data available. Importantly, these initiatives also facilitate exchange 

of ideas and code, reproducibility, innovation, and unbiased evaluation163, 164. It is our 

expectation that such efforts will significantly advance development of robust multimodal 

approaches.

Ultimately, the goal is to advance precision oncology by rigorous clinical validation of 

successful models in larger independent cohorts to prove any clinical utility. So far, most 

efforts have focused on multimodal cancer biomarkers to refine risk stratification, but with 

dedicated strategies multimodal data fusion could also assist in treatment decision or drug 

response. However, outcomes in real-world patients often lag relative to clinical trials 

thereby hindering to evaluate efficacies due to lack of follow-up data. Fortunately, efforts are 

underway to capture treatment response in automated scalable ways using NLP from clinical 

notes165. With careful study design, ongoing improvements in data collection and sharing 

methods, and decreasing cost and/or availability of disease monitoring technologies, DL 

algorithms present a promising choice to further accelerate the field of precision oncology in 

this direction.

Acknowledgements

We would like to thank Marie Humbert-Droz for discussions during the early stages of this manuscript. We 
are grateful for her insightful ideas and comments about these topics. We would also like to express our great 
appreciation to Christophe Sadée and Yuanning Zheng for their valuable and constructive suggestions during the 
write-up of this manuscript.

References

1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat 
Med 25, 44–56 (2019). [PubMed: 30617339] 

2. Riba M, Sala C, Toniolo D & Tonon G. Big Data in Medicine, the Present and Hopefully the Future. 
Front Med (Lausanne) 6, 263 (2019). [PubMed: 31803746] 

Steyaert et al. Page 9

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov 12, 31–46 (2022). [PubMed: 
35022204] 

4. Lu J et al. Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-
OXPHOS activity in chronic lymphocytic leukemia. Nat Cancer 2, 853–864 (2021). [PubMed: 
34423310] 

5. Medina-Martinez JS et al. Isabl Platform, a digital biobank for processing multimodal patient data. 
BMC Bioinformatics 21, 549 (2020). [PubMed: 33256603] 

6. Chai H et al. Integrating multi-omics data through deep learning for accurate cancer prognosis 
prediction. Comput Biol Med 134, 104481 (2021).

7. Dietel M et al. Predictive molecular pathology and its role in targeted cancer therapy: a review 
focussing on clinical relevance. Cancer Gene Ther 20, 211–221 (2013). [PubMed: 23492822] 

8. Malone ER, Oliva M, Sabatini PJB, Stockley TL & Siu LL. Molecular profiling for precision cancer 
therapies. Genome Med 12, 8 (2020). [PubMed: 31937368] 

9. Campbell MR. Update on molecular companion diagnostics - a future in personalized medicine 
beyond Sanger sequencing. Expert Rev Mol Diagn 20, 637–644 (2020). [PubMed: 32167388] 

10. Colomer R et al. When should we order a next generation sequencing test in a patient with cancer? 
EClinicalMedicine 25, 100487 (2020).

11. van Dijk EL, Jaszczyszyn Y, Naquin D & Thermes C. The Third Revolution in Sequencing 
Technology. Trends Genet 34, 666–681 (2018). [PubMed: 29941292] 

12. Gorzynski JE et al. Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting. N Engl J 
Med 386, 700–702 (2022). [PubMed: 35020984] 

13. Davidson MR, Gazdar AF & Clarke BE. The pivotal role of pathology in the management of lung 
cancer. J Thorac Dis 5 Suppl 5, S463–478 (2013). [PubMed: 24163740] 

14. Pomerantz BJ. Imaging and Interventional Radiology for Cancer Management. Surg Clin North 
Am 100, 499–506 (2020). [PubMed: 32402296] 

15. Yu KH & Snyder M. Omics Profiling in Precision Oncology. Mol Cell Proteomics 15, 2525–2536 
(2016). [PubMed: 27099341] 

16. Rahman A et al. Advances in tissue-based imaging: impact on oncology research and clinical 
practice. Expert Rev Mol Diagn 20, 1027–1037 (2020). [PubMed: 32510287] 

17. van der Laak J, Litjens G & Ciompi F. Deep learning in histopathology: the path to the clinic. Nat 
Med 27, 775–784 (2021). [PubMed: 33990804] 

18. Baxi V, Edwards R, Montalto M & Saha S. Digital pathology and artificial intelligence in 
translational medicine and clinical practice. Mod Pathol 35, 23–32 (2022). [PubMed: 34611303] 

19. Serag A et al. Translational AI and Deep Learning in Diagnostic Pathology. Front Med (Lausanne) 
6, 185 (2019). [PubMed: 31632973] 

20. Iv M et al. MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of 
Medulloblastoma. AJNR Am J Neuroradiol 40, 154–161 (2019). [PubMed: 30523141] 

21. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H & Baessler B. Radiomics in medical 
imaging-”how-to” guide and critical reflection. Insights Imaging 11, 91 (2020). [PubMed: 
32785796] 

22. Liang J, Yang C, Zeng M & Wang X. TransConver: transformer and convolution parallel network 
for developing automatic brain tumor segmentation in MRI images. Quant Imaging Med Surg 12, 
2397–2415 (2022). [PubMed: 35371952] 

23. Kim M et al. Deep Learning in Medical Imaging. Neurospine 16, 657–668 (2019). [PubMed: 
31905454] 

24. Dosovitskiy A et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at 
Scale. arXiv, https://arxiv.org/abs/2010.11929 (2020).

25. Gupta R, Kurc T, Sharma A, Almeida JS & Saltz J. The Emergence of Pathomics. Current 
Pathobiology Reports 7, 73–84 (2019).

26. Hosny A et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort 
radiomics study. PLoS Med 15, e1002711 (2018).

27. Castro DC, Walker I & Glocker B. Causality matters in medical imaging. Nat Commun 11, 3673 
(2020). [PubMed: 32699250] 

Steyaert et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2010.11929


28. 21st Century Cures Act. H.R. 34. 114th Congress, https://www.congress.gov/114/bills/hr134/
BILLS-114hr134enr.pdf (2016).

29. FDA. Artificial Intelligence and Machine Learning (AI/ML)-Enabled 
Medical Devices. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-
intelligence-and-machine-learning-aiml-enabled-medical-devices (Accessed Oct 31 2022).

30. FDA. Proposed Regulatory Framework for Modification to Artificial Intelligence/
Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD). White 
paper, https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-
and-Machine-Learning-Discussion-Paper.pdf (2019).

31. Kann BH, Thompson R, Thomas CR Jr., Dicker A & Aneja S. Artificial Intelligence in 
Oncology: Current Applications and Future Directions. Oncology (Williston Park) 33, 46–53 
(2019). [PubMed: 30784028] 

32. Louis DN et al. The 2016 World Health Organization Classification of Tumors of the Central 
Nervous System: a summary. Acta Neuropathol 131, 803–820 (2016). [PubMed: 27157931] 

33. Tateishi K, Wakimoto H & Cahill DP. IDH1 Mutation and World Health Organization 2016 
Diagnostic Criteria for Adult Diffuse Gliomas: Advances in Surgical Strategy. Neurosurgery 64, 
134–138 (2017). [PubMed: 28899049] 

34. Capper D et al. DNA-methylation-based classification of central nervous system tumours. Nature 
555, 469–474 (2018). [PubMed: 29539639] 

35. Ceccarelli M et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of 
Progression in Diffuse Glioma. Cell 164, 550–563 (2016). [PubMed: 26824661] 

36. Prior F et al. The public cancer radiology imaging collections of The Cancer Imaging Archive. Sci 
Data 4, 170124 (2017).

37. Hutter C & Zenklusen JC. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. 
Cell 173, 283–285 (2018). [PubMed: 29625045] 

38. Jennings CN et al. Bridging the gap with the UK Genomics Pathology Imaging Collection. Nat 
Med (2022).

39. Mo H, Breitling R, Francavilla C & Schwartz JM. Data integration and mechanistic modelling for 
breast cancer biology: Current state and future directions. Curr Opin Endocr Metab Res 24, None 
(2022).

40. Nalejska E, Maczynska E & Lewandowska MA. Prognostic and predictive biomarkers: tools in 
personalized oncology. Mol Diagn Ther 18, 273–284 (2014). [PubMed: 24385403] 

41. Grossman JE, Vasudevan D, Joyce CE & Hildago M. Is PD-L1 a consistent biomarker for 
anti-PD-1 therapy? The model of balstilimab in a virally-driven tumor. Oncogene 40, 1393–1395 
(2021). [PubMed: 33500548] 

42. Davis AA & Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis 
of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J 
Immunother Cancer 7, 278 (2019). [PubMed: 31655605] 

43. van Elsas MJ, van Hall T & van der Burg SH. Future Challenges in Cancer Resistance to 
Immunotherapy. Cancers (Basel) 12 (2020).

44. Dzobo K. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment 
for Effective Cancer Therapy in the Oncology Clinic. OMICS 24, 175–179 (2020). [PubMed: 
32176591] 

45. Ott M, Prins RM & Heimberger AB. The immune landscape of common CNS malignancies: 
implications for immunotherapy. Nat Rev Clin Oncol 18, 729–744 (2021). [PubMed: 34117475] 

46. Bejarano L, Jordao MJC & Joyce JA. Therapeutic Targeting of the Tumor Microenvironment. 
Cancer Discov 11, 933–959 (2021). [PubMed: 33811125] 

47. Zomer A, Croci D, Kowal J, van Gurp L & Joyce JA. Multimodal imaging of the dynamic brain 
tumor microenvironment during glioblastoma progression and in response to treatment. iScience 
25, 104570 (2022).

48. Cheerla A & Gevaert O. Deep learning with multimodal representation for pancancer prognosis 
prediction. Bioinformatics 35, i446–i454 (2019). [PubMed: 31510656] 

49. Grossman RL et al. Toward a Shared Vision for Cancer Genomic Data. N Engl J Med 375, 1109–
1112 (2016). [PubMed: 27653561] 

Steyaert et al. Page 11

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.congress.gov/114/bills/hr134/BILLS-114hr134enr.pdf
https://www.congress.gov/114/bills/hr134/BILLS-114hr134enr.pdf
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf


50. Hinkson IV et al. A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating 
Cancer Research and Precision Medicine. Front Cell Dev Biol 5, 83 (2017). [PubMed: 28983483] 

51. Putcha G, Gutierrez A & Skates S. Multicancer Screening: One Size Does Not Fit All. JCO Precis 
Oncol 5, 574–576 (2021). [PubMed: 34994606] 

52. Mi H et al. Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, 
CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Front Physiol 11, 583333 
(2020).

53. Fass L. Imaging and cancer: a review. Mol Oncol 2, 115–152 (2008). [PubMed: 19383333] 

54. Lanckriet GR, De Bie T, Cristianini N, Jordan MI & Noble WS. A statistical framework for 
genomic data fusion. Bioinformatics 20, 2626–2635 (2004). [PubMed: 15130933] 

55. Gevaert O, De Smet F, Timmerman D, Moreau Y & De Moor B. Predicting the prognosis of breast 
cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22, 
e184–190 (2006). [PubMed: 16873470] 

56. Daemen A et al. A kernel-based integration of genome-wide data for clinical decision support. 
Genome Med 1, 39 (2009). [PubMed: 19356222] 

57. Ritchie MD, Holzinger ER, Li R, Pendergrass SA & Kim D. Methods of integrating data to 
uncover genotype-phenotype interactions. Nat Rev Genet 16, 85–97 (2015). [PubMed: 25582081] 

58. Panayides AS et al. AI in Medical Imaging Informatics: Current Challenges and Future Directions. 
IEEE J Biomed Health Inform 24, 1837–1857 (2020). [PubMed: 32609615] 

59. George K, Faziludeen S, Sankaran P & Joseph KP. Breast cancer detection from biopsy images 
using nucleus guided transfer learning and belief based fusion. Comput Biol Med 124, 103954 
(2020).

60. Singh SP et al. 3D Deep Learning on Medical Images: A Review. Sensors (Basel) 20 (2020).

61. Sarvamangala DR & Kulkarni RV. Convolutional neural networks in medical image understanding: 
a survey. Evol Intell, 1–22 (2021). [PubMed: 33425040] 

62. Yuan Q et al. Performance of a Machine Learning Algorithm Using Electronic Health Record Data 
to Identify and Estimate Survival in a Longitudinal Cohort of Patients With Lung Cancer. JAMA 
Netw Open 4, e2114723 (2021).

63. Rasmy L et al. A study of generalizability of recurrent neural network-based predictive models for 
heart failure onset risk using a large and heterogeneous EHR data set. J Biomed Inform 84, 11–16 
(2018). [PubMed: 29908902] 

64. Shickel B, Tighe PJ, Bihorac A & Rashidi P. Deep EHR: A Survey of Recent Advances in Deep 
Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Health Inform 
22, 1589–1604 (2018). [PubMed: 29989977] 

65. Ayala Solares JR et al. Deep learning for electronic health records: A comparative review of 
multiple deep neural architectures. J Biomed Inform 101, 103337 (2020).

66. Hernandez-Boussard T, Monda KL, Crespo BC & Riskin D. Real world evidence in cardiovascular 
medicine: ensuring data validity in electronic health record-based studies. J Am Med Inform Assoc 
26, 1189–1194 (2019). [PubMed: 31414700] 

67. Mikolov T, Sutskever I, Chen K, Corrado G & Dean J Distributed representations of words and 
phrases and their compositionality. Proceedings of the 26th International Conference on Neural 
Information Processing Systems - Volume 2, 3111–3119 (2013).

68. Pennington J, Socher R & Manning CD. Glove: Global Vectors for Word Representation. EMNLP 
14, 1532–1543 (2014).

69. Peters ME et al. Deep contextualized word representations. arXiv, http://arxiv.org/abs/1802.05365 
(2018).

70. Devlin J, Chang M-W, Lee K & Toutanova K BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding. Proceedings of the 2019 Conference of the 
North American Chapter of the Association for Computational Linguistics: Human Language 
Technologies, Volume 1, 4171–4186 (2019).

71. Lee J et al. BioBERT: a pre-trained biomedical language representation model for biomedical text 
mining. Bioinformatics 36, 1234–1240 (2020). [PubMed: 31501885] 

Steyaert et al. Page 12

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1802.05365


72. Huang K, Garapati S & Rich AS. An Interpretable End-to-end Fine-tuning Approach for Long 
Clinical Text. arXiv, https://arxiv.org/abs/2011.06504 (2020).

73. Vaswani A et al. Attention is all you need. Proceedings of the 31st International Conference on 
Neural Information Processing Systems, 6000–6010 (2017).

74. Jensen PB, Jensen LJ & Brunak S. Mining electronic health records: towards better research 
applications and clinical care. Nat Rev Genet 13, 395–405 (2012). [PubMed: 22549152] 

75. Rasmy L, Xiang Y, Xie Z, Tao C & Zhi D. Med-BERT: pretrained contextualized embeddings on 
large-scale structured electronic health records for disease prediction. NPJ Digit Med 4, 86 (2021). 
[PubMed: 34017034] 

76. Acosta JN, Falcone GJ, Rajpurkar P & Topol EJ. Multimodal biomedical AI. Nat Med 28, 1773–
1784 (2022). [PubMed: 36109635] 

77. Jain MS et al. MultiMAP: dimensionality reduction and integration of multimodal data. Genome 
Biol 22, 346 (2021). [PubMed: 34930412] 

78. Lahnemann D et al. Eleven grand challenges in single-cell data science. Genome Biol 21, 31 
(2020). [PubMed: 32033589] 

79. Baltrusaitis T, Ahuja C & Morency LP. Multimodal Machine Learning: A Survey and Taxonomy. 
IEEE Trans Pattern Anal Mach Intell 41, 423–443 (2019). [PubMed: 29994351] 

80. Yan KK, Zhao H & Pang H. A comparison of graph- and kernel-based -omics data integration 
algorithms for classifying complex traits. BMC Bioinformatics 18, 539 (2017). [PubMed: 
29212468] 

81. Pavlidis P, Weston J, Cai J & Noble WS. Learning gene functional classifications from multiple 
data types. J Comput Biol 9, 401–411 (2002). [PubMed: 12015889] 

82. Serra A, Galdi P & Tagliaferri R. Multiview Learning in Biomedical Applications (Chapter 13). 
Artificial Intelligence in the Age of Neural Networks and Brain Computing, 265–280 (2019).

83. Stahlschmidt SR, Ulfenborg B & Synnergren J. Multimodal deep learning for biomedical data 
fusion: a review. Brief Bioinform 23 (2022).

84. Huang SC, Pareek A, Seyyedi S, Banerjee I & Lungren MP. Fusion of medical imaging and 
electronic health records using deep learning: a systematic review and implementation guidelines. 
NPJ Digit Med 3, 136 (2020). [PubMed: 33083571] 

85. Picard M, Scott-Boyer MP, Bodein A, Perin O & Droit A. Integration strategies of multi-omics 
data for machine learning analysis. Comput Struct Biotechnol J 19, 3735–3746 (2021). [PubMed: 
34285775] 

86. Chaudhary K, Poirion OB, Lu L & Garmire LX. Deep Learning-Based Multi-Omics Integration 
Robustly Predicts Survival in Liver Cancer. Clin Cancer Res 24, 1248–1259 (2018). [PubMed: 
28982688] 

87. Huang Z et al. SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on 
Breast Cancer. Front Genet 10, 166 (2019). [PubMed: 30906311] 

88. Wang T et al. MOGONET integrates multi-omics data using graph convolutional networks 
allowing patient classification and biomarker identification. Nat Commun 12, 3445 (2021). 
[PubMed: 34103512] 

89. Gevaert O, Villalobos V, Sikic BI & Plevritis SK. Identification of ovarian cancer driver genes by 
using module network integration of multi-omics data. Interface Focus 3, 20130013 (2013).

90. Xu J et al. A hierarchical integration deep flexible neural forest framework for cancer subtype 
classification by integrating multi-omics data. BMC Bioinformatics 20, 527 (2019). [PubMed: 
31660856] 

91. Zhang L et al. Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic 
Subtypes in High-Risk Neuroblastoma. Front Genet 9, 477 (2018). [PubMed: 30405689] 

92. Taskesen E, Babaei S, Reinders MM & de Ridder J. Integration of gene expression and DNA-
methylation profiles improves molecular subtype classification in acute myeloid leukemia. BMC 
Bioinformatics 16 Suppl 4, S5 (2015).

93. Argelaguet R et al. Multi-Omics Factor Analysis-a framework for unsupervised integration of 
multi-omics data sets. Mol Syst Biol 14, e8124 (2018). [PubMed: 29925568] 

Steyaert et al. Page 13

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2011.06504


94. Cancer Genome Atlas Research, N. et al. Comprehensive, Integrative Genomic Analysis of Diffuse 
Lower-Grade Gliomas. N Engl J Med 372, 2481–2498 (2015). [PubMed: 26061751] 

95. Cancer Genome Atlas Research, N. et al. Integrated genomic and molecular characterization of 
cervical cancer. Nature 543, 378–384 (2017). [PubMed: 28112728] 

96. Cancer Genome Atlas Research Network. Electronic address, e.d.s.c. & Cancer Genome Atlas 
Research, N. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue 
Sarcomas. Cell 171, 950–965 e928 (2017). [PubMed: 29100075] 

97. Zhang T, Zhang L, Payne PRO & Li F. Synergistic Drug Combination Prediction by Integrating 
Multiomics Data in Deep Learning Models. Methods Mol Biol 2194, 223–238 (2021). [PubMed: 
32926369] 

98. Preuer K et al. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. 
Bioinformatics 34, 1538–1546 (2018). [PubMed: 29253077] 

99. Sammut SJ et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 
601, 623–629 (2022). [PubMed: 34875674] 

100. Costello JC et al. A community effort to assess and improve drug sensitivity prediction 
algorithms. Nat Biotechnol 32, 1202–1212 (2014). [PubMed: 24880487] 

101. Duan R et al. Evaluation and comparison of multi-omics data integration methods for cancer 
subtyping. PLoS Comput Biol 17, e1009224 (2021).

102. Venugopalan J, Tong L, Hassanzadeh HR & Wang MD. Multimodal deep learning models for 
early detection of Alzheimer’s disease stage. Sci Rep 11, 3254 (2021). [PubMed: 33547343] 

103. Mobadersany P et al. Predicting cancer outcomes from histology and genomics using 
convolutional networks. Proc Natl Acad Sci U S A 115, E2970–E2979 (2018). [PubMed: 
29531073] 

104. Cheng J et al. Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear 
Cell Renal Cell Carcinoma Prognosis. Cancer Res 77, e91–e100 (2017). [PubMed: 29092949] 

105. Schulz S et al. Multimodal Deep Learning for Prognosis Prediction in Renal Cancer. Front Oncol 
11, 788740 (2021).

106. Zhan Z et al. Two-stage Cox-nnet: biologically interpretable neural-network model for prognosis 
prediction and its application in liver cancer survival using histopathology and transcriptomic 
data. NAR Genom Bioinform 3, lqab015 (2021).

107. Chen RJ et al. Pathomic Fusion: An Integrated Framework for Fusing Histopathology and 
Genomic Features for Cancer Diagnosis and Prognosis. IEEE Trans Med Imaging 41, 757–770 
(2022). [PubMed: 32881682] 

108. Carrillo-Perez F et al. Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale 
Data for Non-Small-Cell Lung Cancer Diagnosis. Journal of Personalized Medicine 12, 601 
(2022). [PubMed: 35455716] 

109. Rathore S et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with 
different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 
8, 5087 (2018). [PubMed: 29572492] 

110. Mazzaschi G et al. Integrated MRI-Immune-Genomic Features Enclose a Risk Stratification 
Model in Patients Affected by Glioblastoma. Cancers (Basel) 14 (2022).

111. Wang X et al. Combining Radiology and Pathology for Automatic Glioma Classification. Front 
Bioeng Biotechnol 10, 841958 (2022).

112. Yamaguchi H et al. Three-Dimensional Convolutional Autoencoder Extracts Features of 
Structural Brain Images With a “Diagnostic Label-Free” Approach: Application to Schizophrenia 
Datasets. Front Neurosci 15, 652987 (2021).

113. Liu Y et al. Radiomic Features Are Associated With EGFR Mutation Status in Lung 
Adenocarcinomas. Clin Lung Cancer 17, 441–448 e446 (2016). [PubMed: 27017476] 

114. Gevaert O et al. Predictive radiogenomics modeling of EGFR mutation status in lung cancer. Sci 
Rep 7, 41674 (2017).

115. Nair JKR et al. Radiogenomic Models Using Machine Learning Techniques to Predict EGFR 
Mutations in Non-Small Cell Lung Cancer. Can Assoc Radiol J 72, 109–119 (2021). [PubMed: 
32063026] 

Steyaert et al. Page 14

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



116. Pinker K, Chin J, Melsaether AN, Morris EA & Moy L. Precision Medicine and Radiogenomics 
in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology 287, 732–747 
(2018). [PubMed: 29782246] 

117. Itakura H et al. Magnetic resonance image features identify glioblastoma phenotypic subtypes 
with distinct molecular pathway activities. Sci Transl Med 7, 303ra138 (2015).

118. Yamamoto S, Maki DD, Korn RL & Kuo MD. Radiogenomic analysis of breast cancer using 
MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 199, 654–663 (2012). 
[PubMed: 22915408] 

119. Sutton EJ et al. Breast cancer subtype intertumor heterogeneity: MRI-based features predict 
results of a genomic assay. J Magn Reson Imaging 42, 1398–1406 (2015). [PubMed: 25850931] 

120. Li H et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast 
cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2 (2016).

121. Li J et al. Imputation of missing values for electronic health record laboratory data. NPJ Digit 
Med 4, 147 (2021). [PubMed: 34635760] 

122. Luo Y. Evaluating the state of the art in missing data imputation for clinical data. Brief Bioinform 
23 (2022).

123. Yoon J, Zame WR & van der Schaar M. Estimating Missing Data in Temporal Data Streams 
Using Multi-Directional Recurrent Neural Networks. IEEE Trans Biomed Eng 66, 1477–1490 
(2019). [PubMed: 30296210] 

124. Zhou T, Liu M, Thung KH & Shen D. Latent Representation Learning for Alzheimer’s Disease 
Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data. IEEE Trans Med 
Imaging 38, 2411–2422 (2019). [PubMed: 31021792] 

125. Liu Y et al. Incomplete multi-modal representation learning for Alzheimer’s disease diagnosis. 
Med Image Anal 69, 101953 (2021).

126. Ning Z, Du D, Tu C, Feng Q & Zhang Y. Relation-Aware Shared Representation Learning for 
Cancer Prognosis Analysis With Auxiliary Clinical Variables and Incomplete Multi-Modality 
Data. IEEE Trans Med Imaging 41, 186–198 (2022). [PubMed: 34460368] 

127. Momeni A, Thibault M & Gevaert O. Dropout-Enabled Ensemble Learning for Multi-Scale 
Biomedical Data. bioRxiv, 440362 (2018).

128. Mehdipour Ghazi M et al. Training recurrent neural networks robust to incomplete data: 
Application to Alzheimer’s disease progression modeling. Med Image Anal 53, 39–46 (2019). 
[PubMed: 30682584] 

129. Ma Q, Li S & Cottrell GW. Adversarial Joint-Learning Recurrent Neural Network for Incomplete 
Time Series Classification. IEEE Trans Pattern Anal Mach Intell 44, 1765–1776 (2022). 
[PubMed: 32997624] 

130. Sharrocks K, Spicer J, Camidge DR & Papa S. The impact of socioeconomic status on access to 
cancer clinical trials. Br J Cancer 111, 1684–1687 (2014). [PubMed: 25093493] 

131. Niranjan SJ et al. Perceived Institutional Barriers Among Clinical and Research Professionals: 
Minority Participation in Oncology Clinical Trials. JCO Oncol Pract 17, e666–e675 (2021). 
[PubMed: 33974821] 

132. Mukherkjee D, Saha P, Kaplun D, Sinitca A & Sarkar R. Brain tumor image generation using an 
aggregation of GAN models with style transfer. Sci Rep 12, 9141 (2022). [PubMed: 35650252] 

133. Qin Z, Liu Z, Zhu P & Xue Y. A GAN-based image synthesis method for skin lesion 
classification. Comput Methods Programs Biomed 195, 105568 (2020).

134. Huang HH, Rao H, Miao R & Liang Y. A novel meta-analysis based on data augmentation and 
elastic data shared lasso regularization for gene expression. BMC Bioinformatics 23, 353 (2022). 
[PubMed: 35999505] 

135. Yufei L et al. Wasserstein GAN-Based Small-Sample Augmentation for New-Generation 
Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering 5, 156–163 
(2019).

136. Wenqing S, Tzu-Liang T, Jianying Z & Wei Q. Computerized breast cancer analysis system using 
three stage semi-supervised learning method. Computer Methods and Programs in Biomedicine 
135, 77–88 (2016). [PubMed: 27586481] 

Steyaert et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



137. Dwarikanath M. Combining multiple expert annotations using semi-supervised learning and 
graph cuts for medical image segmentation. Computer Vision and Image Understanding 151, 
114–123 (2016).

138. Tran QT, Alom MZ & Orr BA. Comprehensive study of semi-supervised learning for 
DNA-methylation-based supervised classification of central nervous system tumors. BMC 
Bioinformatics 23, 223 (2022). [PubMed: 35676649] 

139. Cheplygina V, de Bruijne M & Pluim JPW. Not-so-supervised: A survey of semi-supervised, 
multi-instance, and transfer learning in medical image analysis. Med Image Anal 54, 280–296 
(2019). [PubMed: 30959445] 

140. Jie Y, Xutong L & Mingyue Z. Current status of active learning for drug discovery. Artificial 
Intelligence in the Life Sciences 1, 100023 (2021).

141. Min W, Fan M, Zhi-Heng Z & Yan-Xue W. Active learning through density clustering. Expert 
Systems with Applications 85, 305–317 (2017).

142. Nahiyan M & Danilo B. From YouTube to the brain: Transfer learning can improve brain-imaging 
predictions with deep learning. Neural Networks 153, 325–338 (2022). [PubMed: 35777174] 

143. Park Y, Hauschild AC & Heider D. Transfer learning compensates limited data, batch effects and 
technological heterogeneity in single-cell sequencing. NAR Genom Bioinform 3, lqab104 (2021).

144. Novakovsky G, Saraswat M, Fornes O, Mostafavi S & Wasserman WW. Biologically relevant 
transfer learning improves transcription factor binding prediction. Genome Biol 22, 280 (2021). 
[PubMed: 34579793] 

145. Ganoe CH et al. Natural language processing for automated annotation of medication mentions in 
primary care visit conversations. JAMIA Open 4, ooab071 (2021).

146. Krenzer A et al. Fast machine learning annotation in the medical domain: a semi-automated video 
annotation tool for gastroenterologists. Biomed Eng Online 21, 33 (2022). [PubMed: 35614504] 

147. Lipkova J et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell 
40, 1095–1110 (2022). [PubMed: 36220072] 

148. Schaumberg AJ et al. Interpretable multimodal deep learning for real-time pan-tissue pan-disease 
pathology search on social media. Mod Pathol 33, 2169–2185 (2020). [PubMed: 32467650] 

149. Begoli E, Bhattacharya T & Kusnezov D. The need for uncertainty quantification in machine-
assisted medical decision making. Nature Machine Intelligence 1, 20–23 (2019).

150. Chen RJ et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. 
Cancer Cell 40, 865–878 e866 (2022). [PubMed: 35944502] 

151. Selvaraju RR et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based 
Localization. arXiv, https://arxiv.org/abs/1610.02391 (2016).

152. Lundberg SM & Lee SI. A Unified Approach to Interpreting Model Predictions. Advances in 
Neural Information Processing Systems 30, 4765–4774 (2017).

153. Dickinson Q & Meyer JG. Positional SHAP (PoSHAP) for Interpretation of machine learning 
models trained from biological sequences. PLoS Comput Biol 18, e1009736 (2022).

154. Steyaert S et al. Multimodal data fusion of adult and pediatric brain tumors with deep learning. 
medRxiv, 2022.2009.2021.22280223 (2022).

155. Simon G et al. Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue 
histology images. Medical Image Analysis 58, 101563 (2019).

156. Wilkinson MD et al. The FAIR Guiding Principles for scientific data management and 
stewardship. Sci Data 3, 160018 (2016).

157. Mammoliti A et al. Orchestrating and sharing large multimodal data for transparent and 
reproducible research. Nat Commun 12, 5797 (2021). [PubMed: 34608132] 

158. Mc Cord KA et al. Current use and costs of electronic health records for clinical trial research: a 
descriptive study. CMAJ Open 7, E23–E32 (2019).

159. Mc Cord KA & Hemkens LG. Using electronic health records for clinical trials: Where do we 
stand and where can we go? CMAJ 191, E128–E133 (2019). [PubMed: 30718337] 

160. Makadia R & Ryan PB. Transforming the Premier Perspective Hospital Database into the 
Observational Medical Outcomes Partnership (OMOP) Common Data Model. EGEMS (Wash 
DC) 2, 1110 (2014). [PubMed: 25848597] 

Steyaert et al. Page 16

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1610.02391


161. Papez V et al. Transforming and evaluating electronic health record disease phenotyping 
algorithms using the OMOP common data model: a case study in heart failure. JAMIA Open 
4, ooab001 (2021).

162. Liang W et al. Advances, challenges and opportunities in creating data for trustworthy AI. Nature 
Machine Intelligence 4, 669–677 (2022).

163. Costello JC & Stolovitzky G. Seeking the wisdom of crowds through challenge-based 
competitions in biomedical research. Clin Pharmacol Ther 93, 396–398 (2013). [PubMed: 
23549146] 

164. Saez-Rodriguez J et al. Crowdsourcing biomedical research: leveraging communities as 
innovation engines. Nat Rev Genet 17, 470–486 (2016). [PubMed: 27418159] 

165. Khozin S et al. Real-world progression, treatment, and survival outcomes during rapid adoption 
of immunotherapy for advanced non-small cell lung cancer. Cancer 125, 4019–4032 (2019). 
[PubMed: 31381142] 

Steyaert et al. Page 17

Nat Mach Intell. Author manuscript; available in PMC 2023 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: Generation and processing of routinely collected biomedical modalities in oncology.
Prior to data fusion, different steps are needed to go from the raw data to workable data 

representations for each modality, e.g. EHRs, molecular data and medical images.
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Fig. 2: Overview of different fusion strategies for multimodal data.
a) Raw data is processed into workable formats. b) For each modality features are extracted 

using dedicated encoder algorithms. c) Early fusion. d) Intermediate fusion. e) Late fusion.
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Fig. 3: Examples of model interpretability methods for histopathology and gene expression.
Histopathology: a) Examples of informative tiles for predicting the presence of 

TP53 mutations from histopathology images in prostate cancer (unpublished data). b) 

Visualisation of regions within tiles most relevant to the prediction, derived via Grad-

CAM151. c) Individual cells within informative tiles are segmented and classified by Hover-

Net155. For a fine-grained interpretation of relevant cells (black annotations), pertinent 

cells within the tile are encircled by calculating the contours from regions highlighted by 

Grad-CAM. Gene Expression: d) Examples of SHAP visualisation152 of hypothetical gene 
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importance according to unimodal model (top) and joint multimodal model (bottom) for 

cancer survival prediction. e) Example of pathway importance visualisation based on the 

respective gene SHAP-values in unimodal (top) versus joint multimodal (bottom) models 

with respect to cancer survival prediction154.
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