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Abstract

Differential gene expression between environments often underlies phenotypic plasticity. However, environment-specific expression 
patterns are hypothesized to relax selection on genes, and thus limit plasticity evolution. We collated over 27 terabases of RNA-sequen
cing data on Arabidopsis thaliana from over 300 peer-reviewed studies and 200 treatment conditions to investigate this hypothesis. 
Consistent with relaxed selection, genes with more treatment-specific expression have higher levels of nucleotide diversity and diver
gence at nonsynonymous sites but lack stronger signals of positive selection. This result persisted even after controlling for expression 
level, gene length, GC content, the tissue specificity of expression, and technical variation between studies. Overall, our investigation 
supports the existence of a hypothesized trade-off between the environment specificity of a gene’s expression and the strength of se
lection on said gene in A. thaliana. Future studies should leverage multiple genome-scale datasets to tease apart the contributions of 
many variables in limiting plasticity evolution.
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Introduction
Organisms must cope with ever-changing environmental condi
tions to survive and reproduce. If these changes in condition can
not be avoided or escaped, phenotypes that respond to 
environmental variation through phenotypic plasticity may be 
adaptive. For example, under low light, the same Arabidopsis thali
ana genotype will produce more or larger leaves to capture more 
energy for photosynthesis (Pigliucci and Kolodynska 2002). 
Plastic responses are partly controlled through differential gene 
expression between environments (Scheiner 1993; Schlichting 
and Smith 2002). Understanding the evolution of these condition- 
specific expression patterns could help reconcile the diversity of 
plastic responses observed in nature and engineer organisms to 
overcome environmental challenges.

However, not all organisms can respond plastically to envir
onmental change, so it is crucial to understand the processes 
that constrain plasticity (Van Kleunen and Fischer 2005). These 
constraints are usually characterized as either costs, where plas
ticity reduces fitness in some way, or limits to the evolution or 
maintenance of plasticity (DeWitt et al. 1998). Decades of 
research has attempted to measure the costs associated with 
plasticity (reviewed in Schneider 2022) but studies often fail to de
tect costs or find costs that are weak or restricted to certain environ
ments (Van Kleunen and Fischer 2005; Van Buskirk and Steiner 

2009; Auld et al. 2010). Theory also predicts that there will be strong 
selection to alleviate costs (Murren et al. 2015). Thus, limits may 
be more important than costs in shaping the evolution of 
plasticity.

Recent work suggests that relaxed selection can limit plasticity 
evolution (Snell-Rood et al. 2010; Murren et al. 2015). For instance, 
one hypothesis posits that genes are often under selection for 
environment-specific expression to minimize deleterious plei
otropy (Snell-Rood et al. 2010; McGuigan et al. 2014; Huber et al. 
2017). However, narrowing the range of environments where a 
gene is expressed also reduces the opportunity for negative selec
tion to act on deleterious mutations in the gene (Kawecki 1994; 
Whitlock 1996; Van Dyken and Wade 2010). The accumulation 
of deleterious mutations could then cancel out any selective ben
efits of the environment-specific expression pattern. Thus, a 
trade-off arises between a gene’s degree of environment-specific 
expression and the strength of negative selection acting on said 
gene. If we assume that environment-specific expression general
ly contributes to phenotypic plasticity, then this trade-off would 
potentially limit the maintenance of plasticity (Kawecki 1994; 
Snell-Rood et al. 2010). Whether such a trade-off exists has not 
yet been tested, but the deposition of expression data from hun
dreds of experimental treatments across hundreds of labs into 
public repositories now enables approximating environment 
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specificity as treatment specificity and linking treatment-specific 
expression to the rate of evolution.

One challenge in studying the relationship between treatment 
specificity and protein evolution is that many factors influence 
evolutionary rates (for review, see Rocha 2006; Gaut et al. 2011; 
Koonin 2011; Zhang and Yang 2015) and these factors are hard 
to disentangle. A protein’s expression level is often considered 
the best predictor of its evolutionary rate (Rocha 2006)—a result 
observed across all domains of life (Zhang and Yang 2015) and 
sometimes considered a “law” of genome evolution (Koonin 
2011). Among multicellular organisms, the degree of tissue speci
ficity in expression is also generally predictive of evolutionary 
rates (Duret and Mouchiroud 2000; Winter et al. 2004; Zhang and 
Li 2004; Larracuente et al. 2008; Slotte et al. 2011; Bush et al. 2015; 
Mukherjee et al. 2016; Groen et al. 2020; Huang 2022). Additional 
factors that also influence evolutionary rates include exon edge 
conservation (Bush et al. 2015), mutational bias (Wang et al. 
2004; Ossowski et al. 2010), gene length (Mukherjee et al. 2016), 
gene age (Moutinho et al. 2022), GC content (Zhang et al. 2002; 
Mukherjee et al. 2016), expression stochasticity (Groen et al. 
2020), involvement in general vs specialized metabolism 
(Mukherjee et al. 2016), identity as a regulatory or structural 
gene (Wheeler et al. 2022), recombination rate (Langley et al. 
2012), codon-bias (Betancourt and Presgraves 2002), mating sys
tem (Wright et al. 2002; Glémin 2007; Payne and Alvarez-Ponce 
2018), gene compactness (Larracuente et al. 2008; Mukherjee 
et al. 2016), co-expression or protein–protein interaction network 
connectivity (Alvarez-Ponce and Fares 2012; Alvarez-Ponce et al. 
2017; Josephs et al. 2017; Mähler et al. 2017; Masalia et al. 2017), 
gene body methylation (Takuno and Gaut 2012), metabolic flux 
(Colombo et al. 2014), protein structure (Lin et al. 2007), essential
lity (Nembaware et al. 2002; Yang et al. 2003; Davis and Petrov 
2004), and even plant height (Lanfear et al. 2013). This over
abundance of possible explanatory variables suggests that mas
sive genome-scale datasets and careful statistical analysis are 
required to tease out the influence of treatment-specific expres
sion on evolutionary rates.

To investigate the influence of treatment-specific expression 
on evolutionary rates, we compiled a dataset of gene expression 
data across over 200 treatments from over 300 peer-reviewed 
studies in A. thaliana. We annotated RNA-sequencing runs from 
these studies using standardized ontologies, then processed all 
of them with the same pipeline. Finally, we combined the result
ing gene expression matrix with estimates of selection based on 
within-species polymorphism and between-species divergence 
to investigate whether genes with treatment-specific expression 
were under weaker negative selection.

Materials and methods
RNA-seq run annotation
We amassed an initial set of RNA-seq runs from the Sustech 
Arabidopsis RNA-seq database V2 (Zhang et al. 2020) (http://ipf. 
sustech.edu.cn/pub/athrdb/) excluding any samples not asso
ciated with a publication or lacking a tissue type label. On 2022 
May 24, we also downloaded all run metadata from the 
Sequence Read Archive (SRA) returned by the following search 
term: (“Arabidopsis thaliana”[Organism] AND “RNA”[Source]) OR 
(“Arabidopsis thaliana”[Organism] AND “RNA-Seq”[Strategy]) OR 
(“Arabidopsis thaliana”[Organism] AND “TRANSCRIPTOMIC” 
[Source]). All SRA runs were linked to their associated publica
tions, if possible, using Entrez. Any SRA run numbers that we 
could not link to a PUBMED ID or DOI were omitted. We then 

manually removed all SRA runs that originated from transgenic, 
mutant, hybrid, grafted, cell culture, polyploid, or aneuploid sam
ples based on information in the SRA metadata and associated 
publications. Runs from any naturally-occurring A. thaliana acces
sion were included. We also omitted SRA runs that focused on 
sequencing non-coding RNA (ncRNA-seq, miRNA-seq, lncRNA-seq, 
sRNA-seq, etc.). After applying these criteria, any bioprojects with 
8 or fewer SRA run numbers remaining were also omitted.

All runs were labeled with treatment and tissue-type descrip
tions using the Plant Experimental Conditions Ontology (PECO) 
and the Plant Ontology (PO) (Cooper et al. 2018), respectively, based 
on information in their associated publications and SRA metadata. 
In our analysis, control exposure was defined as long-day conditions 
(12 h light exposure or longer, but not constant light) and growing 
temperatures in the range of 18◦–26◦, inclusive, without explicit ap
plication of stress or nutrient limitation. Warm treatments were de
fined as 27◦ or higher, while cold treatments were defined as 17◦ or 
lower. Any studies that did not report both day length and growing 
temperature were omitted. Any runs that could not be linked to 
treatments based on their annotations in the SRA or Sustech data
bases were also omitted. Treatment with polyethylene glycol (PEG) 
was categorized as drought exposure. Samples from plants that 
were recovering from stress were categorized according to the 
growth conditions of the recovery state instead of the stressed state. 
When appropriate, we labeled samples with multiple PECO terms. 
For example, a sample that was subjected to both heat stress and 
high light stress would get two PECO terms (one for each stress) 
and be treated separately from samples subjected to only heat 
stress or only light stress. Tissue-type labels were eventually col
lapsed to the following categories: whole plant, shoot, root, leaf, 
seed, and a combined category of flower and fruit tissues. The flower 
and fruit tissue categories were combined because of their develop
mental relationship and small size relative to the other categories. 
In the end, we had a dataset of 24,101 sequencing runs from 306 
published studies.

RNA-seq run processing
All RNA-seq runs were processed using the same workflow to 
remove the effects of bioinformatic processing differences between 
studies on expression level. First, runs were downloaded using the 
SRA toolkit (v2.10.7), but 90 runs were not publicly available and 
thus failed to download. All successfully downloaded runs were 
trimmed using fastp v0.23.1 (Chen et al. 2018), requiring a min
imum quality score of 20 and a minimum read length of at least 
25 bp (-q 20 -l 25). Trimming results were compiled using multiqc 
v1.7 (Ewels et al. 2016). All trimmed runs were then aligned to a 
decoy-aware transcriptome index made by combining the pri
mary transcripts of the Araport11 genome annotation (Cheng 
et al. 2017) with the A. thaliana genome in salmon v1.2.1 (Patro 
et al. 2017) using an index size of 25 bp. The salmon outputs of 
each run were then combined with a custom R script to create 
an gene-by-run expression matrix. We omitted 423 runs with a 
mapping rate <1%, 215 runs with zero mapped transcripts, and 
18 genes with zero mapped transcripts across all runs from fur
ther analysis. We note that although this cut-off does not exclude 
samples with more modest mapping rates (e.g. 20–60%) the choice 
to include these samples was to avoid removing large chunks of 
data as “outliers” and analyzing only those samples that conform 
to our expectations.

Whole-genome sequence data processing
We downloaded whole-genome sequencing data for 1,135 A. thali
ana accessions from the 1,001 genomes project panel (SRA project 
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SRP056687) (Alonso-Blanco et al. 2016) using the SRA toolkit. All 
runs were trimmed using fastp (Chen et al. 2018), requiring a min
imum quality score of 20 and a read length of at least 30 bp (-q 20 -l 
30). Trimmed reads were then aligned to the A. thaliana reference 
genome using BWA v0.7.17 (Li and Durbin 2009). The alignments 
were sorted and converted to BAM format with SAMTOOLS 
v1.11 (Danecek et al. 2021), then optical duplicates were marked 
with picardtools v2.22.1. Haplotypes were called for each acces
sion, then combined and jointly genotyped with GATK v4.1.4.1 
assuming a sample ploidy of 2, heterozygosity of 0.001, 
indel-heterozyogsity of 0.001, and minimum base quality score 
of 20. Invariant sites were included in the genotype calls with 
the–include-non-variant-sites option. All calls were restricted to 
only coding sequence (CDS) regions based on the Araport11 anno
tation by supplying a BED file of CDS coordinates made with bed
tools (v2.29.2). Following Korunes and Samuk (2021), variant and 
invariant sites were filtered separately using both GATK and 
vcftools v0.1.15 (Danecek et al. 2011). Variant sites were filtered 
if they met any of the following criteria: QD < 2, QUAL < 30, 
MQ < 40, FS > 60, HaplotypeScore > 13, MQRankSum < −12.5, 
ReadPosRankSum < −8.0, mean depth < 10, mean depth > 75, 
missing genotype calls > 20%, being an indel, or having more 
than two alleles. In the end, 1,915,859 variant sites across all cod
ing sequences were retained for further analysis. Invariant sites 
were filtered if they met any of the following criteria: QUAL > 
100, mean depth < 10, mean depth > 75, missing genotype calls 
> 20%. Finally, variant sites were annotated using snpEff (Java 
v15.0.2) (Cingolani et al. 2012b) and variants labeled as either mis
sense or synonymous were separated into different files using 
SnpSift (Cingolani et al. 2012a).

Selection estimated from between-species 
divergence
We identified 1:1 orthologs between the primary transcripts of 
A. thaliana and Arabidopsis lyrata with Orthofinder v2.5.4 (Emms 
and Kelly 2019). For each 1:1 ortholog, we aligned their protein se
quences with MAFFT L-INS-I v7.475 (Katoh and Standley 2013), 
then converted the protein alignments to gapless codon-based 
alignments using pal2nal v14 (Suyama et al. 2006). Using the gap
less codon-based alignments, we estimated dN/dS using the Nei 
and Gojobori (1986) method implemented as a custom 
Biopython v1.79 script and implemented through the codeml pro
gram in the PAML package v4.9 (Yang 2007). Unlike codeml, the 
custom Biopython script also returns counts of nonsynonymous 
(N) and synonymous sites (S) within each gene as described in 
Nei and Gojobori (1986), which we later used to calculate nucleo
tide diversity per nonsynonymous site (πN) and per synonymous 
site (πS). Before proceeding with more analyses, we confirmed 
that our estimates of dN and dS were consistent between our 
Biopython script and codeml (Supplementary Fig. S5, Pearson cor
relations dN : ρ = 0.9998, dS : ρ = 0.9809). The outputs of the 
Biopython script were used in all subsequent analyses.

Selection estimated from within-species 
polymorphism
Nucleotide diversity at nonsynonymous sites
Nucleotide diversity (π) was calculated for each gene with pixy 
v1.2.3.beta1 (Korunes and Samuk 2021) three times: once using 
all sites (both variant and invariant), once using missense sites 
plus invariant sites, and once using synonymous sites plus invari
ant sites. These estimates were then converted to π, πN, and πS, 
respectively, by first multiplying the per site estimate output from 

pixy by the number of sites included in the analysis. Then, to 
get πN and πS, the values from analyses of missense plus invariant, 
and synonymous plus invariant sites were divided by the N and S 
values for each gene, respectively, as determined by the method in 
Nei and Gojobori (1986).

Tajima’s D
We next calculated Tajima’s D for each gene. First, we calculated π 
and Watterson’s Theta (θW) for each variant site i within a gene (πi 

and θWi, respectively). In this case, πi was calculated as:

πi =
ni

ni − 1

􏼒 􏼓

1 −
􏽘2

j=1

p2
ij

⎛

⎝

⎞

⎠ (1) 

Where ni is the number of sequenced chromosomes with non- 
missing genotypes for variant i, pi1 is the frequency of the refer
ence allele, and pi2 is the frequency of the alternative allele. 
Then, θWi was calculated as:

θWi =
1
ai

(2) 

Where ai is:

ai =
􏽘ni−1

j=1

1
j

(3) 

This calculation of θWi is equivalent to the usual calculation of θW 

with the number of segregating sites set to one. Next, the variance 
in Tajima’s D was calculated for each site as:

Var(πi − θWi) =

ni + 1
3(ni − 1)

−
1
ai

ai
(4) 

This is equivalent to equation 38 in Tajima (1989) with the number 
of segregating sites set to one.

Finally, the results of the above calculations were combined in 
the following formula:

Di =
πi − θWi

����������������
Var(πi − θWi)

􏽰 (5) 

To get Tajima’s D for each gene, we then averaged across the Di 

values for all the variant sites within a gene.

Direction of selection (DoS)
Counts of nonsynonymous and synonymous polymorphisms 
within each gene (PN and PS, respectively) were determined with 
bedtools (v2.29.2). The number of nonsynonymous and synonym
ous differences (DN and DS, respectively) between A. thaliana genes 
and their 1:1 A. lyrata orthologs, if present, were estimated during 
the process of calculating dN/dS in Biopython as described above. 
These values were then used to calculate the direction of selection 
(DoS) (Stoletzki and Eyre-Walker 2011) as follows:

DoS =
DN

DN + DS
−

PN

PN + PS
(6) 

We chose this metric, as opposed to the proportion of amino acid 
substitutions driven by positive selection (α), because it is less 
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biased than α (Stoletzki and Eyre-Walker 2011) and was success
fully used in studies similar to ours (Paape et al. 2013). 
Furthermore, we found that α often returns uninterpretable nega
tive values when applied to A. thaliana, perhaps because of an ex
cess of slightly deleterious polymorphisms (Nordborg et al. 2005) 
due to their predominantly selfing mating system (Charlesworth 
1994).

Treatment specificity
Treatment specificity (τ) was estimated separately for runs from 
each tissue type using the following formula (Yanai et al. 2005):

τ =

􏽐N
i=1 1 −

xi

max x
N − 1

(7) 

Where x is the vector of average expression values of a gene in 
each treatment category, measured in transcripts per million 
(TPM), and where N is the number of treatment categories. 
Dividing by N–1 means that τ varies between zero and one, where 
zero indicates no specificity and one indicates exclusive specificity 
to a single treatment. We used this metric of specificity because it 
is consistently more robust than others (Kryuchkova-Mostacci 
and Robinson-Rechavi 2017) and is normalized by the number of 
treatments included, making it comparable across datasets. We 
also applied the same formula to calculate tissue specificity in 
several different treatment conditions.

Simulating correlations between average 
expression and specificity index
Average expression level and measures of expression specificity 
are correlated by definition because genes with more treatment/ 
tissue-specific expression will have lower average expression 
across all treatment/tissue categories. We ran two simulations 
to better illustrate the factors driving the correlation between 
average expression and the specificity index, τ. In both simula
tions, we generated 1,000 random matrices, where each element 
xij represented the expression of gene i in experiment j, by sam
pling from a zero-inflated negative binomial distribution:

xij ∼ ZINegBinom(N, p1, p2) (8) 

Where the size and probability parameters of the negative bino
mial component were N = 100 and p1 = 0.1, respectively, while 
the probability of an expression value being non-zero was 
p2 = 0.4. All matrices included five groups of columns, with five 
columns per group, representing replicates of tissue/treatment 
groups. For both simulations, we averaged across columns within 
each group to simulate the calculation of tissue/treatment-wide 
averages. We then applied the formula for τ across the rows of 
this averaged matrix to get expression specificity. In one simula
tion, we calculated expression level by averaging across the 
rows of the expression matrix. In a second simulation, we ex
cluded experiments where a gene was not expressed (xij = 0) 

from the calculation of average expression.

Average expression, length, GC content, family 
size
Calculating the average expression of each gene was a three-step 
process. First, we averaged together runs with matching SRA 
experiment IDs because these runs represented technical replicates 
of the same biological sample and treatment conditions. Second, 
we partitioned our gene-by-experiment expression matrix by the 

tissue type each sample came from. Finally, for each tissue type’s 
expression matrix, we averaged across all of the expression values 
of each gene across all experiments, excluding values <5 tran
scripts per million (TPM). We excluded values <5 TPM from the 
average expression calculation to avoid a high correlation 
between average expression and treatment specificity, as has 
been reported in previous studies (Slotte et al. 2011). This high cor
relation occurs because an environment-specific gene will by def
inition also have low average expression across environments it is 
rarely expressed in. Furthermore, we excluded values <5 TPM to 
avoid including small expression values that could be artifacts 
of alignment error.

The length and GC content of each gene was measured using 
the bedtools nuc command (v2.29.2) and included each gene’s 
introns and untranslated regions when present. We included 
introns and untranslated regions in the estimate of gene length 
because they play important roles in determining rates of protein 
evolution (Castillo-Davis et al. 2002; Eisenberg and Levanon 2003). 
Finally, the family size for each gene was estimated as the number 
of A. thaliana genes in their respective orthogroups output by 
OrthoFinder.

Partial correlation analysis
Not all treatment-tissue combinations were sampled in the over
all RNA-seq dataset, causing confounding between the treatment 
and tissue labels. We resolved this in two ways. First, we subset 
the data to only the treatment conditions where all tissue types 
were represented. Second, we subset the data by tissue type 
and analyzed each subset separately. For each subset, we calcu
lated partial spearman correlations between treatment specificity 
and our measures of selection (dN, πN, Tajima’s D, and DoS) after 
accounting for average expression (excluding values TPM < 5), 
gene length, and GC content using the ppcor R package (Kim 
2015). For partial correlation analyses involving πN and Tajima’s 
D, we also controlled for gene family size. We did not account 
for gene family size in partial correlation analyses involving dN 
or DoS because these metrics apply to only genes with one family 
member in this study. When calculating partial correlations in
volving dN, we excluded any genes with saturating divergence 
(dS > 1). All statistical analyses and data visualizations used R 
v4.0.3 and used color palettes in the scico R package (Crameri 
2018; Pedersen and Crameri 2022).

Surrogate variable analysis
We recalculated treatment specificity and repeated all partial cor
relation analyses after correcting each data subset for technical 
between-experiment variation (i.e. batch effects), following an 
approach from (Fukushima and Pollock 2020). Batch effects in
clude variables that influence gene expression measurements 
but are not of interest to this study, such as the sequencing plat
form and the library prep protocol used in each experiment. First, 
with our data already subset by tissue type, we further subset to 
only include treatments with RNA-seq runs from at least two 
studies. This minimizes confounding between-treatment vari
ation with the technical between-experiment variation we aimed 
to account for. We then applied surrogate variable analysis (SVA) 
using the svaseq() function within the SVA package (Leek and 
Storey 2007) to each of these subsets. Briefly, SVA models gene ex
pression as:

xij = μi + f (yi) + eij (9) 
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Where xij is the expression of gene i in experiment j, μi is the aver

age expression of gene i across all experiments, and yi is the value 
of a predictor variable of interest for gene i. Furthermore, f (yi) 
gives the deviation of gene i from its average expression based 
on the value of yi and eij is the residual error. SVA takes this model 

and partitions the residual variance, eij, into:

xij = μi + f (yi) +
􏽘L

ℓ=1

γℓigℓj + e∗ij (10) 

Where 
􏽐L

ℓ=1 γℓigℓj gives the summed effects of L unmodeled vari

ables (gℓj) for each gene and e∗ij gives the gene-specific noise in ex

pression. SVA does not attempt to estimate what the unmodeled 
variables influencing expression are, but rather find a set of vec
tors (the surrogate variables) that span the same space as g:

xij = μi + f (yi) +
􏽘K

k=1

λkihkj + e∗ij (11) 

Where each hk is a surrogate variable and each λk gives the effects 
of each surrogate variable on gene expression. For our analyses, 
our predictor variable yi was treatment type. To get a measure 
of expression where the effects of surrogate variables are re
moved, we then subtracted off the effects of surrogate variables 
from both sides of the above equation.

xij −
􏽘K

k=1

λkihkj = μi + f (yi) + e∗ij (12) 

Where xij −
􏽐K

k=1 λkihkj gives us our expression values accounting 

for the effects of surrogate variables. The net result here is a 
reduction in the amount of unexplained or seemingly stochastic 
variation in expression because sources of variation have been 
attributed to “surrogates” that span the same space as real batch 
variables. We also conducted principal component analysis in R 
before and after SVA to verify the removal of batch effects.

Results
Summary of tissue differentiation, treatment 
specificity, and selection in overall dataset
To understand how treatment specificity of gene expression affects 
evolutionary rates of proteins, we queried the Sequence Read 
Archive for all A. thaliana RNA-seq experiments published before 
May 2022. We then annotated these experiments with standar
dized tissue and treatment ontology terms, manually filtered the 
dataset, and then processed all RNA-seq runs with a standardized 
pipeline. The number of sequencing experiments associated with 
each combination of tissue and treatment labels is summarized 
in Supplementary Table S1. Overall, the most sampled tissue 
category was leaf (4,642 experiments) followed by root (3,348 
experiments), whole plant (2,492 experiments), seed (1,866 
experiments), shoot (1,106 experiments), then fruit and flower 
(266 experiments). The four most sampled treatment categories 
were control (5,701 experiments), cold air exposure (675 experi
ments), short day length (561 experiments), and short day length 
plus Botrytis cinerea exposure (407 experiments). Any sequencing 
runs that shared an SRA experiment ID were averaged to produce 
individual gene expression values for each SRA experiment.

We first looked at the distribution of mapping rates 
across all RNA-seq runs. The median mapping rate was 72.39% 

(Supplementary Fig. S1) and we excluded runs with a mapping 
rate <1% from further analyses. We next performed a principal 
components analysis (PCA) on the expression matrix and 
observed strong differentiation between root and non-root tis
sues along PC2 (Fig. 1). We also observed that nearly all genes 
had some degree of treatment specificity in their expression 
(Fig. 2a, Supplementary Fig. S3). Furthermore, only a small pro
portion of genes had strong signatures of selection based on 
dN/dS, πN/πS, DoS, or Tajima’s D (Fig. 2, b to d, Supplementary 
Fig. S2). The treatment specificity of expression was lower on 
average in flower and fruit tissue compared with the other tis
sues (Supplementary Fig. S3). However, tissue specificity did 
not vary widely depending on the treatment condition 
(Supplementary Fig. S4).

Omitting samples with low expression 
disentangles expression level and specificity
Genes that are only expressed in one treatment or tissue will, by 
definition, have low mean expression across all environments or 
tissues (Wright et al. 2004). Thus, we sought a method of calculat
ing expression level that was independent of treatment specifi
city. To better understand the relationship between average 
expression and treatment specificity, we calculated correlations 
between treatment specificity and expression level while either 
including or excluding low expression values (TPM <5) on our 
real RNA-seq dataset. We found that excluding low expression va
lues decreased the correlation between average expression and 
treatment specificity in leaf tissue samples (Fig. 3) and other tis
sues (Supplementary Figs. S34–S38) and replicated the result by 
simulating gene expression matrices (Supplementary Fig. S39). 
Thus, for all later partial correlation analyses (see next section) 
we quantified each gene’s average expression after dropping ex
periments where the gene was not expressed (TPM < 5).

Treatment specificity correlates with levels of 
nonsynonymous diversity and divergence in 
genes
We next calculated partial correlations between treatment speci
ficity and measures of selection after controlling for average 
expression, gene length, GC content, and tissue specificity in expres
sion. These partial correlations were calculated separately for 
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Fig. 1. Principal components analysis of all expression data. Each point 
represents a different RNA-seq experiment and is colored by its 
associated tissue type. Experiments from all treatment conditions are 
included in this analysis. The percent values on the axes represent the 
percent variation explained by each principal component. Plotting order 
was randomized to avoid overplotting.
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expression data on each tissue type and did not account for batch 
effects (see next section). Among leaf tissue samples, average ex
pression had significant partial correlations with dN (ρ = −0.19, 
P − value = 2.1 × 10−122) and πN (ρ = −0.17, P − value = 2.8 × 10−175) 
after controlling for other factors (Fig. 4, a and b). Treatment 
specificity was more strongly correlated with dN (ρ = 0.10, 
P − value = 7.6 × 10−31) and πN (ρ = 0.10, P − value = 1.2 × 10−62) 
than Tajima’s D (ρ = 0.03, P − value = 3.1 × 10−7) and DoS (ρ = 0.04, 
P − value = 2.3 × 10−06, Fig. 4, c and d). Furthermore, the top 25% 
most treatment-specific genes in leaf tissue for our dataset have 
average dN and πN values nearly 2.5 times greater than the 25% least 
treatment-specific genes (dN = 0.025 vs 0.061; πN = 0.0014 vs 0.0032). 
Meanwhile, the most and least treatment-specific genes have aver
age Tajima’s D values of are −0.44 and −0.43, respectively, and aver
age DoS values of −0.19 and −0.14, respectively. The strongest partial 

correlation generally occurred between tissue specificity and treat
ment specificity (Spearman’s ρ = 0.53 − 0.60, Fig. 4). Gene family size 
had among the weakest partial correlations with πN compared to 
other covariates, but strongly correlated with treatment specificity 
(ρ = 0.12, P − value = 6.3 × 10−84, Fig. 4b). All of these findings gener
ally held when average expression and treatment specificity were 
calculated on data from other tissues (Supplementary Table S2, 
Figs. S6–S10).

Correlations between treatment specificity and 
nonsynonymous variation persist after 
controlling for batch effects and dataset 
imbalance
While combining gene expression data across multiple studies 
can increase the statistical power of an analysis, there are some 

a b

c d

Fig. 2. Density plots of key variables measured in this study. a) Distribution of treatment specificity in leaf tissue expression across all genes included in 
this study. The area underneath the curve in a given interval of treatment specificity represents the proportion of genes in this study that fall within that 
range of treatment specificity. b) Distribution of dN/dS across all genes included in this study. The area to the right of the dashed line represents the 
proportion of genes in this study with dN/dS > 1. c) Distribution of πN/πS across all genes included in this study. The area to the right of the dashed line 
represents the proportion of genes in this study with πN/πS > 1. d) Distribution of DoS across all genes in this study. Area to the right of the dashed line 
represents the proportion of genes with DoS > 0, which is interpreted as evidence of adaptive evolution.
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potential concerns. First, if many tissue–treatment combinations 
are not sampled, the dataset will be unbalanced and the effects of 
tissue and treatment variation on expression could be con
founded. Consistent with this expectation, there was a high 
correlation between tissue specificity and treatment specificity 
in our initial analyses (Fig. 4, Supplementary Figs. S6–S10). 
Furthermore, combining data from multiple laboratories could 
generate batch effects (Leek et al. 2010). To address the issues of 
imbalance and batch effects, we first subset our data to only 
include treatments where all tissue types were represented. 
This subset included the treatments of control, abscisic acid, 
continuous light, warm/hot air temperature, and cold air 
temperature. We then used SVA to correct for the influence of un
known batch effects on these data subset (Leek and Storey 
2007). After SVA, treatment specificity positively correlated 
with dN (ρ = 0.10, P − value = 1.6 × 10−32) and πN (ρ = 0.07, 
P − value = 1.5 × 10−23) when average expression and treatment 
specificity were calculated on combined fruit and flower data 
(Supplementary Fig. S33). However, treatment specificity in other 
tissue types generally did not correlate with our measures of selec
tion (Supplementary Figs. S28–S33, Table S4).

The inclusion of only five treatments in the above analysis 
could limit quantification of a gene’s treatment specificity. Thus, 
in order to include data from a larger number of treatments, avoid 
dataset imbalance, and avoid batch effects, we split our expres
sion matrix into six subsets by tissue category. We then further re
moved treatments that only had expression data from one study 
to avoid confounding treatment effects with study-specific batch 
effects. We applied SVA (Leek and Storey 2007) to each of these 
tissue-specific subsets. After SVA, the expression profiles of 
most genes appear less treatment-specific (Supplementary Figs. 
S16–S21 panels a vs b). We also observed less separation in PCA 
space within treatment groups after SVA (for example, see 

Supplementary Fig. S16, c and d). Average expression levels before 
SVA were generally correlated with expression levels after SVA 
(Supplementary Figs. S16–S21 panels a and b). In partial correla
tions for theSVA-corrected leaf tissue subset, treatment specifi
city significantly correlated with dN (ρ = 0.13, 
P − value = 6.9 × 10−50) and πN (ρ = 0.16, P − value = 3.9 × 10−128) 
but less strongly correlated with Tajima’s D (ρ = 0.04, 
P − value = 6.6 × 10−10) and DoS (ρ = 0.05, P − value = 2.0 × 10−8) 
(Table 1, Fig. 5). These patterns were similar in other tissue types 
(Supplementary Figs. S11–S15, Table S3).

Discussion
Our main finding is that genes with more treatment-specific 
expression patterns are, on average, under weaker selective con
straint in A. thaliana. This is evident by treatment-specific genes 
generally having higher values of πN and dN, but not higher values 
of Tajima’s D and DoS, compared to genes with more constitutive 
expression (Figs. 4 and 5). Our result does not refute the possibility 
of strong positive selection on treatment-specific genes, as is the 
case for nucleotide binding site leucine-rich repeat proteins 
(NBS-LRRs) in A. thaliana (Mondragón-Palomino et al. 2002). 
Rather, treatment-specific genes are simply under weaker selec
tion on average compared with less treatment-specific genes. 
Altogether, this pattern is consistent with the hypothesis that a 
trade-off between the strength of selection and the treatment spe
cificity of expression helps maintain variation in plasticity for 
A. thaliana (Snell-Rood et al. 2010; Van Dyken and Wade 2010).

There are a few ways to think about the biological relevance of 
the correlations of treatment specificity with πN and dN. First, the 
magnitude of treatment specificity’s correlation with πN and dN 
was generally half the magnitude of average expression’s correl
ation with πN and dN and similar to tissue specificity’s correlation 
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Fig. 3. Correlation between the average expression in transcripts per million (TPM) and treatment specificity of genes when samples with low expression 
(<5 TPM) are included a) vs excluded b). Expression level and treatment specificity were calculated using only data from leaf tissue samples. Line is a 
smoothing line with 95 % confidence intervals and values in parentheses give spearman correlation.
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with πN and dN. Both tissue specificity and average expression are 
thought to be important determinants of protein evolution (Bush 
et al. 2015; Wu et al. 2022), suggesting the comparable effects of 
treatment specificity may be important too. Second, the effect of 
treatment specificity on πN and dN persisted even after simultan
eously controlling for expression level, tissue specificity, gene 
length, GC content, and batch effects. Finally, the top 25% most 
treatment-specific genes in leaf tissue for our dataset have aver
age dN and πN values nearly 2.5 times greater than the 25% least 
treatment-specific genes (dN = 0.025 vs 0.061; πN = 0.0014 vs 
0.0032), but relatively similar Tajima’s D and DoS values 

(Tajima’s D = −0.44 vs −0.43; DoS = −0.19 vs −0.14). These obser
vations together suggest that treatment specificity is an important 
determinant of protein evolution.

This study disentangles several processes that were often diffi
cult to resolve in previous research. First, many previous studies 
focus mainly on explaining trends in dN/dS (Gaut et al. 2011; 
Slotte et al. 2011; Bush et al. 2015), but both relaxed negative selec
tion and increased positive selection can lead to increases in 
dN/dS. To tease apart these two processes, we additionally inves
tigated treatment specificity’s relationship with Tajima’s D and 
DoS. Treatment specificity’s weaker correlation with Tajima’s D 

a b

c d

Fig. 4. Partial correlation analysis including either a) dN, b) πN, c) Tajima’s D, or d) direction of selection (DoS) as a covariate. Average expression excludes 
values <5 TPM and was calculated using only leaf tissue samples. Treatment specificity was also calculated using only leaf tissue samples. Tissue 
specificity was calculated using only control samples across all tissue categories. The number of genes included in each partial correlation analysis (n) is 
listed at the top of each heatmap.
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and DoS, compared to dN and πN, suggests that relaxed negative 
selection plays a larger role than increased positive selection in 
explaining the high evolutionary rates of treatment-specific 
genes. Furthermore, measures of expression specificity are often 
highly correlated with expression level (Slotte et al. 2011; 
Alvarez-Ponce and Fares 2012; Huang 2022). When calculating a 
gene’s expression level, we only included samples where said 
gene was expressed (TPM > 5) to get an estimate of expression 
level that was still correlated with dN and πN, but was independent 
of expression specificity, allowing us to better disentangle these 
factors. Finally, previous studies have struggled to partition the 
factors that influence selection on genes in the presence of pre
dictor variables with considerable error, such as expression level 
(Drummond et al. 2006; Plotkin and Fraser 2007; Yang and Gaut 
2011). Error in expression measurements can often be attributed 

Table 1. Partial correlations between treatment specificity and 
different measures of selection pre-SVA and post-SVA.

Pre/ 
post-SVA

Measure of 
selection

Partial correlation between 
selection and treatment 

specificitya

P-valueb

Pre dN 0.10 7.6 × 10−31

Post dN 0.13 6.9 × 10−50

Pre πN 0.10 1.2 × 10−62

Post πN 0.16 3.9 × 10−128

Pre Tajima’s D 0.03 3.1 × 10−7

Post Tajima’s D 0.04 6.6 × 10−10

Pre DoS 0.04 2.3 × 10−6

Post DoS 0.05 2.0 × 10−8

aAll correlation coefficients are spearman coefficients and are calculated only 
on leaf tissue samples. bAll P-values represent whether correlation coefficient 
significantly differs from 0.

a b

c d

Fig. 5. Partial correlations for a) dN, b) πN, c) Tajima’s D, and d) direction of selection (DoS) based on leaf tissue data subset after applying SVA. Data were 
further subset to include only treatment groups with data from more than one study before applying SVA. Average expression calculation excludes 
values <5 TPM. The number of genes included in each partial correlation analysis (n) is listed at the top of each heatmap.
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to unmeasured differences between RNA-sequencing experi
ments (Leek et al. 2010) and we accounted for these differences 
using SVA (Leek and Storey 2007). Even after SVA, treatment spe
cificity was strongly correlated with dN and πN (Fig. 5, a and b), sug
gesting our results are not an artifact of errors in expression 
measurement or combining expression data across many studies.

Surprisingly, nearly all genes in A. thaliana have some degree of 
treatment specificity in their expression (Fig. 2a, Supplementary 
Fig. S3), reflecting results of previous studies on tissue specificity 
(Eisenberg and Levanon 2003). The high prevalence of treatment 
specificity in our dataset is partly explained by batch effects 
because SVA significantly lowered the apparent treatment speci
ficity of most genes (Supplementary Figs. S16b–S21b) and reduced 
within-treatment differentiation in PCA space (for example, see 
Supplementary Fig. S16, c and d). This reduction in treatment spe
cificity likely happened because batch effects can include unre
corded between-treatment differences (e.g. the humidity of the 
growth chamber, light intensity, watering schedule, etc.). 
Controlling for these unrecorded between-treatment differences 
thus causes the expression of genes to be less treatment-specific. 
However, even after batch correction most genes still showed 
some degree of treatment specificity (Supplementary Fig. S16b– 
S21b), suggesting it is rare for a gene to be expressed at the 
same level across many environments.

We also observed that genes with higher treatment specificity 
generally belonged to larger gene families. We expected gene 
family size to correlate with selection because singleton and du
plicated genes often evolve at different rates (Davis and Petrov 
2004; Jordan et al. 2004). Theory also suggests that gene duplica
tion relaxes selection on duplicates, allowing for neo- and sub
functionalization (Lynch and Conery 2000; Aagaard et al. 2006). 
We could not investigate how gene family size correlates with 
dN or DoS because measuring these quantities requires identify
ing substitutions between orthologous genes. Thus, dN and DoS 
can only be reliably measured for 1:1 orthologs between A. thaliana 
and A. lyrata. However, πN and Tajima’s D can be calculated for 
genes in larger families and we did observe persistent correlations 
between family size and Tajima’s D (For Fig. 5c: ρ = 0.05, 
P − value = 3.1 × 10−12; also see Supplementary Figs. S6c–S15c, 
S28c–S33c). Altogether, these correlations suggest that processes 
of gene duplication, neofunctionalization, and subfunctionaliza
tion could be connected to evolving some degree of treatment 
specificity.

Gene length was generally the second most correlated factor 
with dN and πN in our study, just behind average expression. 
This is consistent with previous work suggesting that longer pro
teins require more energy to synthesize and are thus under stron
ger selective constraints (Urrutia and Hurst 2001; Castillo-Davis 
et al. 2002; Eisenberg and Levanon 2003; Urrutia and Hurst 2003). 
However, while some previous studies in A. thaliana observe this 
same trend (Bush et al. 2015), others do not (Slotte et al. 2011). 
This discrepancy could be due to differences in how gene length 
is defined between studies. In this study, each gene’s length in
cluded coding sequence as well as introns and untranslated re
gions, whereas other studies break down gene length into 
individual features (Bush et al. 2015). The goal of this study was 
not to understand differences in evolution between different 
gene features, so we included all gene features in our estimate 
of gene length. However, introns and untranslated regions experi
ence different evolutionary patterns than coding sequences; for 
example, highly expressed genes being under selection for shorter 
introns (Castillo-Davis et al. 2002; Eisenberg and Levanon 2003). 
Therefore, future studies must clearly define even seemingly 

simple features like gene length to ensure that results are compar
able across studies.

Although we focused on testing the idea that treatment speci
ficity is responsible for relaxed negative selection in some genes, it 
is also possible that relaxed selection caused the evolution of 
treatment specificity. There is some evidence that relaxation of 
selection occurs before the evolution of expression specificity 
(Hunt et al. 2011) and may better explain cases of neo- and sub
functionalization (Lynch and Conery 2000; Aagaard et al. 2006). 
Future experiments that look at the evolution of treatment speci
ficity and sequence evolution across a broader phylogenetic scale 
may be helpful for determining the order of these processes.

In summary, this study investigates a trade-off between the 
treatment-specific expression of a gene and the strength of selec
tion said gene experiences, which is hypothesized to limit plasti
city evolution. Consistent with this hypothesis, genes in 
A. thaliana with more treatment-specific expression are under 
weaker selection compared to more evenly expressed genes. 
While we find that this trade-off exists, we could not dissect the 
direction of causality in the trade-off or determine how much 
this trade-off constrains plasticity evolution relative to other 
processes. However, these are exciting areas of future research. 
Future studies should ideally generate fully balanced datasets 
on gene expression acquired across natural environmental gradi
ents. Taking these steps will contribute to a comprehensive un
derstanding of the constraints on plasticity and protein evolution.

Data availability
All code for our bioinformatic workflows, data analysis, and figure 
creation can be found here: https://github.com/milesroberts-123/ 
arabidopsis-conditional-expression. The tissue type and treat
ment annotations for RNA-seq runs in our study can be found in 
Supplementary Table S5. Genomic references, mapping rates, 
and a table of expression specificity; nucleotide diversity; and sub
stitution rate values estimated for all A. thaliana genes included in 
this manuscript’s analyses is available at: https://doi.org/10.5061/ 
dryad.xd2547dnd. The genome assembly and annotation used in 
this study was originally downloaded from Phytozome: https:// 
phytozome-next.jgi.doe.gov/. Supplemental material is available 
at GENETICS online.
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