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Abstract

Groundwater constitutes a critical component in providing fresh water for various human 

endeavors. Never-theless, its susceptibility to contamination by pollutants represents a significant 

challenge. A comprehensive understanding of the dynamics of solute transport in groundwater 

and soils is essential for predicting the spatial and temporal distribution of these contaminants. 

Presently, conventional models such as the mobile-immobile (MIM) model and the rate-limited 

sorption (RLS) model are widely employed to describe the non-Fickian behavior of solute 

transport. In this research, we present a novel approach to solute transport that is founded on 

the temporally relaxed theory of Fick’s Law. Our methodology introduces two relaxation times 

to account for solute particle collisions and attachment, leading to the derivation of a new 

advection-dispersion equation. Our findings indicate that the relaxation times possess similar 

properties to the transport parameters in the MIM and RLS models, and our solution can be 

applied to accurately predict transport parameters from soil column experiments. Additionally, 

we discovered that the relaxation times are proportional to the magnitude of Peclet number. This 

innovative approach provides a deeper insight into solute transport and its impact on groundwater 

contamination.
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1. Introduction

Groundwater from aquifers constitutes a critical resource, however, contamination of this 

water source can have a severe impact on the subsurface environment and overall water 

security (Hillel, 2003). Water contained within porous media plays a vital role in sustaining 

plant growth and fulfilling human water demands. However, when contaminated by harmful 

or carcinogenic soluble components such as nitrates, pesticides, petroleum products, or 

heavy metals (Dracos, 1987; Addiscott et al., 1991; Miiler, 1996; Wood and Anthony, 1997), 

it can have devastating effects on the living conditions of our planet (Hillel, 2003). Thus, in 

order to develop effective strategies for groundwater and soil remediation, a comprehensive 

understanding of the mechanisms of contaminant fate and transport in aquifer systems is 

imperative (Bedient et al., 1994).

The advection-dispersion equation (ADE) is a commonly used tool in describing the fate 

and transport of contaminants in the environment. This equation presumes that the dispersive 

mass flux is governed by Fick’s Law, which establishes a linear relationship between mass 

flux and concentration gradient. However, there are some complex physical and chemical 

processes that may be linked with the mass continuity equations, as recent research has 

demonstrated (Carr, 2020, 2021). Despite its widespread application, the conventional ADE, 

which is based on Fick’s Law, can sometimes fall short in explaining observed concentration 

breakthroughs. This inadequacy is frequently attributed to the lack of consideration for non-

Fickian behavior. Non-Fickian behavior, a topic that has been studied for several decades, 

refers to phenomena that do not conform to the linear relationship described by Fick’s Law. 

Classical diffusion, related to Brownian motion and following Fick’s Law, is characterized 

by a linear relationship between the mean squared displacement of a molecular particle 

and time (Benson et al., 2000, 2013; Edery et al., 2014; Kelly and Meerschaert, 2017). In 

contrast, anomalous transport displays a power-law correlation between the average squared 

displacement and time, resulting in a prolonged tailing of the concentration breakthrough 

curve.

This phenomenon is believed to arise from the influence of porous medium heterogeneity 

(Benson et al., 2000, 2013; Edery et al., 2014; Kelly and Meerschaert, 2017). Even in low 

Reynolds number systems, heterogeneous flow fields can significantly impact anomalous 

transport (Berkowitz et al., 2006, 2008). Ongoing research continues to unravel the 

complexities of non-Fickian behavior in contaminant transport.

The phenomenon of anomalous behavior in contaminants has been widely explored through 

various well-established theories (Kelly et al., 2017). These theories include the continuous-

time random walk (Dentz and Berkowitz, 2003; Dentz et al., 2004; Berkowitz et al., 2006; 

Boano et al., 2007; Oliveira et al., 2021), two- or multiple-stage models (Brusseau et al., 

1991; Gerke and Van Genuchten, 1993; Haggerty and Gorelick, 1995; Haggerty et al., 2000; 
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Huang et al., 2010; Malama et al., 2013; Huang and Goltz, 2015; Chen et al., 2019), and 

fractional ADEs (Benson et al., 2000, 2001; Berkowitz et al., 2002; Schumer et al., 2003; 

Benson et al., 2004; Zhang et al., 2007, 2009; Povstenko, 2015; Chen et al., 2017; Kelly and 

Meerschaert, 2017). The two-stage models, in particular, are noteworthy in simulating solute 

transport in media that exhibit mobile-immobile (MIM) zones and rate-limited sorption 

(RLS). The MIM model considers the transfer of solute mass between mobile and immobile 

zones, governed by first-order mass transfer kinetics. Similarly, the RLS model examines 

mass transfer between liquid and solid phases, also governed by first-order ratelimited 

kinetics. The MIM model is based on the explicit physical mechanism of water transfer 

between mobile pores and dead-end pores or between fractures and matrix blocks (Van 

Genuchten and Wagenet, 1989; Gao et al., 2010), while the RLS model allows for the 

simulation of chemical reactions such as absorption and adsorption (Huang et al., 2010). The 

model for transport in an aquifer-aquitard system (Brown et al., 2012; Huang and Goltz, 

2015; Rezaei et al., 2016; Li et al., 2021) considers an aquitard located beneath or above a 

thin aquifer, with contaminant transport occurring in the highly permeable aquifer layer, and 

vertical diffusive mass transfer between the aquifer and aquitard. These models all take into 

account the micro- or macro-scale heterogeneity of porous media.

Intrinsic physical and chemical processes can play a major role in the fate and transport 

of contaminants, exhibiting time-dependent features such as concentration breakthrough 

retardation or tailing. The concept of time lags between mass flux and concentration 

gradient for Fick’s law, known as “temporally relaxed theory”, is inspired by the dual-phase 

lag model, which allows for heat flux and thermal gradient to occur at different times 

in Fourier’s law (Tzou, 1995). This concept is motivated by the thermal wave behavior 

observed in pulse-laser experiments (Tzou et al., 1994). A similar concept can be found 

in well hydraulics known as lagging theory, which allows for water flow and hydraulic 

gradient to occur at distinct times in Darcy’s law (Lin and Yeh, 2017; Lin et al., 2019). 

For instance, in a clay-rich formation, the well may start pumping at a constant rate but no 

water is abstracted from the clay, even though the hydraulic gradient occurs in advance. The 

“temporally relaxed theory” is used in this study to distinguish it from dual-phase lag and 

lagging theories.

The objective of this research is to modify Fick’s law through the integration of the 

temporally relaxed theory, resulting in the creation of a novel ADE and a new model 

for non-Fickian transport. The theoretical analysis in this work reveals how the relaxation 

times relate to the intrinsic physical mechanisms that are traditionally governed by multiple 

equations and contain multiple parameters. The solution is derived using the Laplace 

transform technique, and a comparison of the present solution with the MIM and RLS 

models is carried out. In addition, a sensitivity analysis is performed to classify the 

importance of the transport parameters for the model. Finally, the present solution is used to 

perform parameter estimation by analyzing column experiments performed by Liang et al. 

(2018) and Li et al. (2009).

Lin et al. Page 3

J Hydrol (Amst). Author manuscript; available in PMC 2023 September 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



2. Methodology

2.1. Model setup

The distribution of solute concentration, C ML−3 , can be described using the one-

dimensional ADE given by:

R∂C
∂t = ∂

∂x − J (1)

where x is the distance from the source [L], t is the time [T], R is the retardation factor [-], 

and J is the mass flux ML−2T−1  induced by the dispersive and advective terms:

J t = − D∂C t
∂x + vC t (2)

In Eq. (2), D = τ0D0 + α v  is the dispersion coefficient L2T−1  and v = q/n is the apparent 

velocity LT−1 , where τ0 ∈ 0,1  is the tortuosity [-], D0 is the aqueous molecular diffusion 

coefficient L2T−1 ,  α is the dispersivity [L], q is the Darcy flux LT−1 , and n is the effective 

porosity. Typically, the influence of D0 on the aggregate dispersion can be disregarded as its 

value is substantially smaller than α v  in most situations.

Eq. (2) states that the mass flux and concentration gradient happen at the same time, 

implying that the speed at which the mass particles move is infinite. This assumption may 

not be accurate when there is an inertial force or structural interaction. Similar to the dual 

phase lag (Tzou et al., 1994) for Fourier’s law or lagging theory (Lin and Yeh, 2017) for 

Darcy’s law, Eq. (2) for Fick’s law can be modified so that the mass flux and concentration 

gradient happen at different times.

J t + τJ = − D∂C t + τC

∂x + vC t + τC (3)

Here, τJ and τC are flux lagging and storage lagging [T] parameters, respectively. The 

flux lagging parameter, τJ, reflects the relaxation time due to the inertial effect caused by 

the mass particle inertial collision, while the storage lagging parameter, τC, represents the 

relaxation time due to structural interactions such as sorption and secondary pore water 

interaction, see Fig. 1. When τJ < τC, this means that the mass flux occurs earlier than the 

concentration gradient and that the flux is the cause of the gradient. If τJ > τC, it implies that 

the mass flux is the result of the concentration gradient. For the case of τJ = τC, the time lags 

are negligible, and Eq. (3) can be reduced to (2).

Assuming that τJ and τC are quite small compared to the overall time t, the Taylor series 

expansion can be applied to Eq. (3), reading
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i = 0

∞ τJ

i!
∂i + 1

∂ti + 1 J t =
i = 0

∞ τC

i!
∂i + 1

∂ti + 1 −D∂C t
∂x + vC t (4)

Typically, the first-order approximation (i.e., truncating at = 1) is capable of capturing the 

major time lag effect on the concentration response. Following the work of Tzou (1995), Eq. 

(4) can be approximated by:

1 + τJ
∂
∂t J t ≅ 1 + τC

∂
∂t −D∂C t

∂x + vC t (5)

Substituting Eq. (5) into (1), the temporall relaxed ADE is then obtained as

R 1 + τJ
∂
∂t

∂C
∂t = 1 + τC

∂
∂t

αq
n

∂2C
∂x2 − q

n
∂C
∂x , x ∈ 0, ∞ (6)

or simplified as

R 1 + τC
∂
∂t

∂J
∂t = 1 + τC

∂
∂t LxC (7)

where Lx is the spatial operator equal to αq/n ∂2 / ∂x2 − q/n ∂ / ∂x.

Assuming the porous medium is not contaminated initially, the associated initial conditions 

are given as

C t = 0 = ∂C t = 0
∂t = 0 (8)

When a tracer is introduced into a soil column, it may become diluted through mixing with 

water in the pre-inlet reservoir that does not contain the tracer. This can be mathematically 

described as (Wang et al., 2020; Shi et al., 2022):

V ∂C
∂t x = 0

= Aq C0 t − C x = 0 (9)

where V  is the volume of the cylindrical pre-inlet reservoir L3  and A is the cross-sectional 

area L2 , with the injecting source C0 t ML−3  for two injection types:

C0 t =
M
qAδ t  for instantaneous pulse 

Cin  for continuous injection 
(10)

where M is the mass of the solute injected into the medium [M], δ t  is the Dirac delta 

function of time T−1 , and Cin is the constant injection concentration ML−3 .
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A far field boundary condition is also imposed, which can be expressed as

lim
x ∞

C x = 0 (11)

2.2. Semi-analytical solution

Applying the Laplace transform to Eqs. (6)–(11), the transformed equations are obtained as

R 1 + sτJ sC‾ = 1 + sτC LxC‾ (12)

Vs C‾ x = 0 = Aq C‾ 0 s − C‾ x = 0 (13)

with

C‾ 0 s =

M
qA  for instantaneous pulse 

Cin

s  for continuous injection 
(14)

lim
x ∞

C‾ x = 0 (15)

where the C‾  represents the concentration function in the Laplace domain and s is the 

Laplace parameter. By introducing the Peclet number Pe = vx/α = x/α, Eq. (12) has a 

general solution expressed as

C‾ = c1exp 1 − μ s
2 Pe + c2exp 1 + μ s

2 Pe (16)

with

μ s = q 1 + sτC + 4nRsα 1 + sτJ

q 1 + sτC
(17)

where c1 and c2 are undetermined coefficients. To satisfy the boundary conditions, the 

undetermined coefficients c1 and c2 are obtained, respectively, as AqC‾ 0 s / Aq + sV  and 0.

Inserting these expressions for c1 and c2 into Eq. (16), the semianalytical solution can then be 

derived as

C‾ = AqC‾ 0 s
Aq + sV exp 1 − μ s

2 Pe (18)

Eq. (18) can be numerically evaluated using numerical Laplace inversion schemes such 

as the Stehfest (1970) algorithm and the Trefethen et al. (2006) algorithm (the associated 

Lin et al. Page 6

J Hydrol (Amst). Author manuscript; available in PMC 2023 September 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



application to ADE can be found in previous works of Carr and Turner, 2016; Carr, 2020). 

Recently, Horváth et al. (2020) developed a numerical Laplace inversion scheme called the 

concentrated matrix-exponential (CME) method. Compared to the Gaver-Stehfest method 

(Gaver, 1966; Stehfest, 1970), Euler method rooted in Fourier series approximation (Dubner 

and Abate, 1968), and the Talbot method (Trefethen et al., 2006), the CME method has the 

best numerical stability, avoids overshooting and undershooting issues, and gains accurate 

results as the order used in the CME increases. Horváth et al. (2020) provided the code 

written in Mathematica, Matlab, and Python scripts, and the readers can get these codes for 

free in the GitHub repository at https://github.com/ghorvath78/iltcme. Here, we apply the 

CMS-S method (Horváth et al., 2023), an extending version of CMS method, to inverse our 

Laplace-domain solution.

2.3. Sensitivity analysis

To understand the impact of transport parameters on solute transport, we conduct a 

sensitivity analysis to evaluate the effect of parameter uncertainty on the system output 

(DellÓca et al., 2020; Knabe et al., 2021). We calculate the normalized sensitivity 

coefficients, Xk, which (Kabala, 2001) defines as:

Xk = ∂O
∂ln Pk

= Pk
∂O
∂Pk

(19)

where Xk represents the normalized sensitivity of the output O (i.e., concentration, C) 

to changes in the kth input transport parameter, Pk. We evaluate this at the observation 

point x = 5 cm in the time interval t ∈ 0s, 1000s . Using the first-order forward or backward 

finite-difference formula to approximate the derivative in Eq. (19) only provides a first-order 

accurate estimate of the normalized sensitivity coefficients. Therefore, we adopt the three-

point backward difference approach to improve the accuracy to second-order. This allows us 

to compute the normalized sensitivity coefficients using:

Xk ≈ Pk
3O Pk − 4O Pk − ΔPk + O Pk − 2ΔPk

2ΔPk
, (20)

where ΔPk is a small differential change in the k th parameter, which we approximate 

by 10−3Pk as suggested by Liou and Yeh (1997). We use the absolute values to rank the 

importance of the coefficients. A small magnitude of Xk indicates that large changes in the 

parameter Pk produce only small changes in the response or output variable O, indicating 

low sensitivity. This means that the parameter Pk would be difficult to estimate from the 

O measurements. It is also important to have linear independence among the sensitivity 

coefficients of the different parameters. Additionally, a positive value of Xk means that a 

small increase in Pk will result in an increase in concentration values, while a negative value 

of Xk indicates that a small increase in Pk will decrease concentration values.
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3. Results

3.1. Comparison with two existing models

There are typically two classical two-stage models used to describe transport behavior. One 

is the MIM model, which is based on the assumption of physical non-equilibrium. In this 

model, solute particles are transferred between the mobile zone (e.g., fractures) and the 

immobile zone (matrix blocks). The other model is the RLS model, which reflects two-site 

sorption due to chemical non-equilibrium. In this model, solutes attach to soil particles 

through absorption or adsorption. A point to note is that although the MIM model and RLS 

model involve different non-equilibrium transport mechanisms (physical versus chemical), 

they are mathematically equivalent to each other. In this study, we will compare the MIM 

and RLS models with the temporally relaxed model, so we will discuss them in more detail 

below for convenience.

3.1.1. Mobile-immobile model—The ADEs derived based on the MIM concept for the 

mobile zone and the immobile zone can be written, respectively, as (Van Genuchten and 

Wagenet, 1989; Gao et al., 2010)

βRm
∂Cm

∂t + 1 − β Rim
∂Cim

∂t = LxCm, x ∈ 0, ∞ (21)

and

nimRim
∂Cim

∂t = ω Cm − Cim (22)

where the subscripts m and im represent the mobile zone and immobile zone, respectively, 

β = nm/n and 1 − β = nim/n, meaning that nm + nim = n, and ω is the first-order mass transfer 

rate coefficient T−1  between both continua. Substituting Eq. (22) into (21), the MIM ADE 

in terms of Cm is

nm

n Rm + nim

n Rim 1 + nmRmnimRim

ω nmRm + nimRim

∂
∂t

∂Cm

∂t = 1 + nimRim

ω
∂
∂t LxCm (23)

3.1.2. Rate-limited sorption model—For the ADE derived from the RLS concept, the 

governing equations for the liquid phase and the solid phase can be written, respectively, as 

follows (Brusseau et al., 1991; Huang et al., 2010).

∂C
∂t + ρb

n
∂S
∂t = LxC, x ∈ 0, ∞ (24)

and

∂S
∂t = ω* kdC − S (25)
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where S is the mass amount in the solid phase [-], ρb is the bulk density of the porous 

medium ML−3 , ω* is the first-order mass transfer coefficient of sorption T−1 , and kd is the 

partition coefficient of adsorption M−3 L . Again, substituting Eq. (25) into (24), the RLS 

ADE in terms of C can be derived as

1 + ρbkd

n + 1
ω*

∂
∂t

∂C
∂t = 1 + 1

ω*
∂
∂t LxC (26)

3.1.3. Physical meaning of τJ and τC—Compared proposed ADE, Eqs. (6), to (23) 

and (26), we can find the relationships between the parameters in the temporally relaxed 

model and those in the MIM model and RLS model as listed in Table 1.

As table shown, the retardation factor, defined as S = kdC, is the same for linear sorption. 

On the other hand, the relaxation times τJ and τC are the reciprocal of the transfer rate 

coefficient multiplied by different constants. This means that an increase in ω or ω* reduces 

the relaxation time values. By increasing the mass exchange rate between the primary and 

secondary pores for the MIM model or between the liquid and solid phases for the RLS 

model, the two-stage process is sped up until the solute transport can be accurately described 

by a classical ADE. This shows that the three models share the same two-stage process, but 

they cannot be used interchangeably due to their different concepts of the solute transport 

mechanism. The proposed method characterizes the two-stage process using two empirically 

determined relaxation times without the need for knowledge of the matrix blocks or sorption 

properties and their physical interactions with the system.

According to the model, the relaxation times, τJ and τC, provide valuable information about 

particle collisions and attachment in porous media. An increase in τJ is an indicator of a 

higher frequency of particle collisions, leading to an increase in particle inertia. On the other 

hand, a higher value of τC suggests a stronger sorption effect, hindering particle attachment 

to the soil.

It is important to consider the factors that impact the relaxation times when analyzing solute 

particles in porous media. For particle collisions, the causes may include concentration 

of the solute, porosity of the porous media, flow rate, environmental variables such as 

temperature or pressure, and fluid properties like water density and viscosity (McDowell-

Boyer et al., 1986; Elimelech and O’Melia, 1990; Panfilov et al., 2008). For particle 

attachment, the factors that may play a role include surface charge of the solute particles, 

grain shape parameters, pore connectivity, surface area of the porous matrix, interfacial 

tension, chemical composition of both the solute and the matrix, and fluid properties such as 

friction forces (Bradford et al., 2002; Yang et al., 2022; Ogolo and Onyekonwu, 2022).

In order for particle collisions to occur, the concentration of solute particles in the porous 

media must be high, as more particles mean a greater likelihood of collision. A porous 

matrix provides more space for solute particles to move, leading to an increased chance of 

collision. The velocity and direction of fluid flow also impact collision frequency, as fast 

fluid flow can increase the velocity of solute particles and result in more frequent collisions. 
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Environmental factors like temperature and pressure can influence the velocity of the solute 

particles and increase the likelihood of collision. Finally, increased water density or viscosity 

leads to greater resistance to flow, causing more frequent collisions

For particle attachment, the electric charge on the solute particles affects their ability to 

adsorb onto the porous matrix. If the solute particles are charged, they may attract or 

repel each other, hindering attachment. The shape of the grains in the porous matrix also 

plays a role, as irregular shapes provide greater surface area for solute particles to adsorb 

onto. A well-connected pore network increases the likelihood of attachment by providing 

greater contact between the solute particles and the porous matrix. A larger surface area of 

the porous matrix can result in increased opportunity for solute particles to adsorb, while 

smaller surface area leads to decreased attachment. Interfacial tension between the solute 

particles and the porous matrix affects attachment, as does the chemical composition of both 

the solute and the matrix. Finally, changes in fluid properties such as friction forces can 

impact the mobility of the solute particles, increasing their likelihood of attachment.

While it may be difficult to mathematically link these factors to the relaxation times using 

the present model, understanding their impact provides a clearer picture of the potential 

causes of the observed relaxation times.

3.2. Effects of relaxation times

In this section, we focus on the impact of the parameters τJ and τC on the concentration 

distribution. As shown in Fig. 2, changing the values of these parameters affects the 

temporal concentration curves for both (a) an instantaneous pulse and (b) continuous 

injection. The default values for R, q, n, A, α, M, Cin, τJ, τC, and observed point x are set as 

1, 10−5 m/s, 0.2, 0.0252π 1.96 × 10−3 m2 , 0.001 m, 5 × 10−4 kg, 1 kg/m3, 100 s, 100 s, and 0.05 m, 

respectively. The volume of cylindrical pre-inlet reservoir V  is set as zero for the comparison 

sake. These values have been partially adjusted from the estimates presented in the works 

of Liang et al. (2018) and Li et al. (2009). As seen in Fig. 2(a), increasing the value of τC

leads to a higher maximum concentration and a shift of the peak to the right. On the other 

hand, increasing τJ causes a decrease in the concentration peak and shifts the peak to the 

left. In Fig. 2(b), we can see that increasing τJ results in a steeper slope of the breakthrough 

curve, while increasing τC leads to a flatter curve. Overall, these findings demonstrate the 

importance of considering the time lag effects in the classical ADE.

According to the definitions of τC and τJ, τC is the result of microstructural interaction due 

to sorption or secondary pore water transfer, while τJ is the result of inertial effects due 

to particle collision. In the cases of Fig. 2(a), the observation that a greater τJ leads to 

higher concentration values at early times can be attributed to the fact that the injected mass 

particles collide near the inlet, resulting in some particles being pushed forward. On the 

other hand, a large value of τC indicates a stronger interaction between the mass particles 

and the soil resistance due to structural interaction. Initially, the injected mass particles stick 

to the soil due to sorption or secondary pore water transfer, resulting in low concentration 

values at early times. Later, the particles attached to the soil start to release, leading to a 
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large amount of mass being released into the flow path. This results in a higher peak in the 

intermediate period.

In contrast, Fig. 2 (b) shows that a higher τJ leads to lower concentration values at early 

times and higher concentration values at late times. This is because the inertial force 

constantly exerts its effect on the continuously injected mass particles, leading to the 

particles being retained near the inlet for a while. A few times later, all of the particles 

with newly injected particles move toward the outlet, resulting in a higher concentration 

value at late times. Additionally, a greater τC leads to higher concentration values at early 

times and lower concentration values at late times. This is because the constantly injected 

mass particles are quickly released from the soil due to faster saturation of the soil pores 

compared to pulse injection. Later, the particles start to interact with the soil at late times. 

We can conclude that the effects of relaxation times show different results depending on the 

type of injection.

3.3. Sensitivity analysis results

Fig. 3 presents the sensitivity curves for both an instantaneous pulse and continuous 

injection. As seen in Eq. (6), the curves for R and n coincide due to their high correlation. 

The concentrations show high sensitivity to small changes in R, n, and q, followed by 

α, τJ, and τC. The sensitivity curves in Fig. 3(a) change sign over time because of the 

instantaneous pulse, while only α, τJ, and τC change sign in the case of continuous injection 

(Fig. 3(b)). These results indicate that R,  n, and q can be determined with less uncertainty 

when identifying their values. While α has the second highest sensitivity, τJ and τC show the 

least sensitivity, indicating when performing the parameter estimation, the estimates of τJ, 

and τC may be determined with higher uncertainty levels. Therefore, a careful analysis of 

these two parameters in the inverse problem is needed.

3.4. Parameter estimation of column experiments

3.4.1. Case of instantaneous pulse—In Liang et al. (2018), four instantaneous pulse 

tracer tests were conducted on two soil columns, one containing coarse sand and the other 

containing finer sand. The columns had a length of 1.3 m and a diameter of 0.19 m .  0.33 L of 

chloride with a concentration of 1690 mg/L were used as a tracer and measured at distances 

of 0.35 and 0.8 m from the inlet. Data from test 1 (coarse sand) were used to test the 

proposed solution. The values of M and A were calculated as 5.58 × 10−4 kg and 0.028 m2, 

respectively. The porosity of the sand was chosen as 0.37 on the basis of the estimate in 

Liang et al. (2018). The proposed solution and the Sauty (1980) solution were used to 

estimate the values of D (i.e., ) and v (i.e., q/n). The Sauty (1980) solution has the following 

expression:

C = M
2nA Dπte− x − vt 2

4Dt ,  x ∈ − ∞, ∞ (27)
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It should be noted that the retardation factor R was assumed as unit for comparison. In 

addition, two statistical measures, the standard error estimate (SEE) and the mean error 

(ME), were used to evaluate the goodness-of-fit. The estimated results and the SEE and ME 

values are listed in Table 2.

Table 2 demonstrates that the proposed model produces lower values of SEE and ME for 

the two measured points compared to the solution provided by Sauty (1980). This is due to 

the fact that the proposed model has two additional relaxation times, making it more flexible 

and allowing for better fitting of the data. It should be noted that the SEE values already 

account for the effect of the number of degrees of freedom, indicating that the improved 

fitting results are not solely due to the additional parameters. Interestingly, the estimates of 

τC are greater than τC for both observed points. From the perspective of the threshold value 

θ, defined as τC /τJ, θ reflects the significance of the relaxation times. If θ = 1, the lag effects 

are insignificant; while θ > 1 implies that τC dominates and θ < 1 implies that τC governs the 

system. The θ values for the observations of 0.35 m and 0.8 m are 1.5 = 25,072.3 s/16,719.2 s
and 1.67 = 70,705.3 s/42,357.1 s , respectively. This indicates that τC plays a predominant role 

in solute transport behavior. The values of 1.5 and 1.67 imply the consistency of transport 

properties. Fig. 4 illustrates the BTCs predicted by the present solution and the solution 

provided by Sauty (1980), as well as the measured data from Liang et al. (2018). The curves 

predicted by the present solution align well with the measured data in comparison to the 

other solution.

3.4.2. Case of continuous injection—In a series of column experiments, Li et 

al. (2009) utilized two types of tracer, cesium (Cs) and tritium oxide (HTO), to study 

the transport of solutes in groundwater. The experiments were conducted under different 

operating conditions, and the primary material in the column was crushed granite. Data 

was collected at the outlet of the column at a distance of x = 2 cm 0.02 m  using a constant 

flow rate of 5ml/min 8.33 × 10−8 m3/s . The average flow velocity was calculated to be 

4.24 × 10−5 m/s, and the inner diameter of the column was 5 cm 0.05 m . The concentration 

data was analyzed using the non-linear weight least squares method, and compared with the 

solution proposed by Ogata and Banks (1961), which is given by:

C = Cin

2 erfc x − vt
2 Dt + e

vx
D erfc x + vt

2 Dt ,  x ∈ − ∞, ∞ (28)

where erfc ⋅  is the complementary error function. More information on the experimental 

setup can be found in Fig. 2(b) of Li et al. (2009).

The estimated results and the SEE and ME values are listed in Table 3. The present solution 

again successfully fits the measured data, but here is for the case of continuous injection.

Fig. 5 presents the results of our fitting curves, which were predicted by our solution and 

the solution proposed by Ogata and Banks (1961), to the measured data. We observe that 

our solution shows good agreement with the data, with particular focus on the estimates of θ
for Cs and HTO. These values are identified as 0.2 and 0.37 , respectively, and are less than 
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1 , indicating that τJ plays a significant role in affecting solute transport. This finding is in 

contrast to our previous estimates from the experiment by Liang et al. (2018), where θ > 1.

Using the definition of Peclet number Pe = vx/D, we can calculate Pe values from our 

experiments on instantaneous pulse (Table 2) and continuous injection (Table 3). In the 

case of instantaneous pulse, the Pe values for observations at 0.35 m and 0.8 m are 350 and 

235.5 respectively. In the case of continuous injection, the Pe values for Cs and HTO are 

0.8 and 5.89 respectively. These results show that the Pe values for the instantaneous pulse 

are significantly larger than those for continuous injection, leading to higher relaxation time 

estimates. This implies that increased advective transport increases the probability of particle 

collision and sorption in porous media.

Overall, our solution demonstrates superior performance in estimating transport parameters 

from BTC data compared to existing solutions. It serves as a useful tool for parameter 

estimation in situations where the BTC exhibits two-stage behavior.

4. Conclusions

In this study, we introduce the temporally relaxed theory into a mathematical model to 

describe the non-Fickian behavior of solute transport in one dimension. The concentration 

response is governed by an advection-dispersion equation that includes two relaxation times, 

τJ and τc, which allow for differences in the timing of mass flux and concentration gradient. 

We compare our model with the MIM and RLS models and demonstrate that the relaxation 

times are equivalent to lumped parameters in these models (see Table 1). The use of 

relaxation times provides a new perspective for classifying solute transport, as exemplified 

by the threshold value θ = τC /τJ (see Section 3.4).

The results of parameter estimation from column experiments indicate that our model 

fits well with the breakthrough curve from experiments by Liang et al. (2018) and Li et 

al. (2009). The estimates of θ also provide insight into the transport mechanisms of the 

solute; for example, the tests by Liang et al. (2018) show that the behavior is dominated 

by τC θ > 1 , indicating resistance from structural interactions, while the tests by Li et al. 

(2009) show dominance of τJ θ < 1 , indicating a strong inertial effect. In conclusion, the 

temporally relaxed theory provides more reliable estimates compared to existing advection-

diffusion models, and offers a new approach to uncover physical insights in terms of relaxed 

times that are not otherwise evident in the past works. In future work, we plan to perform 

a numerical modeling analysis at the pore scale to investigate the relationship between pore-

fluid interaction and relaxation times. Additionally, we will require additional experimental 

data, obtained through controlled tracer tests in the laboratory.
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Nomenclature

A Cross-sectional area L2

Ai, Bi Airy functions of first and second kinds

C Concentration of solute ML−3

Cm, Cim Concentration of solute in mobile and immobile zones 

ML−3

C0 Concentration of injection source ML−3

D Dispersion coefficient L2T−1

D0 Aqueous diffusion coefficient L2T−1

M Total amount of solution used in the pulse injection [M]

J Mass flux ML−2T−1

kd Partition coefficient of adsorption M−3L

n Porosity of media [-]

nm, nim Porosity of media in mobile and immobile zones [-]

O Output of the model, i.e., C ML−3

Pe Peclet number defined as vx/D

Pk k th input parameter

q Darcy flux LT−1

ΔPk 10−3Pk

R Retardation factor [-]

Rm, Rim Retardation factor in mobile zone and immobile zone [-]

S Mass amount in the solid phase [-]

s Laplace parameter [-]
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t Time [T]

V Volume of the cylindrical pre-inlet reservoir L3

v Seepage flow velocity [LT−1

x Distance from a source [L]

X Normalized sensitivity

α Dispersivity [L]

β nm/n [-]

θ Threshold value [-]

ρb Bulk density of media ML−3

τ0 Tortuosity [-]

τJ, τC Flux lagging and storage lagging, respectively [T]

ω, ω* First-order mass transfer coefficient for MIM and RLS 

models, respectively T−1
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Fig. 1. 
Schematic diagram of the one-dimensional solute transport in the soils affected by the 

temporally relaxed effects due to inertial force and sorption.

Lin et al. Page 19

J Hydrol (Amst). Author manuscript; available in PMC 2023 September 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 2. 
The temporal concentration distribution predicted by (a) instantaneous pulse and (b) 

continuous injection with various τJ and τC.
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Fig. 3. 
The sensitivity analysis results for (a) instantaneous pulse and (b) continuous injection.
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Fig. 4. 
The concentration curves predicted by present and Sauty (1980) solutions and the measured 

data of chloride observed at 0.35 m and 0.8 m from the inlet from the test of Liang et al. 

(2018).
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Fig. 5. 
The concentration curves predicted by present and Ogata and Banks (1961) solutions and the 

measured data of Cs and HTO from the test of Li et al. (2009).
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Table 1

Comparison of the present model and the MIM and RLS models.

Present model MIM model RLS model

R = nm
n Rm + nim

n Rim 1 + ρbkd
n

τJ = nmRmnimRim
ω nmRm + nimRim

1
ω∗ 1 + ρbkd

n
−1

τC = nimRim
ω

1
ω∗
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