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ABSTRACT
Spent mushroom substrate (SMS) is the residual biomass generated after harvesting the fruitbo-
dies of edible/medicinal fungi. Disposal of SMS, the main by-product of the mushroom cultivation 
process, often leads to serious environmental problems and is financially demanding. Efficient 
recycling and valorization of SMS are crucial for the sustainable development of the mushroom 
industry in the frame of the circular economy principles. The physical properties and chemical 
composition of SMS are a solid fundament for developing several applications, and recent 
literature shows an increasing research interest in exploiting that inherent potential. This review 
provides a thorough outlook on SMS exploitation possibilities and discusses critically recent 
findings related to specific applications in plant and mushroom cultivation, animal husbandry, 
and recovery of enzymes and bioactive compounds. 

HIGHLIGHTS
● Valorization of spent substrate is crucial for a sustainable mushroom industry.
● The review covers spent mushroom substrate (SMS) valorization for multiple uses.
● SMS composition and mushroom species are essential factors for its exploitation.
● SMS valorization forms an integral part of cascade use of plant biomass.
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1. Introduction

Mushrooms are sporocarps, i.e. visible spore- 
bearing structures, fulfilling an essential function 
in the sexual reproductive stage of the life cycle of 
many fungi [1]. Many mushrooms are considered 
edible because they do not contain toxins and are 

low in antinutrients, while they are rich in pro-
teins, dietary fiber, vitamins, minerals, and other 
nutritional components [2]. The specific composi-
tion of mushrooms depends on the species. 
Mushrooms can have up to 30% (w/w) crude 
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protein, while the content of crude fiber, fat, and 
carbohydrates in some species can be up to 28, 8, 
and 95% (w/w), respectively [3]. Edible mush-
rooms are climate-smart, protein-rich food 
sources that can partially substitute meat, whose 
production has a significant climate impact. 
Furthermore, due to their high content in various 
health-promoting ingredients, e.g. β-glucans, pep-
tides, proteins, and phenolic compounds [4], they 
possess immunomodulatory, antibacterial, cyto-
static, antioxidant, and other properties, and for 
this reason, the term ‘medicinal mushrooms’ is 
also used when referring to them [3].

The benefits of mushroom consumption on 
human health and wellbeing are well recognized. 
As a result, pertinent demand has considerably 
increased in all continents, and edible mushroom 
commercialization has nowadays become 
a worldwide business [5]. Hence, mushroom pro-
duction has increased more than 30 times since 
1978, and it is a fast-expanding industrial activity. 
Although most of the production is concentrated in 
Asia, with China as the top producer with around 
90% of the global market, mushroom production in 
the European Union, led by the Netherlands and 
Poland, and in the Americas has experiencing 
a significant increase during the last decades [6]. 
The commercial cultivation of mushrooms includes 
more than fifty species. The top four belong to the 
genera Lentinula (L. edodes, popularly known as 
‘shiitake’), Pleurotus (‘oyster mushrooms’), 
Auricularia (‘wood ear mushrooms’), and Agaricus 
(‘button mushrooms’), which together correspond 
to 74% of the world market [7].

Mushrooms are cultivated on substrates based on 
plant biomass, e.g. crop residues and underutilized 
wood leftovers, which are continuously increasing 
because of the expansion of agricultural production 
driven by global population growth. Currently, dis-
posal by burning is one of the chief methods for 
coping with the accumulation of plant residues. 
However, this widespread practice is against sus-
tainability principles, contributes substantially to air 
pollution [8], and results in a considerable waste of 
biomass resources that are highly valuable for gen-
erating materials, fuels, and chemicals of high eco-
nomic and social value [9].

The valorization of crop residues within new 
recycling models, i.e. substrates for mushroom 

cultivation, is crucial for the sustainability of agri-
cultural production. Therefore, besides leading to 
the generation of food, mushroom cultivation is an 
example of holistic exploitation of residual ligno-
cellulosic biomass through an efficient continu-
ous-flow process carried out indoors, requiring 
remarkably lower land areas than most other 
crops [10]. Furthermore, unlike conventional agri-
culture, which is season-dependent, mushroom 
production can be performed throughout 
the year independently of climatic conditions.

The mushroom cultivation process aims at pro-
ducing fruitbodies of edible or/and medicinal 
fungi. At the end of the process, the fruitbodies 
are harvested, and an exhausted residual substrate 
is generated. That nutrient-depleted biomass 
waste, known as spent mushroom substrate 
(SMS), is the main by-product of the mushroom 
industry. Depending on the nature of the materials 
used for formulating the substrate, the type of 
production system, and the cultivated species, 
three to five kg of SMS is generated per kg of 
fresh mushrooms [11]. In total, ca. 64 million 
tons of SMS were generated worldwide by the 
mushroom industry in 2018, and this figure 
could escalate to above 100 million tons by 
2026 [12].

The large quantities of generated SMS, currently 
regarded as a waste product with little inherent 
value, present a major challenge to mushroom 
producers due to the need to find suitable disposal 
sites and to cope with the high cost incurred for 
the transportation of a bulky material with high 
moisture content and low density; drying of fresh 
SMS is a hardly feasible energy-intensive activity. 
Moreover, SMS handling/disposal is of primary 
environmental concern due to the emission of 
greenhouse gases from spontaneous anaerobic 
digestion (often occurring in the piles formed dur-
ing provisional storage), foul odors, and leachate 
drainage to water receptors causing pollution and 
eutrophication [13]. Landfilling has traditionally 
been the chief disposal strategy for SMS, but it is 
now banned in the European Union by a Council 
Directive on landfilling of biodegradable wastes 
[14]. The current linear ‘take, make, dispose of’ 
approach, where SMS is regarded as waste, threa-
tens the future development of the mushroom- 
growing sector. Valorization of SMS is crucial for 
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developing a sustainable mushroom industry in 
the frame of a circular-economy model. It is essen-
tial to investigate SMS characteristics to identify 
appropriate valorization alternatives.

SMS composition and properties are mainly 
associated with the type of raw materials and sup-
plements used to prepare the initial mushroom 
substrate. For the cultivation of edible mushrooms 
of the genera Lentinula, Pleurotus, and 
Auricularia, which represent 60% of the global 
production, various lignocellulosic by-products, 
e.g. forest, agricultural and agro-industrial resi-
dues, are used as substrate base. Chicken manure 
is also a major component for other mushroom 
species requiring composted substrates (e.g. those 
of the genus Agaricus). Starch-containing and 
nitrogen-rich ingredients (e.g. cereal bran or 
legumes’ flour) and mineral salts are used as sup-
plements. During cultivation, substrate compo-
nents are enzymatically degraded, and the 
resulting nutrients (together with others existing 
in the substrate) are used for fungal growth and 
mushroom production. Mass losses in the ranges 
of 26–46%, 57–77%, and 61–75% of the initial 
cellulose, hemicelluloses, and lignin, respectively, 
have been reported for Pleurotus ostreatus, 
Pleurotus pulmonarius, and L. edodes [15–17]. In 
the end, SMS composition strongly depends on the 
nature of the initial substrate and the cultivated 
species [18]. Therefore, SMS primarily consists of 
plant cell-wall components (lignin, hemicelluloses, 
cellulose) and residual fungal mycelium, as well as 
non-cell-wall carbohydrates, proteins, and 
minerals.

There are different valorization routes for SMS, 
and some of them have already been discussed in 
previously published reviews [19,20]. The current 
review is aimed at providing, in brief, an updated 
overview of potential SMS applications and pro-
ducts related to (i) new cycles of mushroom culti-
vation, (ii) agriculture and animal husbandry, and 
(iii) the production of enzymes and bioactive com-
pounds. SMS valorization as part of cascade-use 
systems for plant biomass processing is also dis-
cussed. Bioremediation and energy-related uses 
are not included because they were exhaustively 
presented in a recent review [20]. This review is 
based on an exhaustive Scopus search performed 
in July 2022. The search terms used were Spent 

Mushroom Substrate OR Spent Mushroom 
Compost AND relevant keywords of each specific 
application. The topic presented in this review is 
of relevance to the UN Sustainable Development 
Goals 2 (Zero hunger), 3 (Good health and well- 
being), 9 (industry, innovation, and infrastruc-
ture), 13 (climate action), and 15 (life on land), 
considering that the discussed valorization alter-
natives have the potential for providing innovative 
solutions to increase food security, and contribut-
ing to the production of healthy food and reduc-
tion of the use of harmful chemicals in farmlands.

2. Reusing spent mushroom substrate for 
new cultivation of mushrooms

The spent mushroom substrate can be used in 
substrate formulation for new cycles of mushroom 
cultivation provided that suitable lignocellulosic 
materials are employed, the fungal strain is appro-
priately selected, and the environmental condi-
tions are optimally regulated. Supplemented 
cereal straw and wood sawdust are the most com-
mon substrates in commercial mushroom cultiva-
tion due to their composition, availability, and 
relatively low cost. Agricultural or agro-industrial 
by-products with low or no economic value, such 
as sugarcane bagasse, coffee husks, and olive mill 
and winery wastes, are exploited in mushroom 
production, contributing to both the improvement 
of cultivation performance and the enhancement 
of mushrooms nutritional value [21–24]. Using 
cheap lignocellulosic residues positively affects 
the cost of substrate, providing an environmentally 
friendly solution for their effective management 
and valorization.

Cultivated mushrooms are often grouped – 
based on their ecological adaptation/require-
ments – as either primary decomposers (e.g. 
P. ostreatus, L. edodes) that are produced directly 
on previously untreated (or partly treated/com-
posted) lignocellulosic substrates, or as secondary 
decomposers (e.g. Agaricus bisporus, Volvariella 
volvacea). Secondary decomposers are cultivated 
on composted substrates prepared from various 
agricultural residues, including manures. The pro-
posal to reuse SMS in new crops was originally 
based on the sequential use of the substrate, first 
by primary decomposers and then by secondary 
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decomposers, and on the enzymes involved in 
each process since these vary among species of 
different ecological groups [20,25]. However, in 
most studies, supplementation is required to 
adjust the nutrient content when SMS is used as 
the sole (or the main) substrate ingredient in 
mushroom cultivation. Hence, this material could 
be exploited to cultivate a broader range of mush-
room species (not only secondary decomposers). 
Furthermore, many of the most successful SMS 
applications have been reported when the same 
species (as the one originally cultivated on the 
spent substrate) was also used in the new crop, 
e.g. P. ostreatus, Auricularia polytricha, A. bisporus 
[26–29]. The initial substrate composition, the 
cultivation cycle duration, and the number of 
flushes harvested are important in optimizing 
SMS for reuse in mushroom cultivation. The type 
of substrate pretreatment adopted (e.g. chopping, 
composting) prior to cultivation, the incorporation 
rate of SMS to the main substrate of the new crop, 
further supplementation with nutrients, and the 
selection of the species/strain to be used are also 
important parameters, which have to be consid-
ered when such types of applications are devel-
oped. Factors affecting the success of new 
mushroom crops based on SMS recycling are sum-
marized in Figure 1.

Reported results from using SMS in new mush-
room crops demonstrate a wide variation as 
regards the effect of the recycled material on the 
final yield (Table 1). In several cases, similar 
[27,29,40,44,50] or even higher [26,28,45] values 
of biological efficiencies (ΒΕ; percentage ratio of 

fresh mushroom weight over the dry weight of the 
respective substrate) were recorded in substrates 
containing SMS deriving from the cultivation of 
either the same or other mushroom species when 
compared to conventional (used for the first time) 
substrates. However, in some studies, it was also 
reported that the incorporation of high amounts of 
SMS in the new cultivation medium or the casing 
layer negatively affected the mushrooms’ final 
yield [30,36,37,42], which could be mainly attrib-
uted to the low content of nutrients or to inade-
quate supplementation of the spent substrates.

Most of the investigations related to the reuse of 
SMS in new cultivation cycles focus on species of 
the genus Pleurotus. Indicatively, out of the 27 
selected studies shown in Table 1, 16 deal with 
the reuse of Pleurotus SMS, and 14 with the culti-
vation of oyster mushrooms in SMS-containing 
substrates. This may be explained by the relative 
ease of oyster mushroom cultivation, their rather 
short production cycle, and the wide range of 
suitable substrates available. Among the most rele-
vant examples are those pertaining to the use of 
Pleurotus eous SMS mixed with wheat straw for 
the cultivation of other Pleurotus species (BE up to 
113% [45]) and the use of supplemented SMS from 
Pleurotus sajor-caju for the production of the same 
mushroom (BE up to 125% [47]). Another suc-
cessful example is the use of supplemented SMS 
from P. ostreatus as substrate for growing 
P. ostreatus and P. pulmonarius mushrooms, 
which resulted in the highest BE values reported 
in pertinent literature, namely 185% for 
P. ostreatus and 208% for P. pulmonarius [26]. 

Figure 1. Factors affecting cultivation parameters and the use of SMS in new mushroom crops.
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Furthermore, Pleurotus SMS can also be exploited 
in crops of other species providing satisfactory 
yields, as it is the case in Lyophyllum decastes, 
where the use of P. ostreatus SMS with bark com-
post and rice straw provided BE of 134% [51]. In 
contrast, cultivation of Pleurotus species on spent 
substrates from other mushrooms, i.e. Pholiota 
nameko, Hypsizigus marmoreus, and L. edodes 
exhibited substantially lower BE (23–62%) 
[36,46,50].

Shiitake (L. edodes), a widely cultivated edible 
mushroom, is produced mainly on hardwood saw-
dust substrates. SMS deriving from L. edodes 
seems to be suitable for the cultivation of various 
oyster mushroom species, including P. ostreatus, 
P. sajor-caju and Pleurotus cornucopiae (BE: 61– 
79%) as well as for Flammulina velutipes (BE 88%) 
following rich supplementation with cereal deriva-
tives [50,52]. On the other hand, using SMS from 
other mushrooms (e.g. A. bisporus and 
F. velutipes) to cultivate shiitake requires mixing 
with untreated sawdust at a rate of at least 40% 
[48,49].

The reuse of SMS deriving from the cultiva-
tion of Agaricus species to establish new mush-
room crops is quite demanding due to the nature 
of the final material and the processes leading to 
its production. Therefore, most attempts focus 
either on suitably upgrading it with soybean 
meal and Target® (a commercial delayed release 
nutrient suitable for mushroom cultivation) 
before reusing it as an ingredient for 
A. bisporus cultivation (ΒΕ: 97–144%) [27]. 
Attempts focusing on exploiting SMS as casing 
material alone or mixed with farm yard manure 
or sphagnum peat in the cultivation of Pleurotus 
eryngii and A. bisporus, respectively, have also 
been reported [38,42].

Concerning the use of SMS of less widespread 
species, noteworthy is the case of F. velutipes 
SMS – which when combined with oak sawdust 
and rice bran – exhibited satisfactory yields of 
L. edodes mushrooms (BE: 60–84%) [48]. In addi-
tion, the sawdust-based SMS from Ph. nameko, 
H. marmoreus and Hericium erinaceus were used 
to produce P. ostreatus mushrooms (BE: 66– 
73%) [30].

The reuse of SMS in new mushroom crops 
seems to have considerable potential since it can 

support high yields and is both financially feasible 
and environmentally sustainable. The elements 
and organic compounds existing in SMS constitute 
valuable sources of energy and nutrients, which 
can partially or entirely cover the needs of addi-
tional cultivation cycle(s) after suitable treatment 
or supplementation.

3. Spent mushroom substrate as feed

It is estimated that agricultural production should 
be increased by 70–100% to meet the food demand 
of the increasing global population, which is pre-
dicted to grow to 9.7 billion by 2050 [53]. 
Soybeans and maize are the most common energy 
and protein sources used by livestock farmers to 
generate meat, eggs, and dairy products, which, in 
turn, are the main protein sources in human diet 
[54]. The need for animal feed production is pre-
dicted to increase significantly, and the feed indus-
try must look for additional/alternative means to 
cover the respective demand. Exploiting suitable 
bioresources (e.g. SMS) could contribute toward 
this direction by readily providing material to be 
used as feed supplement.

The main raw materials used in mushroom 
cultivation are rich in cellulose, hemicelluloses 
and lignin, while their protein content is generally 
low [23]. During solid-state fermentation by 
mushroom-forming fungi, the substrate polymers 
are enzymatically degraded, and the digestibility of 
plant residues is considerably improved. 
Concomitantly, the growth of mycelial biomass 
upgrades the substrate by increasing its content 
in proteins and bioactive compounds, e.g. polysac-
charides and ergosterol [55–58]. Indicatively, the 
growth of P. ostreatus mushrooms on faba bean 
hulls increased their protein content from 208  
g kg−1 (on a dry weight (DW) basis) in the initial 
substrate to 347 g kg−1 in the SMS [59]. 
Furthermore, P. ostreatus growth enriched the 
material in 14 out of 16 analyzed amino acids, 
and significantly reduced the content of anti- 
nutritional compounds, such as tannin, vicine, 
and convicine. SMS from other mushroom species 
is also rich in compounds of interest for enhancing 
the quality of feed rations. L. edodes SMS is rich in 
the provitamin D2 ergosterol (151.6 mg ergosterol 
equivalents/100 g) [58], while SMS from several 
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other species contains high amounts of polysac-
charides, including β-glucans [60]. Consequently, 
the high nutritional value of SMS is the main 
factor for its inclusion in the diets of poultry, 
ruminants, and monogastric animals, and, 
recently, in fish and edible insects. A summary of 
relevant reports on the reuse of SMS as animal 
feed is presented in Table 2. In addition, the 
main outcome of each study is briefly presented 
and further discussed below.

3.1. Spent mushroom substrate in the diet of 
poultry

The incorporation of SMS derived from the culti-
vation of P. eryngii, P. ostreatus and H. marmoreus 
(fermented or not by Bacillus subtilis) at a ratio 
from 5 to 15% (w/w) in a poultry diet increased 
the feed intake without having adverse effects on 
the egg production and the mass of useful meat 
[67,74,75,79]. On the other hand, incorporation of 
Agaricus blazei SMS at rates exceeding 0.4% (w/w) 
caused a gradual reduction in the weight gain of 
broiler chickens, while inclusion ratios of only 
0.2% exhibited the highest value of weight gain 
and feed intake, as well as the best feed conversion 
[81]. Similarly, low inclusion ratios of P. sajor-caju 
SMS (up to 0.67%) improved the weight gain of 
broiler chicks in the first 21 days [80].

3.2. Spent mushroom substrate in the diet of 
monogastric animals

SMS inclusion in the diet of monogastric animals 
have been tested with both pigs and model animals 
(mice, rats). The addition of sawdust-based SMS 
from Grifola frondosa (25% w/w) in rats’ diet did 
not affect the weight gain, the feed efficiency, or 
the biochemical parameters, while fecal weight and 
protein content were found to be higher [76]. In 
addition, the – orally administered – hot water 
extract of SMS from Ganoderma lucidum exhibited 
enhanced murine immune function in mice [65]. 
Furthermore, the use of low amounts of SMS from 
P. ostreatus (up to 3.5%, w/w), Cordyceps militaris 
(0.2%, w/w), and L. edodes (3%, w/w) in pigs’ diet 
positively affected the feed intake and conversion, 
as well as the final weight and quality of meat 
deriving from trials [55,64,82]. C. militaris SMS 

resulted in increased immunoglobulin A and G, 
and glutathione peroxidase activities, while leuko-
cytes, cholesterol and malondialdehyde contents 
were decreased [55]. Similarly, beneficial effects 
on the intestinal mucosal barrier, immunity, and 
the diversity and abundance of the bacteria in the 
colon and cecum were observed for weaned piglets 
when fed with L. edodes SMS [64]. It is noteworthy 
that SMC seems to be useful as a ‘behavior regu-
lator’ in pigs; by having access to mushroom com-
post through a metal grid, pigs demonstrated 
significantly reduced negative behavior (e.g. such 
as nosing, tail biting and chewing) against pen-
mates, as well as improved overall welfare in com-
parison to pigs with no access to SMC [84].

3.3. Spent mushroom substrate in the diet of 
ruminants

The use of SMS as animal feed has been investi-
gated to a larger extent for ruminants than for 
monogastric animals (i.e. 13 vs. 5 publications 
appeared, respectively, when a Scopus search was 
performed by using the keywords ‘Spent 
Mushroom substrate/compost’ AND ‘feed;’ 
July 2022). Incorporating SMS from various mush-
room species at a rate of up to 30% (w/w) in the 
daily intake of ruminants revealed its potential as 
a supplement to conventional feeds without affect-
ing several relevant parameters (Table 2). 
Specifically, feeding sheep for three weeks with 
a diet including up to 20% (w/w) of A. bisporus 
SMS did not affect the nutrient intake, digestibil-
ity, and nitrogen balance [83]. Similarly, 
A. bisporus SMS fed at a rate of 15% (w/w) for 
170 days did not cause any effect on the carcass 
and internal organs of Holsteins male calves [73]. 
Plain P. ostreatus SMS in ratios higher than 15% 
resulted in adverse effects in sheep slaughter 
weight, empty body weight, and hot and cold 
carcass weight [69]. In contrast, when rice straw 
was fermented for eight weeks with P. sajor-caju 
SMS before being fed to alpine dairy goats, it 
increased the rumen degradable fibers fraction 
and improved dry matter intake and milk 
yield [61].

Feeding male sika deer for 60 days with 
P. ostreatus SMS (10%, w/w) resulted in 
a reduction of the intake of organic matter and 
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improved digestibility of crude fibers, while no 
effect on either the apparent nutrient digestibility, 
feed intake, velvet antler production, or biochem-
ical indexes was observed when F. velutipes SMS 
(10%, w/w) was fed to the same animals [62]. 
When hot water extracts from G. lucidum and 
Ganoderma chalceum (syn. G. balabacense) SMS 
were supplemented to dairy cow feed, immunity 
and antioxidant capacity were increased, and milk 
quality was improved [71,72]. By using SMS 
extracts, the addition of large amounts of fibrous 
components from the untreated SMS could be 
avoided, but further studies are required to inves-
tigate their impact on animal health and the opti-
mum incorporation rate, which depends mainly 
on the substrate origin.

Agaricus and Pleurotus species are usually culti-
vated in straw-based substrates, while L. edodes, 
G. lucidum, Gr. frondosa and He. erinaceus are 
cultivated in wood-based substrates. The incor-
poration rate of such substrates in animal feed is 
low, and further treatment is necessary to improve 
their nutritional characteristics. In recent years, 
microbial fermentation with probiotic microor-
ganisms has been adopted as a cheap, fast, and 
efficient method to reduce fibrous ingredients 
and upgrade the protein content of SMS, including 
those deriving from sawdust-based media. 
Moreover, probiotic microorganisms relieve ani-
mals weaning stress, regulate intestinal microbiota, 
and reduce diarrhea incidents [85,86].

Due to its high moisture content, SMS tends to 
decompose rapidly; hence, it needs to be processed 
quickly. This could be achieved by ensiling, for 
instance, by lactic acid fermentation under anae-
robic conditions [87]. Lactic acid bacteria produce 
desirable metabolites, and suppress the growth of 
clostridia and other deleterious microbial popula-
tions [88]. Although ensiling processes may be 
initiated naturally by the epiphytic microorgan-
isms existing in the initial material, they can be 
assisted by inoculated bacteria. Inoculation of SMS 
with Lactobacillus, Bacillus, or Enterobacter spp. 
ensures rapid acidification, and increases dry mat-
ter degradability and crude protein content 
[64,66,70,75,77,78].

An indicative example is the use of a sawdust- 
based P. eryngii SMS incorporated at a high rate 
(45%, w/w) into silage with various agricultural 

by-products, and fermented for 22 days [68]. 
Using the resulting product for feeding sheep 
resulted in similar energy value, lower digestion 
of fibers, and higher protein metabolism and uti-
lization compared to the outcome achieved with 
a rye straw-based control diet. In addition, the 
sawdust-based SMS from the same mushroom 
species, when fermented with Enterobacter and 
Bacillus spp., significantly improved growth per-
formance and carcass traits in Hanwoo steers 
compared to rice straw feed administered for 
12.6 months during the growing and fattening per-
iods [77]. Similarly, P. ostreatus SMS fermented 
with Lactobacillus plantarum and Pediococcus 
acidilactici could replace up to 50% of the conven-
tional feed provided to Hanwoo steers and post-
weaning calves [66,70,78]. Such an SMS-based feed 
improved the growth performance of the tested 
animals or enhanced the daily gain caused by 
increased voluntary feed intake. Finally, feeding 
Liuyang black goats with P. ostreatus SMS co- 
fermented with whole rice plants improved meat 
quality and had no adverse effects on the slaughter 
performance [63].

3.4. Spent mushroom substrate in the diet of fish 
and edible insects

Using SMS in pisciculture is also of substantial 
interest. SMS from P. ostreatus, Pleurotus cystidio-
sus, and G. lucidum seems to support the growth 
of catfish, and significantly increase its survival 
rate and digesting ability compared to commercial 
feeds [89]. The addition of C. militaris SMS up to 
40 g kg−1 in the diet of Nile tilapia (Oreochromis 
niloticus) improved growth performance, skin 
mucus lysozyme, and peroxidase activities, as 
well as serum immune parameters [90]. The com-
bination of SMS with L. plantarum further 
improved those parameters. Moreover, enrich-
ment of Nile tilapia diet with A. blazei SMC (1%, 
w/w) provided significant protection against infec-
tions from Streptococcus agalactiae [91]. Including 
an extract from the SMS of Schizophyllum com-
mune, a popular mushroom in Thailand, in the 
feed of Nile tilapia resulted at enhancing their 
immune defense [92].

In the frame of the need to reduce dependence 
on feeds deriving from plants, the use of insects 
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seems to be a promising alternative due to their 
high content in crude protein (up to 76%) and fat 
(up to 59%), energy (20–30 MJ/kg DM), as well as 
to their short life-cycle and the low-cost growth 
prerequisites [93–95]. The potential of six SMS 
derived from Auricularia cornea, Auricularia hei-
muer, P. eryngii, P. ostreatus, Pleurotus citrinopi-
leatus, and L. edodes was recently evaluated to rear 
black soldier fly (Hermetia illucens) and Tenebrio 
molitor larvae. L. edodes SMS was shown to be the 
most suitable to replace the insects' conventional 
feed [96,97]. Furthermore, when Protaetia brevi-
tarsis larvae were grown on L. edodes or 
Auricularia auricula-judae SMS, a nutrient-rich 
organic fertilizer with low phytotoxicity and high 
humic acid content was produced [98]. However, 
no studies exist on the production of insects natu-
rally feeding on mushroom substrates. That could 
be a promising alternative considering the ease of 
insects’ growth and the low demand in terms of 
material resources.

In conclusion, using SMS in animal nutrition 
can significantly contribute to the enrichment of 
feed, particularly regarding proteins and bioactive 
compounds. However, incorporating SMS into the 
daily feed-schedule is a complex process. The 
mushroom species, the initial substrate composi-
tion, the animal species, and the digestibility and 
voluntary intake of the final product are factors 
that must be carefully considered to calculate the 
final integration rate. The high NDF and ADF 
content (especially in sawdust-based substrates) is 
probably the main limiting factor in SMS exploita-
tion as feed. Adopting appropriate treatment 
approaches, including lactic acid fermentation 
and the use of SMS extracts, could enhance the 
nutritional and acceptance characteristics, thus 
facilitating the incorporation of SMS in the diet 
of productive animals. Particularities related to the 
composition of each type of SMS and the indivi-
dual needs of the animal species require careful 
experimentation on a case-by-case basis to ascer-
tain the safe and efficient use of SMS.

4. Use of spent mushroom substrate in 
agriculture

The global demand for food and feed has led to 
intensification of agricultural production and the 

widespread use of fertilizers and pesticides. World 
consumption of the three main fertilizer elements 
(Ν, P, K) was estimated at 201.7 million tons in 
2020 [99], and nearly 3 billion kg of pesticides are 
used yearly [100]. Although using fertilizers and 
pesticides has increased food availability, their 
extensive application negatively impacts the envir-
onment and human health. Hence, adopting sus-
tainable agronomic practices, including the 
development of novel environment-friendly and 
cost-effective biofertilizers and biopesticides, is of 
high priority. In line with that approach, the SMS’s 
physical properties, its high content of bioactive 
compounds, and readily available macro- and 
trace elements make it a promising candidate for 
several agricultural applications, the most impor-
tant of which are presented in the following 
paragraphs.

4.1. Use of spent mushroom substrate as 
biofertilizer and soil conditioner

Organic soil amendments, commonly used in agri-
culture, exert positive effects on crop productivity 
and soil health by affecting physicochemical and 
biological properties of soil [101–103]. Among the 
most widespread materials used as organic soil 
amendments are those originating from municipal 
wastes (food and gardening wastes, sewage 
sludge), animal husbandry (manure), crop produc-
tion (stems, leaves and branches), and agro- 
industrial activities (fruit pulp and oil extraction 
by-products). However, those materials can con-
tain hazardous compounds or plant pathogens, 
which are detrimental to soils and crops.

Since SMS is rich in nutrients and has low (and, 
most often, no) content in xenobiotic compounds 
and heavy metals, it can be used as a soil amend-
ment either directly or after a composting treat-
ment. SMS properties vary depending on the raw 
materials included in the initial substrate, the 
mushroom species, and the cultivation technology. 
Accordingly, a wide range of effects is noted on 
soil characteristics, crop growth and yield when 
SMS is used as a soil conditioner or fertilizer 
[104,105]. However, it is worth mentioning that 
the mushroom species and the SMS composition 
are often not specified in pertinent publications, 
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making it difficult to draw sound conclusions 
about its exploitation prospects.

A summary of relevant reports on incorporating 
SMS into soils is presented in Table 3, which 
includes information on the SMS origin, type, 
and incorporation rate, and the main effects of 
SMS addition on the soil and plants under study. 
The presented results indicated improvements in 
soil structure and fertility, which led to increased 
crop production or contributed to the restoration 
of barren lands and degraded soils.

By applying SMS of unknown origin (20 Mg 
ha−1) and chicken manure (10 Mg ha−1) in 
a sandy soil every one-two years for 20 years, 
Lipiec et al. [109] reported an increase in soil 
organic matter content by 102–201%. The experi-
ment also resulted in a long-term increase in field 
water capacity caused by the augmentation of resi-
dual pores by up to 251%. Similarly, fresh or 
composted SMS applied annually for four years 
at two different rates (8 and 25 Mg ha−1) to 
a semiarid vineyard soil increased the content of 
inorganic N in the soil surface (0–5 cm) [120]. 
However, only the highest SMS addition rate 
improved soil organic carbon, total nitrogen, and 
labile organic forms at 0–5 and 5–15 cm soil 
depths.

In other large-scale applications, incorporating 
A. bisporus SMS into the soil (100 kg ha−1) 
increased oxidizable organic carbon, organic N, 
and available P content [119]. The values obtained 
for using A. bisporus SMS alone were higher than 
those resulting from incorporating a mixture of 
A. bisporus and P. ostreatus SMS (1:1, v/v). Both 
schemes of SMS addition resulted in increased 
phosphatase activity compared to unamended 
soil, while no alterations in the soil salinity or pH 
value were observed, and N mineralization was 
low. The same treatments also had positive effects 
when examined in a calcareous clayey-loam soil 
used for lettuce production [105]. In that study, 
application of SMS resulted in higher values of 
oxidizable organic carbon, organic N, extractable 
K, available P, and cation exchange capacity (espe-
cially when using A. bisporus SMS) than in soils 
receiving NPK fertilization, while lettuce yields 
were similar.

Ngan and Riddech (2021) reported the applica-
tion of a mixture of SMS with plant growth- 

promoting bacteria (Bacillus amyloliquefaciens) in 
the cultivation of Hibiscus sabdariffa [110]. The 
study revealed an improvement in soil properties 
exceeding the effect exerted by NPK fertilization. 
Unfortunately, the lack of information on the SMS 
origin makes it difficult to compare the results 
with those of other relevant studies.

Testing fresh or sterilized F. velutipes SMS in 
cucumber cultivation resulted in a significant increase 
in total organic carbon, dissolved organic carbon, and 
microbial biomass carbon compared to NPK use and 
to no fertilization [111]. The study revealed higher 
levels of microbial diversity and enzyme activities for 
the fresh SMS-amended soil compared to soil treated 
with mineral fertilizer. Correspondingly, A. bisporus 
SMS amendment in soils increased bacteria and fungi 
co-occurrence, and the plant yield was positively 
affected by the relative abundance of microbial hubs 
[112]. Similarly, the application of Agaricus subrufes-
cens and L. edodes SMS enhanced soil microbial 
population, and resulted in a remarkable increase in 
lettuce plants' dry weight compared with the results 
achieved with no fertilization or NPK treatments 
[104]. For several other crops, SMS application to 
the soil led to higher yields than those obtained by 
mineral fertilization [105,116,121].

Soil biological properties play a critical role in 
the maintenance of ecosystem functions, crops 
productivity enhancement, and at mitigating the 
adverse effects of pollutants. The beneficial effect 
on soil biological properties, including the struc-
ture of microbial communities and associated 
enzyme activities, is an attractive aspect of using 
SMS as an amendment. The main disadvantage of 
SMS is the state of stability/maturity which – if 
imperfect/immature – could hamper its wide agro-
nomic use. However, this issue could be overcome 
by composting it, alone or mixed with other crop 
residues, under controlled conditions [115].

Several studies have revealed that using SMS as 
an ingredient in the composting process promotes 
the degradation of organic matter in mixtures with 
waste sludge, pig manure, corn stalks, and cow dung 
[122–124]. It has also resulted in the enhancement 
of the humification process [125], at reducing 
ammonia emissions [122,126], facilitating heavy 
metal passivation [125], and improving the quality 
of the final product [122,124]. Furthermore, using 
composted A. bisporus SMS alone as a substrate for 
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the cultivation of Lolium multiflorum resulted in 
a yield improvement by up to 300% compared to 
the reference of NPK fertilization [115]. Co- 
composting of Au. auricula-judae SMS with biogas 
residues and pig manure led to the production of 
higher quality seedlings than those obtained from 
commercial substrates [113]. Substrates containing 
composted A. bisporus and P. ostreatus SMS resulted 
in increased yields of baby leaf lettuce, even in the 
presence of the soil-borne plant pathogen Pythium 
irregulare [108]. Adopting appropriate methodolo-
gies, such as the addition of enzymes or earthworms 
(vermicomposting), during the composting process 
should result in further improvement of the quality 
of composted SMS by promoting the beneficial 
effects of autochthonous bacteria, increasing ion- 
exchange capacity, decreasing total carbon and C/ 
N ratio, and promoting the synthesis of nitrates 
[127–129].

In conclusion, the use of SMS as soil amend-
ment has beneficial effects on soil fertility and 
structure. SMS presents a promising potential for 
substituting, at least partially, the use of mineral 
fertilizers in continuous crops and thus contri-
butes at mitigating soil secondary salinization 
and acidification, and at avoiding nutrient imbal-
ances and accumulation of toxic allelochemicals.

4.2. Use of spent mushroom substrate for 
plant-disease control

To deal with the negative repercussions of using 
chemical-based pesticides in agriculture, the appli-
cation of environmentally friendly products for 
pest protection is crucial. Biocontrol agents, 
including live organisms and biological pesticides, 
are potential alternatives for controlling plant dis-
eases. In contrast to chemical pesticides, biocon-
trol agents have little impact on non-targeted 
organisms; they do not leave behind any long- 
lasting harmful leachates and do not lead to the 
development of resistant microbial strains or 
insects. However, they often exhibit low-medium 
effectiveness and a shorter shelf life [130,131].

The bioactive compounds in SMS have antimi-
crobial properties [132], which could be exploited 
against plant pathogens. Although in vitro studies 
have shown the potential suitability of mushroom 
and mycelium extracts against plant pathogens 

[87,133,134], they do not necessarily reveal the 
in vivo effectiveness. SMS application has shown 
to be effective in suppressing plant disease inci-
dence. Table 4 shows examples of reported 
research findings on using SMS for controlling 
plant pathogens and pests, and also includes the 
SMS origin, the plant – pathogen/pest system, and 
the main outcome of each study.

Several studies on SMS-based biocontrol pro-
ducts against plant diseases concern L. edodes. 
The in vitro antimicrobial activity of L. edodes 
SMS [87,151], was further evidenced when hot 
water extracts were used to inhibit the germination 
of Pyricularia oryzae conidia in rice plants and to 
suppress the growth of Phytophthora capsici in 
pepper plants [141,142]. A chitin/cellulose nanofi-
ber complex isolated from L. edodes SMS exhibited 
significant activity against Alternaria brassicicola 
in Arabidopsis thaliana plants [135]. L. edodes 
SMS-based biocontrol agents reduced the disease 
symptoms and promoted plant growth [135,142].

P. ostreatus SMS can provide another alternative 
to suppress plant diseases. Paddy straw-based 
P. ostreatus SMS, bio-fortified with Trichoderma 
asperellum, led to a remarkable reduction of the 
severity index of Fusarium oxysporum-induced 
disease, while it contributed to enhanced tomato 
growth [137]. The application of a polysaccharide 
extract from P. ostreatus SMS and discarded 
L. edodes mushrooms reduced by 50% the severity 
of bacterial spot caused by Xanthomonas gardneri 
in tomato cotyledons, leaflets, and five-leaf plants 
[139]. Phenolic-rich extracts from P. ostreatus SMS 
have been shown to prevent the development of 
the parasitic plant broomrape in faba bean culti-
vars [152], and to improve the rice growth and 
yield parameters [153]. In another study, mixing 
composted SMS from either P. ostreatus or 
V. volvacea with a biofertilizer exhibited higher 
control efficacy against Ralstonia wilt and 
Phytophthora blight diseases, than using the bio-
fertilizer alone [138].

SMS from less widely cultivated mushrooms has 
also shown suppressive activity against plant dis-
eases. Application of SMS from Ly. decastes and 
P. eryngii into soils used for cultivating cucumber 
resulted in protection against disease symptoms 
caused by Colletotrichum orbiculare, Podosphaera 
xanthii, Cladosporium cucumerinum and 
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Pseudomonas syringae [147,149]. A protective 
effect against Colletotrichum lagenarium in 
cucumber plants was observed after spraying 
a water extract of Ly. decastes SMS [149]. The 

incorporation of Ly. decastes SMS into soil sup-
pressed the lesions caused by Al. brassicicola in 
Arabidopsis thaliana leaves; this effect was attrib-
uted to SMS volatile components [136].

Table 4. Reuse of spent mushroom substrate for the control of plant pathogens and pests based on the outcome reported in 
pertinent publications. Abbreviations used: ACT, aerated compost tea; CT, compost tea; NCT, non-aerated compost tea; NR, not 
reported.

Origin of SMS Plant – Pathogen/Pest (disease’s common name) Main outcome Reference

Lentinula edodes Arabidopsis – Alternaria brassicicola SMS chitin/cellulose nanofiber complex showed 
disease suppression and growth promotion

[135]

Hypsizygus marmoreus, 
Pholiota microspora, 
Lyophyllum decastes, 
Auricularia polytricha

Arabidopsis – A. brassicicola (cabbage’s leaf spot) Antifungal volatile compounds emitted by the 
SMS suppressed fungal infection when 
incorporated into the soil (1:2, v/v)

[136]

Pleurotus ostreatus Tomato – Fusarium oxysporum (fusarium wilt) SMS bio-fortified with Trichoderma asperellum 
reduced disease severity by 21.2–84.3%

[137]

P. ostreatus, Volvariella 
volvacea

Pepper – Ralstonia solanacearum, Phytophthora 
capsica and Meloidogyne spp. (Ralstonia wilt, 
Phytophthora blight, root-knot nematode)

Biofertilizer (BF) mixed with composted SMS 
showed a significantly higher disease-control 
efficacy than BF alone (59 and 76% for 
P. ostreatus and V. volvacea, respectively, vs. 
37% in plain BF)

[138]

P. ostreatus, L. edodes Tomato – Xanthomonas gardneri (bacterial spot) Polysaccharides extracted from SMS (1.5 mg mL−1) 
reduced bacterial spot severity by 50% on 
tomato cotyledons, leaflets, and five-leaf plants

[139]

NR Eggplant – F. oxysporum and R. solanacearum (wilt 
of eggplant)

SMS, farmyard manure and earthworm compost 
(1:1:1, w/w) was the most effective combination 
at inhibiting disease incidence (66.9%)

[140]

L. edodes Rice – Pyricularia oryzae (rice blast fungus) Hot-water extract of SMS inhibited the 
germination of Pyricularia oryzae conidia

[141]

L. edodes Pepper – Phytophthora capsici (Phytophthora 
blight)

SMS inhibited mycelial growth of P. capsici, 
suppressed the Phytophthora blight disease of 
pepper seedlings by 65% and promoted plant 
growth by more 30% compared to the control

[142]

Lepista nuda Cucumber – Pythium aphanidermatum 
(cucumber’s damping off)

The combination of SMS with peat compost and 
peat moss reduced the incidence of Pythium 
damping-off up to 58% and promoted the 
growth of cucumber seedlings

[143]

Hericium erinaceus Tomato – R. solanacearum (tomato wilt) Water extracts of SMS suppressed tomato wilt 
disease caused by R. solanacearum by 85% in 
seedlings, and promoted growth of tomato 
plants

[144]

NR Tomato – P. capsici (Phytophthora blight) In vitro bioassays revealed that SMS-ACT reduced 
P. capsici growth by 50% while SMS-ACT with 
nutrients reduced it by 66.5%; in greenhouse 
trials, disease reduction was 6.4–73.4%

[145]

NR Melon – Didymella bryoniae and Podosphaera 
fusca (gummy stem blight and powdery 
mildew)

SMS-ACT and NCT reduced the severity of P. fusca, 
while only a delay was observed in the growth 
of D. bryoniae

[146]

L. decastes 
Pleurotus eryngii

Cucumber – Podosphaera xanthii, Cladosporium 
cucumerinum, Corynespora cassiicola and 
Pseudomonas syringae (powdery mildew, 
cucurbits scab, Corynespora leaf spot and 
angular leaf spot)

Autoclaved water extract of SMS reduced 
symptoms caused by P. xanthii and Ps. syringae 
but not those caused by C. cassiicola and Cl. 
cucumerinum; a mixture of autoclaved SMS with 
soil (1:2, v/v), significantly reduced powdery 
mildew, scab and angular leaf spot diseases

[147]

NR Bean – F. solani, Rhizoctonia solani and 
Macrophomina phaseolina (beans root rot)

Soil amendment with SMS-CT was highly effective 
in reducing root rot incidence caused by 
F. solani, R. solani and M. phaseolina at pre- 
emergence damping-off stage and after 45 days

[148]

L. decastes Cucumber – Colletotrichum lagenarium 
(anthracnose)

A disease reduction (over 70%) observed in 
autoclaved and raw SMS incorporated into the 
soil (1:2, v/v with soil)

[149]

Agaricus bisporus Tomato – Septoria lycopersici (leaf spot disease) Plants grown on SMS-containing substrates were 
resistant to infections caused by S. lycopersici

[150]
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The results so far indicate that SMS richness in 
antimicrobial compounds in concomitance with its 
natural microbiome, including organisms suppres-
sing soil-borne plant pathogens, are essential pre-
requisites for developing relevant plant-disease 
control products. However, further experimenta-
tion, including evaluation in large-scale green-
house and field trials, is required to fully benefit 
from that potential toward a solid sustainable agri-
culture model.

4.3. Effects of SMS on nutritional value and 
secondary metabolites production in plants

Plant secondary metabolites, including vitamins, 
terpenoids and polyphenols, in fruits and vegeta-
bles are important for reducing risks of cardiovas-
cular diseases and maintaining good health 
[154,155]. Those molecules exert a wide range of 
effects on the plant and associated organisms, and 
their production depends on various biotic and 
abiotic factors [156].

SMS application affects the content of second-
ary metabolites in plants. Vahid Afagh et al. [157] 
reported that the incorporation of Agaricus SMS 
leachates in sandy soil (up to 15% (v/v)) signifi-
cantly increased the content of essential oil, pro-
line, and soluble sugars in chamomile (Matricaria 
chamomilla) in comparison to plants grown on 
non-supplemented soil. Increasing the SMS lea-
chate content enhanced K and Na absorption, 
whereas N and P uptake was not affected. 
Similarly, the addition of SMS leachate (20–60% 
(v/v)) in the soil led to increased content of essen-
tial oil components, chlorophyll, and antioxidant 
compounds in chamomile [158]. Application of 
SMS as an amendment in soils where basil 
(Ocimum basilicum) was cultivated, resulted in 
a two-fold increase in essential oil components, 
and in an enhancement of its content in micro- 
and macronutrients [159].

SMS use in the cultivation of vegetables 
demonstrated a wide range of effects on the var-
ious parameters, including product yield and 
quality. Applying a leachate of P. ostreatus SMS 
and A. bisporus SMS (10–25% (w/w)) to the soil 
increased the content of chlorophyll in pepper 
leaves, and that of carotenoids and protein in 
fruits [160]. Furthermore, A. bisporus SMS 

biofortified with Trichoderma harzianum inhib-
ited lipid peroxidation and protein oxidation 
with a significant increase in total polyphenol 
and flavonoid contents in tomatoes, and 
enhanced Fe2+/Fe3+ chelating activity and super-
oxide anion radical scavenging activity compared 
to an SMS-free control [161]. Similarly, 
P. ostreatus SMS biofortified with Trichoderma 
asperellum improved morpho-biochemical and 
nutritional parameters, such as the content of 
chlorophyll, carotenoids, total soluble sugars, 
total soluble proteins, lycopene, β-carotene, and 
ascorbic acid, and antioxidant properties, of 
tomato plants [137]. Another study, using SMS 
from A. bisporus or P. ostreatus for replacing peat 
moss by 25–100% (w/w), reported that the effect 
of SMS on the macronutrient content of tomato, 
courgette, and pepper plants was species- 
dependent [162]. A proportional increase of 
N content with the increase of SMS ratio in the 
substrate was observed for pepper, whereas no 
significant effect was evident for courgette and 
tomato. In addition, increasing the incorporation 
volumes of SMS increased K content for cour-
gette and pepper, but not for tomato. Last, cour-
gette and pepper exhibited similar P content 
when grown on SMS-based substrates and 
a peat control, whereas P content in tomato seed-
lings grown on SMS-based substrates was lower 
than in plants grown on peat.

Although the scientific data on the effects of 
SMS on the nutritional value of edible and medic-
inal plants are still limited, the available results 
reveal SMS potential to increase the content of 
specific elements and secondary metabolites in 
plants.

5. Spent mushroom substrate as source of 
enzymes and bioactive compounds

Producing enzymes and different bioactive com-
pounds is a reasonable way of SMS valorization. 
SMS-derived enzymes are of interest in industrial 
sectors, such as brewing, baking, starch- 
processing, leather, and textile industries, as well 
as in bioremediation and the emerging biofuel and 
biorefinery business. SMS-derived bioactive mole-
cules have also the potential for application in the 
pharmaceutical, biomedical, feed, and food sectors.
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5.1. Enzymes

SMS is a source of various enzymes that can be 
recovered by extraction with different solvent 
systems. Furthermore, SMS can be used as sub-
strate for the cultivation of enzyme-producing 
microorganisms.

5.1.1. Recovery of enzymes from spent mushroom 
substrate
For growing on lignocellulosic biomass, white-rot 
fungi secrete hydrolytic and oxidative enzymes 
responsible for degrading complex polymers 
into low-molecular weight substances, which 
can be assimilated for fungal growth [163]. The 
main groups of enzymes participating in fungal 
degradation of lignocellulosic materials are pre-
sented in Figure 2. Hydrolytic enzymes are 
responsible for deconstructing cellulose and 
hemicelluloses, while oxidative enzymes are 
involved in lignin degradation [7]. 
Consequently, upon the end of cultivation, SMS 
contains extracellular fungal enzymes, such as 
ligninases, cellulases, and hemicellulases, that 
can be recovered using different extraction pro-
cedures. The level of enzyme activities and their 
corresponding titers depend on the growth sub-
strate and the fungal species’ ability to degrade 
different lignocellulose components. For exam-
ple, since white-rot fungi degrade lignin and 
hemicelluloses preferentially, extracts of their 
spent substrates are rich in ligninases and xyla-
nases, while cellulase activity is hardly detected.

The enzymatic systems present in SMS of various 
fungal species make possible their application for 
different purposes. For example, P. ostreatus SMS 
can be applied for decolorizing textile effluents 
because it contains oxidoreductases that degrade 
the dye molecules [164]. Similarly, the laccase and 
manganese peroxidase activities of P. pulmonarius 
SMS allow its direct application to remove polycyc-
lic aromatic hydrocarbons from contaminated soil 
samples [165]. However, rather than directly using 
the bulk SMS, many applications require using iso-
lated enzymes that can be recovered from SMS.

Table 5 shows an overview of studies on the 
recovery of extracellular enzymes from SMS of 
various fungal species. The spent substrates of 
A. bisporus and oyster mushrooms (Pleurotus 
spp.) are commonly reported as sources of extra-
cellular enzymes. Xylanases and cellulases are the 
most common hydrolases in the recovered 
enzymes, while laccases are the main reported 
oxidoreductases. Most studies provide a relatively 
detailed description of the extraction process used, 
while purification protocols, e.g. dialysis, ultra- 
filtration, anion-exchange chromatography, or gel 
filtration, of the extracted enzymes are not always 
described in detail. Production of crude enzyme 
extracts and their application in areas where 
expensive purification can be avoided is often 
reported [164,181,182]. Some studies provide the 
exact identification of the extracted enzymes, 
including the complete EC classification number, 
while other provide trivial names or a more gen-
eral classification without stating details.

Figure 2. Enzymes participating in fungal degradation of lignocellulosic substrates.

BIOENGINEERED 19



Ta
bl

e 
5.

 R
ec

ov
er

y 
of

 e
nz

ym
es

 f
ro

m
 s

pe
nt

 m
us

hr
oo

m
 s

ub
st

ra
te

. 
Ab

br
ie

vi
at

io
ns

 u
se

d:
 P

EG
, 

po
ly

et
hy

le
ne

 g
ly

co
l; 

M
nP

, 
m

an
ga

ne
se

 p
er

ox
id

as
e;

 L
iP

, 
lig

ni
n 

pe
ro

xi
da

se
; 

VP
, 

ve
rs

at
ile

 
pe

ro
xi

da
se

.
M

us
hr

oo
m

 s
pe

ci
es

H
yd

ro
la

se
s

O
xi

do
re

du
ct

as
es

Ex
tr

ac
tio

n 
co

nd
iti

on
s

Co
m

m
en

ts
Re

fe
re

nc
e

Ag
ar

ic
us

 b
isp

or
us

En
do

xy
la

na
se

, β
-x

yl
os

id
as

e,
 x

yl
an

- 
ac

et
yl

es
te

ra
se

, a
ra

bi
no

fu
ra

no
si

da
se

, 
en

do
gl

uc
an

as
e,

 c
el

lo
bi

oh
yd

ro
la

se
, 

β-
gl

uc
os

id
as

e

Pe
ro

xi
da

se
, 

ph
en

ol
ox

id
as

e
D

is
til

le
d 

w
at

er
, 0

.1
 M

 N
aO

H
, 0

.1
 M

 
H

Cl
, p

ot
as

si
um

 p
ho

sp
ha

te
 b

uf
fe

r, 
di

ffe
re

nt
 p

H
, 3

7°
C,

 1
 h

N
o 

pu
rif

ic
at

io
n;

 t
he

 c
ru

de
 e

xt
ra

ct
 w

as
 

ef
fe

ct
iv

e 
fo

r 
hy

dr
ol

yz
in

g 
w

he
at

 s
tr

aw
 

po
ly

sa
cc

ha
rid

es

[1
66

]

A.
 b

isp
or

us
La

cc
as

e
Tr

is
 –

 H
Cl

 b
uf

fe
r, 

pH
 7

.5
N

o 
pu

rif
ic

at
io

n;
 t

he
 c

ru
de

 e
xt

ra
ct

 w
as

 
us

ed
 f

or
 o

xi
da

tio
n 

of
 p

he
no

lic
 

co
m

po
un

ds

[1
67

]

A.
 b

isp
or

us
La

cc
as

e
D

is
til

le
d 

w
at

er
, 4

°C
, 2

4 
h

Pu
rif

ic
at

io
n 

by
 a

qu
eo

us
 K

3P
O

4-
PE

G
 

tw
o-

ph
as

e 
sy

st
em

[1
68

]

A.
 b

isp
or

us
CM

Ca
se

, x
yl

an
as

e,
 c

el
lo

bi
oh

yd
ro

la
se

VP
, M

nP
, L

iP
, 

la
cc

as
e

So
di

um
 c

itr
at

e 
bu

ffe
r, 

pH
 4

.8
, r

oo
m

 
te

m
pe

ra
tu

re
, 1

50
 r

pm
, 2

 h
Ac

et
on

e 
pr

ec
ip

ita
tio

n 
an

d 
D

EA
E 

ch
ro

m
at

og
ra

ph
y;

 e
xt

ra
ct

 u
se

d 
fo

r 
hy

dr
ol

ys
is

 o
f 

SM
S 

po
ly

sa
cc

ha
rid

es

[1
69

]

Pl
eu

ro
tu

s 
sa

jo
r-

ca
ju

Xy
la

na
se

, c
el

lu
la

se
, β

-g
lu

co
si

da
se

,
La

cc
as

e,
 L

iP
.

Ta
p 

w
at

er
 (

pH
 8

.4
5)

, d
is

til
le

d 
w

at
er

 
(p

H
 5

.2
5)

, s
od

iu
m

 c
itr

at
e 

bu
ffe

r 
(p

H
 4

.0
), 

4 
or

 2
8°

C,
 2

00
 r

pm
, 1

– 
18

 h

N
o 

pu
rif

ic
at

io
n

[1
70

]

Pl
eu

ro
tu

s 
os

tr
ea

tu
s, 

Le
nt

in
ul

a 
ed

od
es

, H
er

ic
iu

m
 

er
in

ac
eu

s, 
Fl

am
m

ul
in

a 
ve

lu
tip

es
α-

Am
yl

as
e,

 c
el

lu
la

se
, x

yl
an

as
e,

 β
- 

gl
uc

os
id

as
e

La
cc

as
e

1%
 N

aC
l, 

so
di

um
 p

ho
sp

ha
te

 b
uf

fe
r, 

ta
p 

w
at

er
, r

oo
m

 t
em

pe
ra

tu
re

, 
sh

ak
in

g,
 1

 h

N
o 

pu
rif

ic
at

io
n

[1
71

]

P.
 o

st
re

at
us

, P
le

ur
ot

us
 e

ry
ng

ii,
 P

le
ur

ot
us

 c
or

nu
co

pi
ae

α-
Am

yl
as

e,
 e

nd
og

lu
ca

na
se

, 
en

do
xy

la
na

se
La

cc
as

e
So

di
um

 c
itr

at
e 

bu
ffe

r, 
so

di
um

 
ph

os
ph

at
e 

bu
ffe

r, 
ta

p 
w

at
er

, 
di

st
ill

ed
 w

at
er

, p
H

 4
.5

, 4
–2

0°
C,

 
20

0 
rp

m
, 2

–1
2 

h

N
o 

pu
rif

ic
at

io
n

[1
72

]

P.
 e

ry
ng

ii
Xy

la
na

se
, β

-x
yl

os
id

as
e,

 β
-g

lu
co

si
da

se
, 

α-
am

yl
as

e,
 c

el
lu

la
se

La
cc

as
e,

 L
iP

Ta
p 

w
at

er
, 1

%
 N

aO
H

, p
ho

sp
ha

te
 

bu
ffe

r, 
4°

C,
 2

00
 r

pm
, 2

 h
N

o 
pu

rif
ic

at
io

n
[1

73
]

P.
 o

st
re

at
us

M
nP

, l
ac

ca
se

, L
iP

So
di

um
 t

ar
tr

at
e 

bu
ffe

r, 
pH

 5
.2

, 
22

°C
, 1

50
 r

pm
, 2

 h
U

ltr
af

ilt
ra

tio
n;

 e
xt

ra
ct

 u
se

d 
fo

r 
so

il 
bi

or
em

ed
ia

tio
n

[1
74

]

Pl
eu

ro
tu

s 
flo

rid
a

CM
Ca

se
, x

yl
an

as
e,

 c
el

lo
bi

oh
yd

ro
la

se
VP

, M
nP

, L
iP

, 
la

cc
as

e
So

di
um

 c
itr

at
e 

bu
ffe

r, 
pH

 4
.8

, r
oo

m
 

te
m

pe
ra

tu
re

, 1
50

 r
pm

, 2
 h

Ac
et

on
e 

pr
ec

ip
ita

tio
n,

 D
EA

E 
ch

ro
m

at
og

ra
ph

y
[1

69
]

P.
 f

lo
rid

a
Xy

la
na

se
La

cc
as

e
So

di
um

 c
itr

at
e 

bu
ffe

r, 
pH

 4
.8

, r
oo

m
 

te
m

pe
ra

tu
re

, 2
 h

Pa
rt

ia
l p

ur
ifi

ca
tio

n 
by

 a
m

m
on

iu
m

 
su

lfa
te

 p
re

ci
pi

ta
tio

n 
an

d 
di

al
ys

is
[1

75
]

Pl
eu

ro
tu

s 
pu

lm
on

ar
iu

s
La

cc
as

e,
 M

nP
So

di
um

 c
itr

at
e 

bu
ffe

r, 
pH

 4
.8

, 3
0 

 
m

in
N

o 
pu

rif
ic

at
io

n
[1

63
]

P.
 p

ul
m

on
ar

iu
s

En
do

gl
uc

an
as

e,
 x

yl
an

as
e,

 
en

do
gl

uc
an

as
e

Li
P,

 la
cc

as
e

Ta
p 

w
at

er
, p

H
 4

.0
, 4

°C
, 1

50
 r

pm
, 1

 h
Co

nc
en

tr
at

io
n 

by
 f

re
ez

e 
dr

yi
ng

[1
76

]

P.
 o

st
re

at
us

, P
le

ur
ot

us
 c

itr
in

op
ile

at
us

, A
ur

ic
ul

ar
ia

 
au

ric
ul

a-
ju

da
e,

 C
op

rin
us

 c
om

at
us

, A
gr

oc
yb

e 
cy

lin
dr

ac
ea

, H
e.

 e
rin

ac
eu

s, 
H

yp
siz

yg
us

 m
ar

m
or

eu
s, 

Tr
em

el
la

 f
uc

ifo
rm

is

Xy
la

na
se

Ta
p 

w
at

er
, 2

5°
C,

 1
50

 r
pm

, 3
 h

N
o 

pu
rif

ic
at

io
n

[1
77

]

L.
 e

do
de

s, 
H

e.
 e

rin
ac

eu
s, 

St
ro

ph
ar

ia
 r

ug
os

oa
nn

ul
at

a,
 

Fo
m

es
 f

om
en

ta
riu

s, 
G

rif
ol

a 
fr

on
do

sa
Xy

la
na

se
La

cc
as

e
W

at
er

, 1
8–

48
 h

, 1
0 

or
 2

0°
C

Pu
rif

ic
at

io
n 

by
 u

ltr
af

ilt
ra

tio
n,

 
st

ab
ili

za
tio

n 
of

 t
he

 1
0 

kD
a 

re
te

nt
at

e 
w

ith
 e

ith
er

 g
ly

ce
ro

l o
r 

m
al

to
de

xt
rin

/ 
so

di
um

 b
en

zo
at

e

[1
78

]

L.
 e

do
de

s, 
P.

 o
st

re
at

us
, P

. e
ry

ng
ii,

 P
le

ur
ot

us
 s

pp
., 

F.
 v

el
ut

ip
es

, H
yp

siz
yg

us
 m

ar
m

or
eu

s
To

ta
l c

el
lu

la
se

, C
M

Ca
se

, a
vi

ce
la

se
, β

- 
gl

uc
os

id
as

e,
 d

ex
tr

an
as

e,
 a

m
yl

as
e

La
cc

as
e

D
is

til
le

d 
w

at
er

, 3
0°

C,
 1

80
 r

pm
, 1

 h
N

o 
pu

rif
ic

at
io

n
[1

79
]

Tr
em

el
la

 f
uc

ifo
rm

is
Xy

la
na

se
, c

el
lu

la
se

, p
ec

tin
as

e
Ta

p 
w

at
er

, 2
5°

C,
 1

50
 r

pm
, 3

 h
Am

m
on

iu
m

 s
ul

fa
te

 p
re

ci
pi

ta
tio

n,
 

di
al

ys
is

, D
EA

E 
ch

ro
m

at
og

ra
ph

y
[1

77
]

G
an

od
er

m
a 

lu
ci

du
m

La
cc

as
e

So
di

um
 a

ce
ta

te
 b

uf
fe

r 
(p

H
 5

.0
), 

liq
ui

d-
so

lid
 r

at
io

 5
, 4

°C
, 3

 h
Pa

rt
ia

l p
ur

ifi
ca

tio
n 

by
 a

m
m

on
iu

m
 

su
lfa

te
 p

re
ci

pi
ta

tio
n 

an
d 

di
al

ys
is

[1
80

]

20 C. MARTÍN ET AL.



Recovery of extracellular enzymes from SMS 
was reported for the first time by Ball and 
Jackson in 1995 using A. bisporus spent compost 
[166]. In that study, it was found that lignocellu-
lose-degrading enzymes can be recovered from 
spent mushroom compost by extraction with dis-
tilled water [166]. The evaluation of the enzyme 
activities revealed high levels of hemicellulases 
(endoxylanase, β-xylosidase, xylan-acetylesterase, 
and arabinofuranosidase), cellulose-degrading 
enzymes (endoglucanase, cellobiohydrolase, and 
β-glucosidase), and ligninolytic enzymes (perox-
idase and phenoloxidase). The activity and stabi-
lity of the enzymes suggested their potential for 
the biological upgrading of wheat straw. After 
Ball and Jackson’s pioneering study, A. bisporus 
SMS has been studied frequently to recover 
enzymes by extraction with different solvent sys-
tems [167–169]. Trejo-Hernandez et al. [167] 
reported laccase extraction with Tris – HCl buf-
fer, while Mayolo-Deloisa et al. [168] developed 
a protocol using an aqueous potassium phos-
phate-polyethylene glycol two-phase system for 
purification of laccase extracted from 
A. bisporus SMS. Devi et al. [169] recently 
reported the recovery of oxidative and hydrolytic 
enzymes by suspending A. bisporus SMS in 
sodium citrate buffer, followed by acetone preci-
pitation and subsequent chromatographic purifi-
cation. The partially purified enzyme extract was 
evaluated on hydrolysis of SMS polysaccharides 
for ethanol production.

Recovery of enzymes from SMS resulting from 
the cultivation of mushrooms of the genus 
Pleurotus has been well investigated. The first 
studies were published in the early 2000s, when 
different solvent systems, including water, sodium 
citrate buffer, and sodium phosphate buffer, were 
evaluated to extract hydrolases and oxidoreduc-
tases from SMS of P. sajor-caju SMS [170] and 
P. ostreatus [171], the latter also included SMS of 
other species. In other studies, different buffers 
and conditions were evaluated for extraction of α- 
amylase, endoglucanase, laccase, and endoxyla-
nase from SMS of P. eryngii, P. ostreatus, and 
P. cornucopiae; the best recoveries were achieved 
using sodium citrate buffer [172,173]. Sadiq et al. 
[174] used a sodium tartrate buffer for extracting 
manganese peroxidase (MnP), laccase, and lignin 

peroxidase (LiP) from P. ostreatus SMS and used 
the extract for bioremediation of contaminated 
soil. The SMS of P. florida [36,44] has also been 
reported as a source of lignin oxidases (versatile 
peroxidase (VP), MnP, LiP, and laccase) and 
polysaccharide hydrolases (CMCase, xylanase, 
and cellobiohydrolase). Crude extracts of 
P. pulmonarius SMS demonstrated laccase and 
MnP activity [163]. P. pulmonarius SMS was 
also used to extract several hydrolases and oxidor-
eductases, and the extract was used for the hydro-
lysis of palm oil mill effluent to produce 
biohydrogen [176]. Extraction of xylanases from 
P. ostreatus and P. citrinopileatus SMS has also 
been investigated [177].

The potential for enzyme recovery from SMS 
of other mushroom species has also been investi-
gated. For example, Schimpf and Schultz (2016) 
screened selected enzyme activities in SMSs of 
L. edodes, He. erinaceus, Stropharia rugosoannu-
lata, Fomes fomentarius, and Gr. frondosa and 
developed a protocol for recovery of lignocellulo-
lytic enzymes from L. edodes SMS [178]. In 
another study, SMS from the cultivation of Au. 
auricula-judae, Coprinus comatus, Agrocybe cylin-
dracea, He. erinaceus, and H. marmoreus have 
also been investigated as a source of xylanases 
[177]. Screening of enzymes extracted from SMS 
of L. edodes, H. marmoreus, F. velutipes, and three 
Pleurotus strains revealed higher activity of cellu-
lose-degrading enzymes for L. edodes extract, 
while the extracts of Pleurotus strains displayed 
higher laccase activity and ability to decolorize 
Coomassie Brilliant Blue [179].

Recovery of laccase and several hydrolases from 
L. edodes, P. ostreatus, He. erinaceus, F. velutipes 
SMS has also been reported [171].

Enzyme preparations with high xylanase activity 
were obtained from extracts from Tremella fucifor-
mis SMS purified by ammonium sulfate precipita-
tion and gel filtration chromatography [177]. The 
purified enzyme showed good thermal stability 
and potential for saccharification of xylan con-
tained in wheat bran, sugarcane bagasse, and 
other biomass residues. Optimal conditions for 
laccase extraction from G. lucidum SMS and utili-
zation of the extract to remove toxic chemicals 
from an aqueous environment have also been 
reported [180].
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5.1.2. Using SMS as substrate for cultivation of 
enzyme-producing organisms
Since SMS is rich in nutrients and contains potential 
carbon sources, it can be used as a substrate for 
producing enzymes by cultivating enzyme- 
producing organisms. SMS has been used to cultivate 
fungi of the genus Trichoderma, the most relevant 
for industrial production of cellulases [183]. 
Production of cellulases requires a cellulosic sub-
strate for inducing the enzyme system Trichoderma 
spp., which consists of endoglucanases, exogluca-
nases, and β-glucosidases [184]. Cellulose contained 
in lignocellulosic materials is a more suitable inducer 
than other alternatives, which are too expensive for 
industrial-scale use. Before cultivation of a cellulase 
producer, lignocellulose requires being pretreated, 
for example by a hydrothermal process [185], to 
remove lignin and facilitate enzyme access to cellu-
lose. A drawback of hydrothermal pretreatment is 
that it leads to the formation of by-products, such as 
furan aldehydes, aliphatic acids, and phenolic com-
pounds, which are inhibitors of microorganisms and 
enzymes [186]. Using SMS avoids the downsides of 
pretreatment since – during mushroom cultivation – 
lignin and part of the polysaccharides are degraded 
without forming inhibitors [187], and, therefore, the 
substrate is prepared for being used in microbial 
fermentations.

Enzyme production by microorganisms culti-
vated on SMS has been less investigated than the 
extraction of enzymes from SMS not subjected to 
a new cultivation cycle. Pleurotus spp. SMS are 
among the most common ones to produce 
enzymes by other organisms (Table 6). Some stu-
dies report using SMS as substrates for conven-
tional enzyme producers, while in other studies, 
the enzymes are produced by edible mushrooms 
cultivated on SMS.

Trichoderma spp. are among the most common 
conventional enzyme producers cultivated on 
SMS, but there are also some reports on 
Aspergillus and Penicillium spp. In a recent study, 
He et al. [188] reported the production of cellu-
lases by T. reesei grown on corn cobs-based SMS 
from Au. polytricha, Auricularia nigricans, and 
P. ostreatus. In that study, cellulase production 
was more effective when using earlier ‘flushes’ of 
SMS than when several harvests were produced on 
the same substrate. The highest cellulase activity 
was obtained using the third flush of mushrooms 
of Au. polytricha SMS, particularly when the fer-
mentation process was assisted with ultrasound. 
The study showed that higher cellulase activity 
could be obtained by cultivation on untreated 
SMS than on acid- or alkali-treated SMS. The 
potential of spent mushroom compost (SMC) of 

Table 6. Production of enzymes by fungal cultivation on spent mushroom substrate. Abbreviations used: SSF, solid-state fermenta-
tion; SmF, submerged fermentation.

Mushroom species Enzyme-producing organism Produced enzymes Comments Reference

Auricularia polytricha, 
Pleurotus ostreatus, 
Auricularia 
nigricans

Trichoderma reesei Cellulase Ultrasonic-assisted fermentation [188]

Agaricus bisporus Trichoderma spp., Aspergillus niger Endoglucanase, 
endoxylanase, amylase, 
β-glucosidase

SSF, no nutritional supplements were used [189]

Pleurotus pulmonarius Trichoderma asperellum 1,4-β-cellobiohydrolase, 
carboxymethylcellulase, 
β-glucosidase

SSF [163]

Pleurotus florida Trichoderma longibrachiatum Endoglucanase, 
exoglucanase, xylanase

SSF, SmF [175]

Pleurotus sajor-caju Penicillium echinulatum Endoglucanase, β- 
glucosidase, xylanase

SmF [190]

P. florida Aspergillus aculeatus Cellobiase SSF, SmF [175]
P. ostreatus P. ostreatus, P. pulmonarius, 

Ganoderma adspersum, 
Ganoderma resinaceum, 
Lentinula edodes

Laccase SSF of SMS supplemented with wheat bran 
and soybean flour

[191]

P. ostreatus P. ostreatus, P. pulmonarius Laccase SSF of SMS enriched with wheat bran and 
soybean flour; the crude enzyme was used 
for dephenolization of wastewaters

[26]
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A. bisporus for cultivation of enzyme-producing 
fungi has also been shown. Production of endo-
glucanase, endoxylanase, and β-glucosidase using 
Trichoderma isolates and a strain of Aspergillus 
niger on A. bisporus SMC without nutrient supple-
mentation was reported [189]. SMS resulting from 
growing P. sajor-caju on sugarcane bagasse was 
used to produce cellulases and xylanases by 
Penicillium echinulatum [190].

The production of enzymes by cultivating edible 
mushrooms on SMS has also been reported. 
P. ostreatus SMS supplemented with wheat bran 
and soybean flour was a suitable substrate for the 
cultivation of P. ostreatus, P. pulmonarius, 
Ganoderma adspersum, Ganoderma resinaceum, 
and L. edodes for producing laccase [191]. The 
study showed good potential of the supplemented 
SMS for laccase production by Ganoderma spp. 
and fruitbodies by Pleurotus spp. In another 
study by the same group, laccase was produced 
by cultivating P. ostreatus and P. pulmonarius on 
P. ostreatus SMS, and the crude enzyme’s potential 
for removing phenolic compounds from olive mill 
and winery wastewaters was evaluated [26].

Another approach is cultivating enzyme produ-
cers in SMS that has already been subjected to the 
extraction of extracellular enzymes. This approach 
has been tested for P. pulmonarius SMS, which 
was first subjected to extraction of lignin- 
degrading enzymes, and then used as substrate 
for producing cellulases by Trichoderma asperel-
lum cultivation [163]. It was also applied for 
P. florida SMS, which was first used as a source 
of laccase and several hydrolases, and then direc-
ted to the production of cellulases by either 
Trichoderma longibrachiatum and Aspergillus acu-
leatus [175]. T. longibrachiatum resulted in higher 
activity of endoglucanase, exoglucanase, and xyla-
nase, while As. aculeatus was a better cellobiase 
producer (Table 6).

5.2. Bioactive compounds

SMS contains bioactive compounds of different 
functionality and origin. The fungal mycelium 
contains polysaccharides, sterols, proteins, poly-
phenols, vitamins, and other bioactive molecules. 
Mycelial growth throughout the surrounding 
environment also results in the secretion of 

potentially useful bioactive compounds. In addi-
tion, the extractive fraction of the lignocellulosic 
substrate and the oligomeric products from fungal 
degradation of polysaccharides and lignin might 
also be sources of bioactive substances. However, 
while the bioactive molecules of the sporocarps of 
edible fungi have been extensively investigated 
[192], the information on the bioactive potential 
available in SMS is still limited. Recovery of bioac-
tive compounds is a promising direction for valor-
izing SMS.

5.2.1. Polysaccharides
Polysaccharides are among the bioactive sub-
stances responsible for the immunomodulatory 
and antitumor effects of edible and medicinal 
mushrooms [193]. However, in most of the 
research dealing with fungal polysaccharides the 
investigated sources are fruitbodies or mycelia 
[194], while extraction from SMS has been less 
explored. A study on extraction and characteriza-
tion of a polysaccharide from L. edodes SMS pub-
lished in 2012 by Zhu et al. provided the start for 
the research on SMS as a source of bioactive 
molecules [195]. Henceforth, several relevant 
reports on obtaining bioactive extracts from SMS 
have been published. Most publications deal with 
L. edodes, Pleurotus spp., and Ganoderma spp., but 
SMS from the cultivation of other fungal species 
has also been investigated (Table 7).

Water extraction at temperatures around 80– 
90°C, followed by alcohol precipitation, and chro-
matographic purification, is a standard procedure 
for recovering polysaccharides from SMS. 
Accordingly, a heteropolysaccharide displaying 
antibacterial activity against three different micro-
organisms was recovered from L. edodes SMS 
[195]. The same method, combined with partial 
hydrolysis, either chemical [57] or enzymatic 
[196], was applied to L. edodes SMS for extracting 
polysaccharides showing antioxidant, anti- 
inflammatory, and renoprotective activities. 
Water extraction has also been reported to extract 
polysaccharides from G. lucidum SMS [197], and 
to extract β-glucans and other compounds from 
rice husk-based SMS of Pycnoporus sanguineus 
and Panus strigellus (syn. Pleurotus tubar-
ius) [198].
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Extraction with aqueous alkaline solutions is 
another useful method for recovering polysacchar-
ides. He et al. [199] reported the obtention of 
a polysaccharide extract from P. eryngii SMS by 
alkaline extraction followed by deproteinization 
and gel filtration chromatography. The refined 
product was a polysaccharide-protein complex 
containing 99% (w/w) of a polysaccharide com-
posed of anhydroxylose, anhydroglucose, and 
anhydroarabinose units. Strong antioxidant activ-
ity – with potential food applications – was 
revealed in vitro for the polysaccharide-protein 
complex. A comparable extraction approach has 

also been used to recover polysaccharides from 
L. edodes SMS [193]. Exhaustive characterization 
revealed that the L. edodes SMS extract contained 
heteropolysaccharides exerting antiproliferative 
effects against six tested human tumor cell lines.

Subcritical water extraction (SWE) can be 
applied to extract bioactive molecules. SWE of 
polysaccharides from P. ostreatus SMS and 
L. edodes residual basidiocarps by autoclaving at 
120°C has been reported [139].

Partial enzymatic hydrolysis can also be used to 
extract polysaccharides from SMS. Hydrolysis with 
cellulases for two hours was used for recovering 

Table 7. Recovery of bioactive compounds from spent mushroom substrate. Abbreviations used: UAE, ultrasound-assisted extraction; 
SSF, solid-state fermentation.

Mushroom species Chemical Production method Comment Reference

Lentinula edodes Polysaccharide composed of 
anhydrorhamnose, 
anhydroglucose, and 
anhydromannose

Water extraction (90°C, 1 h), alcohol 
precipitation, centrifugation, freeze-drying, 
Sevag deproteinization and gel-filtration 
chromatography

Heteropolysaccharide 
with antibacterial 
activity

[195]

L. edodes Partially hydrolyzed 
polysaccharides

Water extraction (85°C, 3 h), alcohol 
precipitation, centrifugation, hydrolysis with 
1 M H2SO4, anion-exchange and gel- 
filtration chromatography 

Antioxidant, anti- 
inflammatory, and 
renoprotective effects

[57,196]

Ganoderma lucidum Polysaccharides Water extraction, Sevag deproteinization and 
gel-filtration chromatography

Antioxidant activity [197]

Panus strigellus (syn. 
Pleurotus tubarius), 
Pycnoporus sanguineus

β-Glucans, steroids, 
saturated triterpenes

Extraction with deionized water at 100°C The extracts were 
concentrated by 
lyophilization before 
analyses

[198]

Pleurotus eryngii Polysaccharide-protein 
complex containing 99% 
carbohydrate and 1% 
protein

Extraction with 0.5 M NaOH (90°C, 300 min), 
ethanol precipitation, dialysis, Sevag 
deproteinization, dialysis, and gel-filtration 
chromatography 

Strong antioxidant 
activity

[199]

Cordyceps militaris Polysaccharides Partial enzymatic hydrolysis (45°C, pH 4.0, 2 h), 
gradient ethanol precipitation, Sevag 
deproteinization

Antioxidant activity with 
no cytotoxicity

[200]

Agrocybe cylindracea, 
L. edodes, Hypsizygus 
marmoreus, Pleurotus 
ostreatus, C. militaris

Polysaccharides Enzymatic extraction, ethanol precipitation, 
Sevag deproteinization

Antioxidant activity [201]

P. ostreatus Crude exopolysaccharides SSF of P. ostreatus and P. pulmonarius,  
EPS extracted with water at 60°C, 15 min

SSF produced laccase, 
fruitbodies and crude 
EPS

[191]

L. edodes Acid polysaccharides Extraction with .5 M KOH (90°C, 300 min), 
ethanol precipitation,  
Sevag deproteinization, purification by gel- 
filtration chromatography

Heteropolysaccharides 
with antiproliferative 
activity against human 
tumor cells

[193]

P. ostreatus Crude polysaccharides Autoclaving with distilled water (120°C, 30  
min), ethanol precipitation

Protective effect against 
plant diseases

[139]

L. edodes Ergosterol, ergosta-7,22- 
dienol, β-sitosterol

UAE, optimal conditions: 432 W, 16 min, liquid- 
solid ratio 22

Antitumor activity [58]

H. marmoreus Pentostatin SSF by C. militaris Pentostatin is a powerful 
anticancer drug

[202]

UAE, ultrasound-assisted extraction; SSF, solid-state fermentation. 
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polysaccharides from the SMS of C. militaris [200]. 
Four polysaccharide fractions were isolated, and 
three displayed good antioxidant activity with no 
cytotoxicity. Enzyme treatment has also been used 
to recover polysaccharides from SMS of Ag. cylin-
dracea, L. edodes, H. marmoreus, P. ostreatus and 
C. militaris [201]. The polysaccharides were isolated 
from the extracts by ethanol precipitation and pur-
ified by deproteinization with the Sevag regent, and 
their antioxidant activity was evaluated in vitro. The 
polysaccharides from Ag. cylindracea SMS had the 
best oxygen free radical-scavenging capacity and fer-
ric reducing power (FRAP), while those from Hy. 
marmoreus and P. ostreatus displayed the best ABTS 
and DPPH radical scavenging activities.

Another way of producing chemical compounds 
of interest is to use SMS as a substrate for cultivat-
ing other organisms. For instance, P. ostreatus 
SMS was reported to be used for producing 
crude exopolysaccharides by cultivation of 
P. ostreatus and P. pulmonarius [191].

5.2.2. Sterols and other compounds
Ergosterol, the most abundant sterol in fungi, has 
relevant biological activities for food, pharmaceutical, 
and biomedical uses, and it is a precursor of vitamin 
D2. Most of the reports on ergosterol extraction from 
mushroom residues deal mainly with stipes of fruit-
bodies or mushrooms not meeting commercial spe-
cifications [203]. However, the potential of L. edodes 
SMS as a source of ergosterol has recently been 
demonstrated [58]. Ergosterol-rich extracts were 
obtained from L. edodes SMS using ultrasound- 
assisted extraction, a non-conventional technique 
for extracting natural products from various bioma-
terials; in vitro experiments revealed that the pro-
duced extracts have antitumor activity against three 
cancer cell lines.

The presence of steroids and saturated terpenes 
has been shown in water extracts of SMS from the 
cultivation of Py. sanguineus and Pa. strigellus 
(syn. P. tubarius) SMS on rice husk [198]. The 
purine analog pentostatin, a potent anticancer 
drug, was produced by cultivating a cellulose- 
degrading transformant of C. militaris using 
H. marmoreus SMS as substrate [202].

Phenolic compounds can also be extracted from 
SMS. Elsakhawy et al. reported the production of 
phenol-rich extracts from P. ostreatus SMS using 

either 0.5 N NaOH [152] or tap water [153] as 
solvents. The produced extracts were further 
assayed as plant-disease control and biofertilizer.

6. Spent mushroom substrate valorization as 
part of cascade use of plant biomass

The generation of plant biomass resources by agri-
culture and forestry takes a long time and requires 
considerable land areas; thus, their utilization 
should be rational and efficient. Residual biomass 
materials, such as side/waste streams or byproducts 
from varying stages of production/processing 
chains, contain components of high potential for 
value-added applications. A common approach for 
biomass valorization today is to burn it in 
a resource-inefficient way to generate heat and 
power for energy purposes. For bioeconomy devel-
opment in a resource-efficient way, cascade use of 
plant biomass should always be considered. 
Cascade use, also known as cascading use [204], is 
a complex interaction of material flows used as 
a strategy to increase resource efficiency in biomass 
processing. Cascade use occurs when biomass is 
processed through a series of material uses 
(Figure 3), by reuse and recycling, before finally 
being used for energy recovery [205].

Cultivation of edible mushrooms plays a unique 
role in supplying highly nutritive and health- 
promoting food. Still, it generates vast amounts 
of SMS, which is mostly discarded or inefficiently 
used despite its potential for generating value- 
added products. As a cellulose-rich bioresource, 
SMS can also be considered a material of interest 
for developing sugar-platform applications after 
enzymatic saccharification. Compared with the lig-
nocellulosic materials used to formulate the initial 
mushroom substrate, SMS is more susceptible to 
biochemical conversion using enzymes and micro-
organisms [16,187,206]. That is mainly because the 
cultivation of white-rot edible fungi constitutes 
a biological process that modifies lignocellulose 
by removing a large part of lignin and hemicellu-
loses, which interferes with the enzymatic sacchar-
ification of cellulose. Furthermore, SMS, i.e. 
a material resulting from the aforementioned pro-
cess (which could be considered as a biological 
pretreatment), contains few inhibitory compounds 
or external chemicals that might negatively affect 
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downstream processing or harm the environment 
[187,206].

Applying cascade uses to processing plant bio-
mass by mushroom cultivation combined with SMS 
valorization through biochemical conversion and 
other approaches, is expected to maximize the cost- 
effectiveness of a value chain of variable potential 
products. The cascade-use concept also results in 
minimizing resource loss and environmental 
impacts. Following a cascading approach, SMS, as 
the primary by-product of mushroom cultivation 
can be re-used as raw material for new processes, 
extending total biomass availability within the sys-
tem. That is a rational approach, where different 
valuable biomass constituents are recovered and 
converted into value-added products. Energy uses 
of residual biomass are considered only at the end 
of the life cycle when all higher-value products and 
services have been exhausted. There are different 
possible examples of multi-stage cascading uses for 
SMS valorization. Three promising published case 
studies are discussed in this section.

6.1. Case study 1: food – ethanol – solid fuel

The integrated production of L. edodes mushroom 
(food) and biofuels from hardwood residues can be 
an example of cascade use [16,187,206,207]. Food 
(mushrooms) is produced on a lignocellulosic sub-
strate. Concomitantly, mushroom cultivation 

selectively degrades lignin and hemicelluloses, thus 
facilitating the enzymatic saccharification of cellu-
lose. Glucose from the saccharification process can 
then be fermented to ethanol using yeast. 
Enzymatic saccharification also generates lignin- 
rich solid leftovers, which can be used as a solid 
fuel (Figure 4).

From a circular bioeconomy point of view, the 
forest residues can be considered primary biore-
sources from forest production (c.f. Figure 3). 
Exploiting the forest residues as mushroom grow-
ing substrates results in the production of fruitbo-
dies as primary products. SMS is the secondary 
bioresource and can be converted to the secondary 
product ethanol. Ethanol can be used to synthesize 
renewable polyethylene to produce green plastics 
or for fuel applications, including advanced jet 
biofuels. After cellulose saccharification, the solid 
leftover can also be recovered as a tertiary biore-
source/biowaste, and converted to solid fuel, 
a ‘tertiary product.’ A recently published mass 
balance analysis revealed that one ton of birch- 
based initial mushroom substrate might result in 
about 600 kg of fresh shiitake (L. edodes) fruitbo-
dies (90% moisture), 130 liter of ethanol, and 300  
kg (dry mass) of solid biofuel [187]. This system/ 
approach can also be applied to other mushroom 
species. Using an experimental setting like the one 
used for L. edodes, Chen et al. [209] found that one 
ton of birch-based initial substrate might result in 

Figure 3. Schematic illustration of the cascade-use concept of bioresources (based on Vis et al. 2016 [204], p. 6, https://data.europa. 
eu/doi/10.2873/827106).
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about 400 kg of fresh fruitbodies (90% moisture) 
of Au. auricula-judae, 35 liters of ethanol, and 300  
kg dry mass of solid biofuel. The solid fuel was 
found to have a relatively high calorific value and 
favorable characteristics for direct combustion to 
produce heat. The generated heat can be used for 
the pasteurization of substrates or space heating.

The outcome of the production chain can be 
affected by the composition of the initial substrates 
used for mushroom cultivation. Chen et al. [206] 
reported that alder-based substrate led to 4% more 
mushroom fruitbodies, 14% more ethanol, and 
23% more solid fuel than birch-based substrate. 
On the other hand, an aspen-based substrate 
resulted in a 37% lower yield of fruitbodies than 
the birch-based one, although the yields of ethanol 
and solid fuel were comparable for substrates from 
both tree species.

The same concept is also applicable to other bio-
fuels. For instance, another ‘food – biofuel – solid 
fuel’ alternative is to produce biogas instead of etha-
nol as a secondary product. Lin et al. [210] cultivated 
shiitake on woodchips and produced biogas by 
anaerobic digestion (AD) of SMS; at the end, around 
53–57% (dry mass) of the substrate was solid left-
over. Since the AD process consumes mostly carbo-
hydrates [211,212], the leftovers are expected to have 

a relatively high content of lignin, a component with 
a high calorific value. Therefore, using the leftovers 
as a solid fuel for a self-supporting heating system 
could be meaningful. In a slightly different alterna-
tive, rice straw was used as the main ingredient for 
P. ostreatus substrate, fruitbodies were produced as 
the primary product, SMS was directed to AD for 
producing biomethane as a secondary product, and 
the AD digestate was used as biofertilizer (tertiary 
product) for rice cultivation [213].

6.2. Case study 2: food – biogas − 2nd cycle 
mushroom

Another example of a cascade system was reported 
by Ikeda et al. [214] using the mushroom ‘enoki-
take’ (F. velutipes) cultivated in a substrate based 
on corncobs supplemented with rice bran. In this 
case, agricultural residues were the primary bior-
esource, and enokitake fruitbodies were the pri-
mary product. The SMS resulting after mushroom 
harvest was anaerobically digested for producing 
biogas, the secondary product. After the AD pro-
cess, around 45% of the initial mass was left as 
solid residue or digestate. In the next step, KOH or 
NaOH was used for pretreating the AD residue 
(SMS-ADR), which was then mixed with rice bran 

Figure 4. Schematic illustration of the concept food – ethanol – solid fuel. The figure is modified from Chen, 2021 [208], p. 15, 
https://pub.epsilon.slu.se/26324/1/chen_f_211216.pdf.
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at a 50:50 weight ratio for formulating a new sub-
strate to be subsequently used for a second enoki-
take cultivation cycle. The results were promising: 
the yield of the tertiary product, i.e. mushrooms 
cultivated on SMS-ADR, was comparable to those 
of the primary one, i.e. mushrooms cultivated on 
corncob-based ‘standard’ substrate. Crude protein, 
ether-extracted compounds, crude fiber, minerals 
(Na, P, Ca, K, Mg), and free amino acids in fruit-
bodies showed similar content to those obtained 
from the standard substrates. The study did not 
discuss further use of the second cycle SMS (SMS- 
II). In our opinion, this cascading system could 
still be extended to a quaternary product by 
exploiting the potential of SMS-II as 
a biofertilizer or a soil amendment.

Cascade systems including biogas as the second-
ary product are also feasible for other mushroom 
species. Since lignin content decreases during the 
mushroom cultivation, the resulting SMS is acces-
sible to anaerobic microbes, thus facilitating AD 
conversion of carbohydrates to biogas. On the 
other hand, after biogas production, and although 
data on the chemical composition of the digestate 
are not available [215], the lignin content is 
expected to increase due to its recalcitrance to 
degradation by anaerobic bacteria [211,212,216]. 
Therefore, it was wise to choose white-rot fungi 
again to break the recalcitrance of lignin to pro-
duce additional value-added tertiary products. 
Although the low pH and the presence of 
unknown by-products may inhibit a second mush-
room cultivation cycle, it was shown that KOH or 
NaOH soaking was a viable method to improve 
the susceptibility of digestate to be further used for 
enokitake cultivation [214]. Nevertheless, the pre-
cise mechanism behind the alkaline reactivation of 
the digestate from AD for mushroom cultivation 
remains to be clarified.

6.3. Case study 3: food − 2nd cycle mushroom – 
enzymes

Another possible cascading chain can include two 
cycles of mushroom cultivation in a row followed 
by recovery of extracellular enzymes as a tertiary 
product. Economou et al. [191] reported a case 
study, where oyster mushroom (P. ostreatus) was 
produced on a wheat straw-based substrate, and 

the resulting SMS (SMS-I) was tested as the main 
ingredient of the substrate for a second mushroom 
cultivation cycle. After harvesting the fruitbodies 
from the second production cycle, the generated 
SMS (SMS-II) was used as a source for the recov-
ery of the lignin-degrading enzyme laccase. 
Among the five fungal species tested for 
the second mushroom production cycle, 
P. pulmonarius resulted in the SMS providing the 
highest yield of laccase, 2465 U g−1 day−1 (dry 
mass based). The crude laccase extract was then 
used for the dephenolization of wastewaters [26]. 
The authors did not explore possible uses of the 
solid stream remaining after laccase extraction 
from SMS-II. A potential extension of the cascad-
ing system would be possible by using that stream 
as either biofertilizer or solid fuel.

Using P. ostreatus as the species involved in the 
first step of the cascading system is a reasonable 
strategy considering that Pleurotus spp. are among 
the most studied white-rot fungi for biological 
treatments of lignocellulosic materials [217]. 
Compared with other edible fungi, they have the 
advantages of presenting a relatively shorter life 
cycle, and broader adaptation to substrate assort-
ments and growing environments. Even though 
Pleurotus lignocellulolytic enzyme activities are 
generally comparable to those of L. edodes [215], 
the lignocellulose degradation capacity of the for-
mer is generally lower than that of shiitake, prob-
ably because of the shorter life cycle [217]. It must 
be emphasized that the determination of SMS 
composition, which is essential for fully under-
standing the potential of the SMS to be directed 
to new cultivation cycles, is often underestimated 
in the literature.

The cultivation of white-rot edible fungi on 
primary bioresources results to food (mushrooms), 
and functions as a biological pretreatment for 
facilitating biochemical conversions. Therefore, 
mushroom cultivation is crucial in cascading sys-
tems of lignocellulosic biomass utilization. In addi-
tion to the case studies discussed above, many 
other cascade systems producing fruitbodies as 
a primary product, and including other products 
or services, can be proposed to valorize SMS and 
other residual streams. The feasibility of producing 
antibiotics [218], antitumor sterols [58], seedbed 
of vegetables [219], fertilizers [104], soil 
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bioremediation agents [220], enzymes [175], bio-
char [221], and other products has been demon-
strated. Some products could be considered as 
different ‘puzzle pieces’ to be chosen and inte-
grated into a chain of cascade uses. However, 
appropriate approaches ensuring optimal process 
integration remain to be developed. Process inte-
gration has to be developed through interdisciplin-
ary approaches to maximize system values for the 
circular bioeconomy and the protection of the 
environment. Furthermore, systematic evaluation 
(e.g. life cycle assessment) and optimization of 
processes for the cascading uses must be 
addressed.

7. Future directions and conclusions

Cultivation of edible and medicinal mushrooms is 
a very dynamic business, with an impressing 
development during the last decades. However, 
increased mushroom production leads to the gen-
eration of high quantities of spent mushroom sub-
strate (SMS). The accumulation of non-used SMS, 
or its limited or not high-added value applications, 
undermines the future of pertinent commercial 
activities. Therefore, achieving an efficient valori-
zation of SMS – beyond its current low-value use – 
is of paramount importance for the sustainable 
development of the mushroom industry. The 
research discussed in this review shows the vast 
potential of SMS as a source of valuable products 
and services.

The presence of valuable nutrients and energy 
sources for supporting new cultivation processes 
make SMS a suitable substrate component for new 
mushroom cultivation cycles provided that 
a suitable treatment or supplementation is applied. 
Reusing SMS in new cultivation of mushrooms of 
either the same or other species has significant 
potential for reaching high yields in an environ-
mentally sustainable way and at the same time 
contribute to the reduction of production costs. 
The high nutritional value of SMS could also be 
exploited for the development of new feeds; the 
output of recent experimental work convincingly 
shows the feasibility of including SMS in the diets 
of poultry, ruminants, and monogastric animals, 
as well as beyond traditional husbandry, in pisci-
culture and insect farming. However, making SMS 

a regular diet ingredient poses complex challenges 
related to its fiber content and digestibility, and 
the acceptance by the animal. Recent research has 
faced those downsides since it has been demon-
strated that by application of appropriate treat-
ments the nutritional and acceptance features of 
SMS can be enhanced.

SMS’s physical properties and chemical compo-
sition support the development of novel environ-
ment-friendly and cost-effective bio-based 
products, which can be used as part of sustainable 
agronomic practices in substituting fossil-based 
fertilizers and synthetic pesticides. Well-designed 
experiments have shown that SMS application as 
a soil amendment or fertilizer has beneficial effects 
on soil fertility and structure, without causing 
secondary salinization or acidification. The 
reported research also shows the potential of 
SMS as source of products for biological control 
against plant diseases, and its favorable effect on 
the production of secondary metabolites in plants 
and at enhancing the nutritional value of the fruits 
and vegetables. Scaling up the experimentation to 
large-scale greenhouse and field trials is required. 
Furthermore, increasing demonstration actions are 
expected to fully demonstrate/evidence the poten-
tial of SMS within a sustainable agriculture model.

SMS contains extracellular enzymes secreted 
during fungal growth and used to degrade the 
substrate’s macromolecules. Those enzymes make 
it possible to use the SMS in services such as 
decolorization of textile effluents, bioremediation 
of contaminated soil, and wastewater treatment. 
Enzymes can also be extracted from SMS using 
different solvent systems. Furthermore, the poten-
tial of SMS as substrate for the cultivation of 
enzyme-producing microorganisms has been 
shown. The crude extracts of SMS enzymes can 
be subjected to various degrees of purification 
rendering refined preparations suitable for added- 
value applications, where enzyme purity is 
a decisive criterion.

Several publications report on exploiting SMS 
bioactive compounds for various uses. However, 
the extraction of bioactive compounds from SMS 
is just an emerging area of high interest. Recently 
published results indicated that SMS bioactive 
molecules could be used as added-value, sustain-
able, bio-based ingredients in socially-sensitive 
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business sectors. SMS-derived nutraceuticals, food 
supplements, functional foods, and active ingredi-
ents might be the foundation of a new ‘next- 
generation mycotherapeuticals’ sector. That 
would require developing appropriate protocols 
for extracting bioactive molecules from SMS, 
a task that faces major challenges regarding the 
extraction’s effectiveness without affecting the 
properties of the molecules of interest, and by 
avoiding the degradation of non-targeted com-
pounds that might also be of interest.

Applying the cascade-use concept to SMS valor-
ization is essential to increase resource efficiency 
in biomass processing and mushroom production. 
Arranging different alternatives of SMS utilization 
in cascading systems, where mushroom produc-
tion is included as the primary process and the by- 
products are converted to value-added products, 
will result in a value chain with minimal resource 
losses and with no adverse environmental impact, 
in agreement with the principles of sustainable 
development. Appropriate implementation of the 
cascade-use concept requires significant efforts to 
ensure optimal process integration based on inter-
disciplinary approaches. By achieving it, the sys-
tem values can be maximized, and the extensive 
use of SMS for generating high-value products and 
services within a circular bioeconomy scenario can 
become a reality.
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