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Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease worldwide, resulting from
uncontrolled diabetes. Oxidative stress plays a critical role in the pathophysiology of DN, leading to cellular
damage and disease progression. Magnesium, an essential mineral, has emerged as a potential therapeutic
agent due to its antioxidative, anti-inflammatory, and antifibrotic properties. An extensive literature search
was conducted on Medline using the keywords “Diabetic nephropathy,” “Magnesium,” and “Chronic Kidney
Disease,” and the results published after 2000 were exclusively studied to build this review. This review aims
to summarize the role of magnesium in DN and explore its therapeutic potential. Magnesium acts as a
cofactor for antioxidant enzymes, directly scavenges reactive oxygen species, and enhances the expression
of antioxidant proteins. Furthermore, magnesium exhibits anti-inflammatory effects by suppressing pro-
inflammatory cytokine production and inhibiting inflammatory signaling pathways. Magnesium
supplementation has been shown to reduce oxidative stress markers and improve antioxidant enzyme
activities in clinical studies. Additionally, magnesium has been found to mitigate renal fibrosis, maintain
tubular integrity and function, improve endothelial function, and modulate renal hemodynamics. Although
limited clinical trials suggest the renoprotective effects of magnesium in DN, further research is needed to
determine the optimal dosage, duration, and long-term effects of magnesium supplementation. Despite
existing drawbacks and gaps in the literature, magnesium holds promise as adjunctive therapy for DN by
targeting oxidative stress and preserving renal function.
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Introduction And Background
Diabetic nephropathy (DN) is a progressive kidney disease and a serious consequence of uncontrolled
diabetes that continues to be a significant cause of end-stage renal disease (ESRD) globally. DN is diagnosed
if persistent albuminuria (>300 mg/day or >200 μg/minute) is confirmed on at least two occasions within
three to six months, along with a progressive decline in the glomerular filtration rate [1]. The
pathophysiology of DN is complex, involving various processes, such as oxidative stress, inflammation, and
altered renal hemodynamics, with persistent hyperglycemia being a major driving force. Among the
complexities of DN pathophysiology, oxidative stress has emerged as a key mediator, producing cellular
damage and contributing to disease development [2-4].

Studies have been investigating potential therapeutic ways to slow the progression of DN and improve
patient outcomes for many years [5]. Magnesium, an important mineral involved in many physiological
processes, has attracted considerable attention recently because of its potential protective function in the
development and progression of DN [6]. Magnesium supplementation has been linked to improved
outcomes in animal and clinical research for the treatment of diabetes and its complications [7,8].
Understanding the molecular foundations of magnesium in DN and researching its therapeutic implications
is critical for developing fresh strategies to treat this devastating illness.

This review aims to summarize the current knowledge on the role of magnesium in DN and shed light on its
potential as a treatment strategy to reduce oxidative stress damage and preserve renal function in diabetic
patients. In addition, the review explores how magnesium exerts its renoprotective effects, including its
antioxidant, anti-inflammatory, and antifibrotic capabilities. Finally, it discusses the drawbacks and
potential gaps of using magnesium in DN. We can potentially pave the road for more effective and
personalized treatments for DN patients if we address these information gaps.
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Diabetic nephropathy
Both people with type 1 and type 2 diabetes are susceptible to DN, a progressive kidney condition caused by
poorly treated diabetes mellitus. Surprisingly, DN is one of the main causes of ESRD globally. DN is
diagnosed when there is consistent albuminuria (>300 mg/day or >200 μg/minute) on two separate
occasions, with a gap of three to six months between the tests, along with a gradual decrease in the
glomerular filtration rate [1]. A complex combination of metabolic, hemodynamic, and inflammatory
variables underlies the pathogenesis of DN [9]. Persistent hyperglycemia, which causes the buildup of
advanced glycation end products (AGEs) in renal tissues, is a critical component in the development of DN
[10]. The AGE receptor (RAGE) is one of the physiological pathways that is activated by the presence of AGEs
to cause oxidative stress and inflammation [11]. Reactive oxygen species (ROS) are produced as a result of
increased oxidative stress, which causes cellular damage and contributes to kidney fibrosis [12]. This
complicated chain of events emphasizes the severity of DN and its impact on renal function in diabetics.

Aside from oxidative stress, the renin-angiotensin-aldosterone system (RAAS) is important in the
development of DN. Chronic hyperglycemia and hemodynamic alterations promote angiotensin II
production, a strong vasoconstrictor and pro-inflammatory mediator [13]. Angiotensin II causes renal
inflammation, fibrosis, and apoptosis via various mechanisms, including the overexpression of transforming
growth factor-beta (TGF-β) and the synthesis of connective tissue growth factor (CTGF), all of which
promote fibrosis [14,15]. Renal hemodynamic changes, such as glomerular hyperfiltration and increased
intraglomerular pressure, aggravate the course of DN. The combination of hyperglycemia-induced efferent
arteriolar dilatation and increased angiotensin II levels causes glomerular hypertension and hyperfiltration,
resulting in glomerular basement membrane degradation and podocyte injury [16,17]. As a result, podocyte
dysfunction affects the integrity of the glomerular filtration barrier, resulting in albuminuria, which is
characterized by protein leakage into the urine [18]. The complex interplay of chronic hyperglycemia, RAAS
activation, and hemodynamic alterations greatly contributes to the development and progression of DN,
highlighting the multifaceted nature of this kidney disease in diabetics.

Furthermore, chronic low-grade inflammation contributes significantly to the development of DN. The
infiltration of immune cells into renal tissues, such as macrophages and T lymphocytes, causes the release of
pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [19].
These cytokines activate inflammatory signaling pathways, which cause endothelial dysfunction, fibrosis,
and tubulointerstitial damage, further worsening the course of DN [20]. Importantly, various risk factors
might hasten the progression of DN, increasing its complexity. Hypertension, dyslipidemia, obesity,
smoking, and familial predisposition are among the factors that can contribute to the exacerbation of the
pathophysiological processes of DN [21]. Understanding the role of chronic low-grade inflammation and the
impact of these risk factors is critical for developing effective prevention methods to manage and mitigate
the impact of DN on diabetes patients. The metabolic, hemodynamic, and inflammatory variables discussed
above in the pathogenesis of DN are represented in Figure 1.
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FIGURE 1: Metabolic, hemodynamic, and inflammatory variables
underlying the pathogenesis of diabetic nephropathy.
The image is the authors’ own creation.

Role of Oxidative Stress

The pathophysiology of DN, a progressive kidney disease that arises as a consequence of diabetes mellitus, is
heavily influenced by oxidative stress. An imbalance between the generation of ROS and the antioxidant
defense system causes oxidative stress, which causes cellular damage and contributes to the development
and progression of DN [22], as represented in Figure 2. Persistent hyperglycemia is a primary cause of
oxidative stress in the kidneys of diabetics. High glucose levels boost ROS production by various
mechanisms, including increased glucose metabolism via the polyol pathway, activation of protein kinase C,
and increased mitochondrial electron transport chain activity [23,24]. These processes result in excess
superoxide anions and other ROS, which overwhelms the antioxidant defense mechanisms.
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FIGURE 2: Effects of oxidative stress.
The image is the authors’ own creation.

ROS can harm a variety of biological components, including lipids, proteins, and nucleic acids. Lipid
peroxidation is a prominent consequence of ROS activity that causes oxidative damage to cell membranes,
resulting in structural and functional degeneration of renal cells [25]. Furthermore, ROS-induced protein
oxidation and nitration affect protein structure and function, influencing critical cellular processes involved
in maintaining renal homeostasis [26]. Moreover, oxidative stress-induced DNA damage can lead to genomic
instability, accelerating the course of DN [27]. Furthermore, oxidative stress activates numerous signaling
pathways that are involved in the pathogenesis of DN. The nuclear factor-kappa B (NF-κB) pathway is one
such mechanism that is activated by ROS. As a result, it stimulates the production of pro-inflammatory
cytokines, such as TNF-α and IL-6, resulting in kidney inflammation and injury [28]. Furthermore, oxidative
stress activates the mitogen-activated protein kinase signaling pathway, resulting in an increase in
profibrotic factors such as TGF-β and CTGF. These variables play a role in the development of renal fibrosis
in DN patients [29,30]. Other diabetes-related variables, other than hyperglycemia, also contribute to
oxidative stress in DN. Dyslipidemia, defined by increased triglycerides and low-density lipoproteins (LDLs),
exacerbates ROS formation while decreasing antioxidant defenses [31]. Furthermore, AGEs, which are
generated by the non-enzymatic interaction of glucose with proteins, increase oxidative stress. AGEs
increase the generation of ROS and activate inflammatory pathways [32]. Overall, oxidative stress and the
ensuing activation of numerous signaling pathways play an important role in the development of DN, with
variables such as dyslipidemia and AGEs also contributing.

Oxidative stress serves a dual role in DN, contributing to its initiation while also acting as a critical mediator
of its downstream effects. Renal cells, including podocytes, endothelial cells, and tubular cells, are damaged
by oxidative stress, resulting in malfunction and cell death, which contributes to renal function loss in DN
[17,33]. Furthermore, oxidative stress contributes to the development of albuminuria, a defining hallmark of
DN, by weakening the glomerular filtration barrier [34]. Recognizing the importance of oxidative stress in
DN, promising outcomes from preclinical and clinical treatments targeting oxidative stress pathways have
emerged. N-acetylcysteine, magnesium, vitamin E, and alpha-lipoic acid have been shown to have
renoprotective benefits in experimental DN models. They accomplish this by lowering oxidative stress and
enhancing renal function.

Role of magnesium
Magnesium, an essential mineral with various physiological functions, has been recognized for its potential
role in reducing oxidative stress damage. Magnesium’s ability to mitigate oxidative stress is attributed to its
involvement in multiple cellular and enzymatic processes that regulate antioxidant defense mechanisms
[35]. One of the mechanisms by which magnesium reduces oxidative stress is its direct antioxidant
properties. Magnesium acts as a cofactor for several antioxidant enzymes, including superoxide dismutase
(SOD), glutathione peroxidase (GPx), and catalase. These enzymes play a crucial role in neutralizing ROS
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and preventing cellular damage [35,36]. Magnesium enhances the activity of SOD, which converts
superoxide radicals into less reactive species, thereby reducing oxidative stress [37]. Furthermore,
magnesium supports the function of GPx, which uses glutathione to detoxify hydrogen peroxide and lipid
hydroperoxides, thereby preventing oxidative damage [38]. The presence of adequate magnesium levels is
essential for optimal enzymatic activity and efficient ROS scavenging.

In addition to its direct antioxidant actions, magnesium influences the expression and activity of several
proteins involved in the regulation of oxidative stress. Magnesium has been demonstrated to increase the
expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which is important
for activating the antioxidant response element (ARE) pathway [39]. When the Nrf2-ARE pathway is
activated, the synthesis of endogenous antioxidants such as glutathione and heme oxygenase-1 (HO-1)
increases, which protects against oxidative stress-induced cellular damage [40]. The activation of Nrf2 by
magnesium helps to decrease oxidative stress and enhances cellular resilience.

Furthermore, magnesium exhibits anti-inflammatory properties, which indirectly contribute to the
reduction of oxidative stress damage. Inflammation and oxidative stress are interconnected processes, with
oxidative stress triggering and perpetuating inflammatory responses. Magnesium has been shown to
suppress the production of pro-inflammatory cytokines, such as IL-6 and TNF-α, and inhibit the activation
of NF-κB, a key transcription factor involved in the inflammatory response [7,41]. By attenuating
inflammation, magnesium indirectly reduces the generation of ROS and oxidative stress damage. Several
studies have examined the effects of magnesium supplementation on reducing oxidative stress in various
clinical diseases. Magnesium supplementation has been demonstrated to reduce oxidative stress markers
such as malondialdehyde and improve antioxidant enzyme activities such as SOD and GPx in diabetic
individuals [19,42]. Similarly, magnesium supplementation has been shown to have antioxidative effects in
people with cardiovascular disease by lowering lipid peroxidation and enhancing antioxidant capacity
[43,44].

In another study, magnesium supplementation enhanced redox balance and decreased oxidative stress in
hemodialysis patients [8]. These data point to magnesium’s potential as a therapeutic strategy for lowering
oxidative stress-related damage in chronic kidney disease (CKD). Furthermore, magnesium has antifibrotic
properties in CKD. Renal fibrosis, defined by an excess of extracellular matrix components, is a
characteristic of CKD development. Magnesium supplementation has been found to reduce renal fibrosis by
suppressing the production of profibrotic factors such as TGF-β and CTGF [45,46]. Magnesium’s capacity to
alter the TGF-β signaling pathway and downstream profibrotic mediators helps to prevent or reduce renal
fibrosis, preserving renal structure and function. Furthermore, it has been found that magnesium helps
maintain tubular integrity and function. Tubular damage is a prevalent characteristic of CKD and can
contribute to decreased renal function. Magnesium supplementation has been demonstrated to increase
tubular cell survival and integrity, sustaining tubular function in patients with CKD [47]. The effects of
magnesium on tubular cells may include the modulation of cell signaling pathways as well as the regulation
of cellular transporters involved in tubular reabsorption and secretion. Magnesium maintains renal
homeostasis and contributes to the preservation of renal function by maintaining tubular integrity and
function [47].

Moreover, magnesium has been shown to have vasoprotective benefits in CKD patients. CKD is
characterized by endothelial dysfunction and vascular calcification, both of which lead to cardiovascular
problems. Magnesium supplementation has been found to improve endothelial function by increasing the
generation of nitric oxide (NO) and decreasing vascular calcification [48,49]. Magnesium’s capacity to
increase endothelial function and prevent arterial calcification contributes to vascular health preservation
and may lower the risk of cardiovascular events in CKD patients. In the bargain, magnesium has been linked
to the modulation of renal hemodynamics. Renal damage in CKD is exacerbated by changes in renal
hemodynamics, such as glomerular hyperfiltration and increased intraglomerular pressure. Magnesium
supplementation has been demonstrated to lower intraglomerular pressure and attenuate glomerular
hyperfiltration, thus protecting against renal damage [45,46]. These effects can be mediated by modulating
renal vasoactive factors and improving renal autoregulation. Magnesium helps to maintain renal function
and minimize renal damage in CKD by modulating renal hemodynamics.

As an additional token, clinical investigations have found that magnesium supplementation has
renoprotective effects in CKD patients. Magnesium supplementation enhanced renal function and decreased
urine protein excretion in CKD patients in a randomized controlled experiment [48]. In another
investigation, magnesium supplementation reduced renal interstitial fibrosis and improved kidney
histological abnormalities in a CKD animal model [35]. These findings show magnesium’s potential as an
additional therapy for slowing the course of CKD and preserving renal function.

Apart from the above-mentioned mechanisms, magnesium has other effects which show renal protection.
Very limited studies are available in the literature, and further studies are needed for a concrete opinion. The
effect of magnesium on blood pressure and endothelial function is notable. Higher serum magnesium levels
in CKD patients have been linked to better endothelial dysfunction, as seen by greater flow-mediated
dilation of the brachial artery [50]. Higher serum magnesium levels, on the other hand, have been linked to a
decreased risk of developing hypertension in individuals who do not have CKD [51]. The vasodilatory
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characteristics of magnesium, as well as its potential to improve endothelial function, play important roles
in these connections. Magnesium functions as a natural calcium channel blocker, increasing vasodilation
and decreasing blood vessel constriction. It also influences the activity of endothelial nitric oxide synthase,
resulting in increased NO generation and improved endothelial function [51]. One study conducted in 2023
focused on the relationship between DN, gut microbiota, and magnesium. The study suggested that
magnesium lithospermate B can ameliorate DN by inhibiting the formation of uremic toxins, which are
known to contribute to kidney damage. The mechanism of action involves the modulation of gut microbiota
[52]. However, as mentioned above, further extensive studies are required to reach a definite conclusion.

Drawbacks and potential gaps
The literature on using magnesium as a therapy for DN has notable gaps. Limited research trials with small
sample sizes have explored magnesium as a potential treatment option. All studies mentioned above
focused on the relationship between magnesium and DN. To establish its superiority as a therapy option,
larger human-based clinical trials comparing magnesium to other available treatments are essential.

Although some studies suggest a beneficial relationship between magnesium and DN, data are insufficient
to establish magnesium as a superior therapy option. More research is needed to fully understand its
medicinal potential. The optimal dosage and duration of magnesium supplementation and its long-term
effects as a therapeutic remain uncertain. Conducting well-designed trials is crucial to address these
concerns and evaluate the feasibility and safety of incorporating magnesium into DN treatment.

Conclusions
To summarize, the pathophysiology of DN is complex and multifaceted, and oxidative stress is important in
its genesis and progression. Magnesium appears to be a promising therapeutic agent for reducing oxidative
stress. In addition to its role in lowering oxidative stress, magnesium demonstrates various renoprotective
mechanisms in the context of CKD to improve DN, such as anti-inflammatory qualities, antifibrotic
properties, tubular integrity maintenance, vasoprotective effects, modulation of renal hemodynamics, and
overall renal function preservation.

Clinical investigations have shown that magnesium supplementation positively affects CKD patients with
DN. However, further well-designed clinical trials are needed to assess its true potential as an additional
therapy for DN and to inform evidence-based clinical guidelines for its use. As research in this area
progresses, a better knowledge of magnesium’s mechanisms of action and its appropriate role in the
management of DN may lead to better patient outcomes and a higher quality of life for people suffering from
this debilitating condition. Furthermore, research is needed to identify the therapeutic dose of magnesium
and the long-term effects of magnesium supplementation as an additional therapy in the treatment of CKD.
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