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Abstract

Unmeasured confounding is a key threat to reliable causal inference based on observational 

studies. Motivated from two powerful natural experiment devices, the instrumental variables and 

difference-in-differences, we propose a new method called instrumented difference-in-differences 

that explicitly leverages exogenous randomness in an exposure trend to estimate the average and 

conditional average treatment effect in the presence of unmeasured confounding. We develop the 

identification assumptions using the potential outcomes framework. We propose a Wald estimator 

and a class of multiply robust and efficient semiparametric estimators, with provable consistency 

and asymptotic normality. In addition, we extend the instrumented difference-in-differences to a 

two-sample design to facilitate investigations of delayed treatment effect and provide a measure of 

weak identification. We demonstrate our results in simulated and real datasets.
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1 | INTRODUCTION

Unmeasured confounding is a key threat to reliable causal inference based on observational 

studies (Lawlor et al., 2004; Rutter, 2007). A popular approach to handle unmeasured 

confounding is the instrumental variable (IV) method, which requires an IV that satisfies 

three core assumptions (Angrist et al., 1996; Baiocchi et al., 2014; Hernan & Robins, 2020): 

(i) (relevance) it is associated with the exposure; (ii) (independence) it is independent of any 

unmeasured confounder of the exposure–outcome relationship; (iii) (exclusion restriction) it 

has no direct effect on the outcome. By extracting exogenous variation in the exposure that 

is independent of the unmeasured confounder, IVs can be used to estimate the causal effect.

Meanwhile, the increasing availability of large longitudinal datasets such as administrative 

claims and electronic health records has created new opportunities to expand study designs 

to take the advantage of the longitudinal structure. One method that is widely used in 

economics and other social sciences is difference-in-differences (DID) (Card & Krueger, 

1994; Angrist & Pischke, 2008). The method of DID is based on a comparison of the trends 

in outcome for two exposure groups, where one group consists of individuals who switch 

from being unexposed to exposed and the other group consists of individuals who are never 

exposed. Under the parallel trends assumption, which says that the outcomes in the two 

exposure groups evolve in the same way over time in the absence of the exposure, DID 

is able to remove time-invariant bias from the unmeasured confounder. However, because 

the setup and assumptions of DID are motivated from applications in social sciences, its 

applicability is limited in biomedical sciences. For example, in social sciences it is relatively 

common for a new policy to be applied to one region of the country but not another, creating 

a circumstance in which key assumptions such as parallel trends are likely to hold and 

facilitating a DID design. In assignment of pharmacologic or other treatments in health care, 

such clear natural, exogenous sources of cleavage between exposed and unexposed groups 

are rare, making it more difficult to identify situations in which all assumptions of DID will 

be met.

In this paper, we connect these two powerful natural experiment devices (referred to as 

the standard IV and standard DID) and propose a new method called instrumented DID 

to estimate the causal effect of the exposure in the presence of unmeasured confounding. 

Unlike the standard DID, the instrumented DID exploits a haphazard encouragement 

targeted at a subpopulation toward faster uptake of the exposure or a surrogate of such 

encouragement, which we call IV for DID. Then, any observed nonparallel trends in 

outcome between the encouraged and unencouraged groups provides evidence for causation, 

as long as their trends in outcome are parallel if all individuals were counterfactually 

not exposed. A prototypical example of instrumented DID is a longitudinal randomized 

experiment, where after a baseline period, some individuals are randomly selected to be 

encouraged to take the treatment regardless of their treatment history. If the encouragement 

is effective, the exposure rate would increase more for the encouraged group than the 

unencouraged group. If additionally the encouragement has no direct effect on the trend in 

outcome, then any nonparallel trends in outcome must be due to the nonparallel trends in 

exposure. Therefore, through exploiting haphazard encouragement that affects the exposure 

trend, the instrumented DID is able to extract some variation in the exposure trend that 
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is independent of the unmeasured confounder and relax some of the most disputable 

assumptions of the standard IV and standard DID method, particularly the exclusion 

restriction for the standard IV method and the parallel trends for the standard DID method; 

see Section 2 for more discussion.

Reasoning similar to the instrumented DID has been applied informally in prior studies. 

A prominent example is the differential trends in smoking prevalence for men and women 

as a consequence of targeted tobacco advertising to women, which were associated with 

disproportional trends for men and women in lung cancer mortality (Burbank, 1972; 

Meigs, 1977; Patel et al., 2004). Specifically, because of marketing efforts designed to 

introduce specific women’s brands of cigarettes such as Virginia Slims in 1967, there was 

a considerable increase in smoking initiation by young women, which lasted through the 

mid-1970s (Pierce & Gilpin, 1995). Thirty years later, the lung cancer mortality rates for 

women at the age of 55 years or older had increased to almost four times the 1970 rate, 

whereas rates among men had no such dramatic change (Bailar & Gornik, 1997). In Section 

7, we will analyze this example using the proposed method.

The rest of this paper is organized as follows. In Section 2, we establish the identification 

assumptions for the instrumented DID. In Section 3, we develop various estimation and 

inference approaches. In Section 4, we extend the instrumented DID to a two-sample design. 

In Section 5, we provide a measure of weak identification. Results from simulation studies 

and a real-data application are in Sections 6 and 7, respectively. The paper concludes with a 

discussion in Section 8. A review of IV and DID designs can be found in Section S1 of the 

Supporting information.

2 | INSTRUMENTED DIFFERENCE-IN-DIFFERENCES: IDENTIFICATION

Suppose that random samples of a target population are collected at two time points t = 0
and t = 1, and there is no overlap between individuals in these two samples. We leave 

consideration of overlapping samples and multiple time points to future work. For each 

individual i in the pooled sample, we observe Oi = T i, Zi, Xi, Di, Y i , where T i is a time 

indicator that equals one if this individual appears at t = 1, equals zero if t = 0, Zi is a binary 

IV for DID observed at the baseline, Xi is a vector of baseline covariates, Di is a binary 

exposure variable, Y i is a real-valued outcome of interest. We assume that O1, …, On  are 

independent and identically distributed (i.i.d.) realizations of O = T, Z, X, D, Y . This data 

setup is also commonly known as repeated cross-sectional data (Abadie, 2005).

We define causal effects using the potential outcomes framework (Neyman, 1923; Rubin, 

1974). For each individual, let Dt
(z) be the potential exposure if this individual were observed 

at time t and if Z were externally set to z, Y t
d  be the potential outcome if this individual 

were observed and exposed to d at time t, and Z had the same value it actually had. The 

full data vector for each individual is (Z, X, Dt
z , Y t

d , t = 0,1, z = 0,1, d = 0,1). Moreover, let 

Y d : = TY 1
d + (1 − T)Y 0

d  be the potential outcome if this individual were exposed to d at 

the time point it actually got sampled and Z had the same value it actually had. Our target 

estimand is the average treatment effect (ATE) β0 = E(Y 1 − Y 0 ) and conditional average 
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treatment effect (CATE) β0(v) = E(Y 1 − Y 0 |V = v), where V  is a pre-specified subset of X, 

representing the effect modifiers of interest; for example, setting V  to be an empty set gives 

the unconditional ATE β0. Note that the separation of V  and X separates the need to adjust 

for possible confounding and the specification of effect modifiers of interest, which provides 

great flexibility and allows researchers to define the target estimand a priori. Throughout the 

paper, we consider treatment effect on the additive scale.

We make the following identification assumptions for using the instrumented DID.

Assumption 1.

a. (Consistency) D = DT
Z  and Y = Y T

D .

b. (Positivity) 0 < P T = t, Z = z|X < 1 for t = 0, 1, z = 0, 1 with probability 1.

c. (Random sampling) T ⊥ (Dt
z , Y t

d , t = 0,1, z = 0, 1, d = 0,1) |Z, X.

Assumption 1(a) states that the observed exposure is D = Dt
z  if and only if Z = z and 

T = t, and the observed outcome is Y = Y t
d  if and only if D = d and T = t. Implicit in this 

assumption is that an individual’s observed outcome is not affected by others’ exposure 

level or this individual’s exposure level at the other time point; this is known as the Stable 

Unit Treatment Value Assumption (Rubin, 1978, 1990). Assumption 1(b) postulates that 

there is a positive probability of receiving each t, z  combination within each level of X, 

or equivalently, the support of X is the same for each level of T , Z . Assumption 1(c) is 

often assumed for repeated cross-sectional studies and says that for each level of Z, X , the 

collected data at every time point are a random sample from the underlying population; see 

Section 3.2.1 of Abadie (2005) that makes a similar assumption.

Assumption 2.

(Instrumented DID). With probability 1,

a. (Trend relevance) E(D1
1 − D0

1 |Z = 1, X) ≠ E(D1
0 − D0

0 |Z = 0, X).

b. (Independence & exclusion restriction) 

Z ⊥ (Dt
0 , Dt

1 , Y 1
0 − Y 0

0 , Y t
1 − Y t

0 , t = 0,1) |X.

c. (No unmeasured common effect modifier) Cov(Dt
1 − Dt

0 , Y t
1 − Y t

0 |X) = 0 for 

t = 0, 1.

d. (Stable treatment effect over time) E(Y 1
1 − Y 1

0 |X) = E(Y 0
1 − Y 0

0 |X).

Assumptions 2(a) and (b) formalize the core assumptions that an IV for DID needs to 

satisfy, which are illustrated by a directed acyclic graph (DAG) in Figure 1. Assumptions 

2(a) and (b) are also parallel to the core assumptions for the standard IV introduced in 

Section 1.

Assumption 2(a) says that the IV for DID Z, as an encouragement that disproportionately 

acts on only a subpopulation, affects the trend in exposure. For example, Z can be a random 

encouragement for some subjects in a longitudinal experiment, an advertisement campaign 

targeted at a certain geographic region or subpopulation, or a change in reimbursement 
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policies for a certain insurance plan. Under Assumption 1, Assumption 2(a) is equivalent to 

E D|T = 1, Z = 1, X − E D|T = 0, Z = 1, X ≠ E D|T = 1, Z = 0, X − E D|T = 0, Z = 0, X
with probability 1, thus is checkable from observed data.

Assumption 2(b) is an integration of the independence and exclusion restriction 

assumptions. To see this, we adopt a more elaborated definition of the potential 

outcomes and define Y t
dz  as the potential outcome if the individual were observed 

and exposed to d at time t, and if Z were externally set to z, then Assumption 

2(b) is implied by (independence) Z ⊥ (Dt
0 , Dt

1 , Y 1
0z − Y 0

0z , Y t
1z − Y t

0z , t = 0,1, z = 0,1) |X and 

(exclusion restriction) Y t
11 − Y t

01 |X dY t
10 − Y t

00 |X  and Y 1
01 − Y 0

01 |X dY 1
00 − Y 0

00 |X, where 

d means having the same distribution; see Tan (2006) for a parallel statement for the 

standard IV and Hernán and Robins (2006) for connections and comparisons between 

different definitions of the standard IV. Hence, Assumption 2(b) essentially states that Z
is unconfounded, has no direct effect on the trend in outcome, and does not modify the 

treatment effect. Here, we see the main advantage of using Z as an IV for DID compared 

to as a standard IV: Z as an IV for DID is allowed to have a direct effect on the outcome, 

as long as it has no direct effect on the trend in outcome and does not modify the treatment 

effect. For example, Newman et al. (2012) considered using a hospital’s preference for 

phototherapy when treating newborns with hyperbilirubinemia as a standard IV to study 

the effect of phototherapy but found evidence that hospitals that use more phototherapy 

also have greater use of infant formula, which is thought to be an effective treatment for 

hyperbilirubinemia. Hence, the hospital’s preference is a potentially invalid standard IV as 

it can have a direct effect on the outcome through the use of infant formula. However, it 

may still qualify as an IV for DID if the use of phototherapy evolves differently between the 

high and low preference hospitals over time, but the use of infant formula in the two groups 

of hospitals does not change over time. These features imply that variables like hospital’s 

preference may be more likely to be an IV for DID, compared to being a standard IV.

Assumption 2(c) is developed in Cui and Tchetgen Tchetgen (2021) and a slightly 

stronger version is proposed earlier in Wang and Tchetgen Tchetgen (2018). Suppose 

in this paragraph only the existence of an unmeasured confounder Ut such that 

(Dt
1 , Dt

0 ) ⊥ (Y t
1 , Y t

0 ) | Ut, X , then Assumption 2(c) holds if either (i) there is no additive 

Ut − z interaction in E(Dt
z |Ut, X):E(Dt

1 − Dt
0 |Ut, X) = E(Dt

1 − Dt
0 |X); or (ii) there is no 

additive Ut − d interaction in E(Y t
d |Ut, X):E(Y t

1 − Y t
0 |Ut, X) = E(Y t

1 − Y t
0 |X).

Assumption 2(d) requires that the CATE does not change over time. This is a strong 

assumption but may be plausible in many applications when the study period only spans a 

short period of time. In our application in Section 7, we conduct a sensitivity analysis to 

gauge the sensitivity of the study conclusion to violation of this assumption.

Two additional remarks on Assumption 2 are in order. First, an attractive feature of 

Assumptions 2(c) and (d) is that they are guaranteed to be true under the sharp null 

hypothesis of no treatment effect for all individuals. This means that the instrumented DID 

method can be used for testing the sharp null hypothesis under Assumptions 2(a) and (b). 

Second, from the definition of potential exposures Dt
z , the IV for DID Z is considered 
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causal for the exposure. In Section S4.2, we present another version of notations and 

assumptions which does not require Z to be causal, that is, Z is allowed to be correlated 

with a cause that affects the trend in exposure, and is more suitable for our application 

in Section 7 in which we use gender as the IV for DID for its correlation with the 

encouragement from targeted tobacco advertising.

For C ∈ Y , D , let μC t, z, X = E C |T = t, Z = , X , 

δC X = μC 1,1, X − μC 0,1, X − μC 1,0, X + μC 0,0, X , and let μC t, z  and δC denote their 

counterparts without observed covariates. The next proposition indicates that the 

(conditional) ATE can be identified under the above assumptions.

Proposition 1.

If Assumptions 1 and 2 hold, then

δ(X): = δY(X)
δD(X) = β0(X) and E[δ(X) |V = v] = β0(v) . (1)

This and all the other proofs in this paper are in Section S3.

Now we contrast the instrumented DID with standard DID. As discussed in Section 1, 

the standard DID identifies the ATE for the treated in the post-treatment period from 

comparing the trends in outcome between two exposure groups, where every individual 

in one group switches from being unexposed to exposed between two time points, and 

every individual in the other group is never exposed. However, its key assumption, the 

parallel trends, will be violated if there is a time-invariant unmeasured confounder that 

has time-varying effects or there is a time-varying unmeasured confounder in the exposure–

outcome relationship. We use time-varying unmeasured confounding to refer to either case. 

In contrast, the instrumented DID explicitly probes the relationship between the trend in 

outcome and the trend in exposure using an exogenous variable Z which often results in 

partial compliance with exposure within groups defined by levels of Z. Compared with 

standard DID, instrumented DID is robust to time-varying unmeasured confounding in the 

exposure–outcome relationship by making use of an exogenous variable Z that is not subject 

to this time-varying unmeasured confounding.

We remark that when there are no observed covariates, δY /δD has been derived in alternative 

ways in econometrics under different assumptions. It is the same as the standard IV Wald 

ratio after first differencing the exposure and outcome when each individual is observed at 

both time points (Wooldridge, 2010, Chap. 15.8), as motivated from the linear structural 

equation models. Importantly, Proposition 1 provides a justification of this approach using 

the potential outcomes framework without any modeling assumption. It is also the same 

as the Wald ratio in the fuzzy DID method for identification of a local ATE under the 

assumption that individuals can switch treatment in only one direction within each treatment 

group (de Chaisemartin & D’HaultfŒuille, 2018), as motivated from social science 

applications (e.g., Duflo 2001). Compared with this derivation, our proposed instrumented 

DID is less stringent in terms of the direction in which each individual can switch treatment, 
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thus is better suited for applications using healthcare data where individuals can switch 

treatment in any direction. In addition, we complement the proposed instrumented DID with 

a novel semiparametric estimation and inference method in Section 3.2, two-sample design 

in Section 4, and measure of weak identification in Section 5.

Finally, we note that Assumption 2(c) can be replaced by the monotonicity assumption 

Dt
1 ≥ Dt

0  for t = 0, 1 with probability 1, under which δ X  in (1) identifies a complier ATE; 

see Section S3.3 for details.

3 | ESTIMATION AND INFERENCE

3.1 | Wald estimator

When there are no observed covariates, based on Proposition 1, we can simply replace the 

conditional expectations in Equation (1) with their sample analogues and obtain the Wald 

estimator

βwald = μY 1,1 − μY 0,1 − μY 1,0 + μY 0,0
μD 1,1 − μD 0,1 − μD 1,0 + μD 0,0 = δY

δD
, (2)

where μC(t, z) = ∑i = 1
n CiI Ti = t, Zi = z /∑i = 1

n I Ti = t, Zi = z , δC = μC(1,1) − μC(0,1) − μC(1,0) + μC(0,0), for 

C ∈ Y , D . In Theorem S1, we prove consistency and asymptotic normality of βwald and give 

a consistent variance estimator.

3.2 | Semiparametric theory and multiply robust estimators

Consider the case with a baseline observed covariate vector X. Suppose that we have a 

parametric model for β0 v , written as β v; ψ  for some finite-dimensional parameter ψ. 

Importantly, we do not assume that this model is necessarily correct, but instead treat it as 

a working model and formulate our estimand as the projection of the CATE β0 v  onto the 

working model β v; ψ . Specifically, we use the weighted least-squares projection given by

ψ0 = argmin
ψ

E w V β0 V − β V ; ψ 2 , (3)

where w v  is a user-specified weight function, which can be tailored if there is subject 

matter knowledge for emphasizing specific parts of the support of V ; otherwise, we can 

set w v = 1. By definition, β V ; ψ0  is the best least-squares approximation to the CATE 

β0 V . For example, when effect modification is not of interest, we can specify β v; ψ = ψ
such that β0 V  is projected onto a constant ψ0, which can be interpreted as the ATE; if we 

want to estimate a linear approximation of the CATE, we can specify β v; ψ = vTψ, with 

V  including the intercept. This working model approach is also adopted in Abadie (2003), 

Ogburn et al. (2015), and Kennedy et al. (2019).

Let π t, z, x = P T = t, Z = z|X = x , bC x = μC 0,0, x , mCZ x = μC 0,1, x − μC 0,0, x , 

mCT x = μC 1,0, x − μC 0,0, x , and ΔC x = bC x , mCZ x , mCT x , for C ∈ Y , D . Consider 

three sets of model assumptions:
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ℳ1: models for δ x , ΔD x , ΔY x  are correct.

ℳ2: models for π t, z, x , δD x  are correct.

ℳ3: models for π t, z, x , δ x  are correct.

In what follows, we first discuss three different estimators for ψ that are consistent and 

asymptotically normal under ℳ1, ℳ2, ℳ3, respectively. Bounded semiparametric estimators 

analogous to those in Wang and Tchetgen Tchetgen (2018) are developed in Section S2.4. 

Let ℙnX = n−1∑i = 1
n Xi be the empirical average. Under model ℳ1, we present a regression-

based estimator ψreg  that solves

ℙnq V ; ψ {δ x; αreg − β V ; ψ } = 0,

where q v; ψ = w v ∂β v; ψ / ∂ψ, δ x; α  is a parametric 

specification of δ x , αreg the solution to ℙnℎα X
{Y − bY(X) − m̂Y Z(X)Z − m̂Y T(X)T − δ(X; α)(D − bD(X) − mDZ X Z − mDT X T)} = 0, ℎα(X) a 

vector of the same dimension as α, and bD, m̂DZ, m̂DT, bY , m̂Y Z, m̂Y T are respectively estimators 

of bD, mDZ, mDT, bY , mY Z, mY T. Under model ℳ2, we present an inverse probability weighting 

(IPW) estimator ψ ipw  that solves

ℙnq(V ; ψ) 2Z − 1 2T − 1 Y
π(T , Z, X)δD(X; θ)

− β(V ; ψ) = 0,

where δD x; θ  is a parametric specification of δD x , θ̂ the solution to 

ℙnℎθ X 2Z − 1 2T − 1 D/π T , Z, X − δD X; θ = 0, π t, z, x  an estimator of π t, z, x , and 

ℎθ X  a vector of the same dimension as θ. Finally, under model ℳ3, we present an estimator 

ψg based on g-estimation, defined as the solution to

ℙnq V ; ψ δ x; αg − β V ; ψ = 0,

where αg is the solution to ℙnℎα X 2Z − 1 2T − 1 Y − δ X; α D /π̂ T , Z, X = 0. These 

three classes of estimators are consistent and asymptotically normal in three different models 

ℳ1, ℳ2, ℳ3, following standard arguments, for example, as in Newey and McFadden (1994, 

Chap. 6.1). Depending on the specific applications, some classes may be more preferable 

when knowledge about certain nuisance parameters is available. In practice, when we are 

uncertain about which models are correctly specified, it is of interest to develop a multiply 

robust estimator that is guaranteed to deliver valid inference about ψ0 provided that one, but 

not necessarily more than one, of models ℳ1, ℳ2, ℳ3 holds (Vansteelandt et al., 2008; Wang 

& Tchetgen Tchetgen, 2018; Shi et al., 2020).

The next theorem derives the efficient influence function for ψ (Bickel et al., 1993; van der 

Vaart, 2000), which provides the basis of constructing a multiply robust estimator.
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Theorem 1.—If Assumptions 1 and 2 hold, and ∂β v; ψ / ∂ψ exists and is continuous. 
Under a nonparametric model, the efficient influence function for ψ is proportional to

φ(O; ψ, η) = q(V ; ψ)(δ(X) − β(V ; ψ) + (2Z − 1) 2T − 1
π T, Z, X δD X

Y − bY X − mY Z X Z − mY T X T − δ X D − bD X
−mDZ X Z − mDT X T , (4)

where η = π, δD, δ, ΔD, ΔY  denotes the vector of nuisance parameters, 

ΔD = bD, mDZ, mDT , ΔY = bY , mY Z, mY T , and q v; ψ = w v ∂β v; ψ / ∂ψ.

Note that the efficient influence function gives an estimator ψmr defined as a solution 

to ℙnφ O; ψ, η̂ = 0, where η̂ is a vector of the estimated nuisance parameters. Among 

the nuisance parameters, π, ΔD, ΔY  can be estimated directly from likelihood or moment 

equations, whereas the estimation of δD and δ relies on additional nuisance parameters. To 

achieve multiple robustness, we need to construct a consistent estimator of δD in the union 

of ℳ1 and ℳ2, as well as a consistent estimator of δ in the union of ℳ1 and ℳ3. We achieve 

these goals by using doubly robust g-estimation (Robins, 1994). Specifically, we solve for 

δD(x) = δD(x; θdr) and δ(x) = δ x; αdr  respectively from

ℙnℎθ(X) 2Z − 1 2T − 1
π̂ T , Z, X D − bD(X) − mDZ(X)Z

−mDT(X)T − δD X; θ ZT = 0,

ℙnℎα(X) 2Z − 1 2T − 1
π T, Z, X Y − bY (X) − mY Z(X)Z

−m̂Y T(X)T − δ(X; α)(D − bD(X) − m̂DZ(X)Z − m̂DT(X)T) = 0 .

We prove in the Supporting information that ψmr is multiply robust, in the sense that the 

estimator is consistent as long as either one of the three models ℳ1, ℳ2, ℳ3  holds.

Next, we derive the asymptotic properties of ψmr. Let 
p

 denote convergence in probability, 

∥ ψ ∥ = ψTψ 1/2 the Euclidean norm for any column vector ψ, ∥ f ∥2 = ∫ f2(o)dP(o) 1/2

the L2 P  norm for any real-valued function f, and ∥ f ∥2 = ∑j = 1
ℓ ∥ fj ∥2 for any collection 

of real-valued functions f = f1, …, fℓ , where P  denotes the distribution of O. Moreover, let 

η0 = π0, δD0, δ0, ΔD0, ΔY 0  denote the true values of the nuisance parameters.

Assumption 3.

a. (ψmr, η̂)
p

ψ0, η‾ , where η‾ = π‾, δ‾D, δ‾, Δ‾D, Δ‾ Y  with either (i) 

δ‾ = δ0, Δ‾D = ΔD0, Δ‾ Y = ΔY 0; or (ii) π‾ = π0 and δ‾D = δD0; or (iii) π‾ = π0 and δ‾ = δ0.
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b. For each ψ in an open subset of Euclidean space and each η in a 

metric space, let φ o; ψ, η  be a measurable function such that the class of 

functions φ o; ψ, η : ∥ ψ − ψ0 ∥ < ϵ, ∥ η − η‾ ∥2 < ϵ  is Donsker for some ϵ > 0, 

and such that E∥ φ O; ψ, η − φ O; ψ0, η‾ ∥2 0 as ψ, η ψ0, η‾ . The maps 

ψ E φ O; ψ, η  are differentiable at ψ0, uniformly in η in a neighborhood of η‾
with nonsingular derivative matrices Mψ0, η Mψ0, η‾.

Assumption 3(a) describes the multiple robustness of our estimator. Assumption 3(b) is 

standard for M-estimators (van der Vaart, 2000, Chap. 5.4).

Theorem 2.—Under Assumptions 1–3, ψmr is consistent with rate of convergence

∥ ψmr − ψ0 ∥ = Op n−1/2 + ∥ δ − δ0 ∥ 2( ∥ π − π0 ∥ 2 + ∥ δD

−δD0 ∥2 ) + ∥ π − π0 ∥ 2( ∥ ΔY − ΔY 0 ∥ 2 + ∥ ΔD − ΔD0 ∥ 2) .

Suppose further that

∥ δ − δ0 ∥ 2( ∥ π − π0 ∥ 2 + ∥ δD − δD0 ∥ 2) + ∥ π − π0 ∥2

( ∥ ΔY − ΔY 0 ∥ 2 + ∥ ΔD − ΔD0 ∥ 2 = op n−1/2 ,

then ψmr is asymptotically normal and semiparametric efficient, satisfying

n(ψmr − ψ0)
d

N 0, Mψ0, η0
−1 E φ O; ψ0, η0

φ O; ψ0, η0
T (Mψ0, η0

−1 )T .
(5)

The first part of Theorem 2 describes the convergence rate of ψmr, which again indicates 

the multiple robustness of our estimator. That is, ψmr is consistent provided that (i) either 

one of π̂ or (ΔY , ΔD) is consistent, and (ii) either one of δ̂ or (π̂, δ̂D) is consistent. The 

multiple robustness property is important in practice, because nuisance parameters such as 

π, δD, and δ may be easier to estimate than ΔY  and ΔD. When all the nuisance parameters 

are consistently estimated, we can still benefit from using the semiparametric methods, 

in that even the nuisance parameters are estimated at slower rates, ψmr can still have the 

fast convergence rate. For example, if all the nuisance parameters are estimated at n−1/4

rates, then ψmr can still achieve fast n−1/2 rate. The second part of Theorem 2 says that if 

the nuisance parameters are consistently estimated with fast rates, for example, if they are 

estimated using parametric methods, then their variance contributions are negligible, and ψmr

achieves the semiparametric efficiency bound.

When Equation (5) holds, a plug-in variance estimator for nψmr can be easily constructed as 

M−1{ℙnφ O; ψmr, η̂)φ(O; ψmr, η)T}(M−1)
T

, with M = ℙn ∂φ(O; ψ, η)/ ∂ψ ψ = ψmr. Even if Equation 

(5) does not hold, for example, when only one of ℳ1, ℳ2, ℳ3  holds, but all the nuisance 

parameters are finite-dimensional and in the form of M-estimators, ψmr is still consistent 
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and asymptotically normal from standard M-estimation theory (Newey & McFadden, 1994, 

Chap. 6). Thus, a consistent variance estimator for nψmr can be constructed by stacking 

the efficient influence function φ O; ψ, η  and the estimation equations for the nuisance 

parameters, solving for (ψmr, η) simultaneously, and taking the corresponding diagonal 

component of the joint sandwich variance estimator. Alternatively, the nonparametric 

bootstrap is commonly used in practice (Cheng & Huang, 2010).

4 | TWO-SAMPLE INSTRUMENTED DIFFERENCE-IN-DIFFERENCES

In some applications, it is hard to collect the exposure and outcome variables for the same 

individual, especially when the outcome is defined to reflect a delayed treatment effect. For 

instance, in the smoking and lung cancer example in Section 1, the outcome of interest is 

lung cancer mortality after 35 years and it is infeasible to follow the same individuals for 35 

years. Motivated from Angrist and Krueger (1992, 1995)’s influential two-sample standard 

IV analysis, we extend the instrumented DID to a two-sample design.

Suppose there are na i.i.d. realizations of Ta, Za, Da, Y a  from one sample, and nb i.i.d. 

realizations of T b, Zb, Db, Y b  from another sample. These two samples are independent 

of each other and we never observe Da and Y b. We write the observed data as 

Tai, Zai, Y ai, i = 1, …, na  and T bi, Zbi, Dbi, i = 1, …, nb , which are respectively referred to as the 

outcome dataset and the exposure dataset. Let δY a, δY a, δDb, δDb, μY a(t, z), μDb t, z  be as defined 

in Equations (1) and (2) but evaluated correspondingly using the outcome dataset and 

exposure dataset. Suppose that Assumptions 1 and 2 hold for the data-generating processes 

in both datasets, and E Y a |Ta, Za = E Y b |T b, Zb , E Da |Ta, Za = E Db |T b, Zb , then the ATE is 

identified by β0 = δY a/δDb. Analogously, the two-sample instrumented DID Wald estimator 

is obtained as β̂TSwald = δY a/δDb. In Theorem S2, we establish the consistency and asymptotic 

normality of βTSwald  and provide a consistent variance estimator. Both β̂TSwald  and its variance 

estimator can be conveniently calculated based on solely summary statistics μY a t, z  and 

μDb t, z  and their standard errors (SEs).

5 | MEASURE OF WEAK IDENTIFICATION

Weak identification is a general challenge for IV-type methods and has recently received 

increased attention among theoretical and applied researchers; see Stock et al. (2002) for a 

survey. For standard IV, weak identification refers to that the IVs are only weakly associated 

with the exposure. For instrumented DID, weak identification refers to that the trends in 

exposure for Z = 0 and Z = 1 are near-parallel. Under weak identification, the sampling 

distribution for the point estimators is generally non-normal and the standard inference 

can be unreliable (Bound et al., 1995). Therefore, it is important to have a measure of 

weak identification tailored for the instrumented DID as diagnostic checks to make sure the 

developed asymptotic inference procedures can be reliably applied.

Consider first the case when there are no observed covariates. We take the one-sample 

estimator βwald  as an example; the result for the two-sample estimator βTSwald  is similar. Note 

that δY  and δD can be respectively obtained from fitting a saturated model of Y  or D on 
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1, ZT, Z, and T , where ZT  is the interaction term. Let R be the n-dimensional vector of 

residuals from regressing ZT  on 1, Z, and T . By using the Frisch–Waugh–Lovell theorem 

(Davidson & MacKinnon, 1993), βwald  in Equation (2) can be equivalently formulated as

βwald = δY

δD
=

RTR −1RTY

RTR −1RTD
= DTHRY

DTHRD
,

where DT = D1, …, Dn , Y T = Y 1, …, Y n , HR = R RTR −1RT  is the hat matrix. Interestingly, 

the above formula indicates that βwald  can be alternatively obtained from a conventional 

two-stage least squares: the exposure D is first regressed on R (first-stage regression) and 

the outcome Y  is then regressed on the predicted values from the first-stage regression. This 

provides a perception that Z as an IV for DID is equivalent to using ZT  as the standard IV 

while further controlling for 1, Z, and T . Hence, the concentration parameter of ZT  as the 

standard IV (controlling for 1, Z, and T ) serves here as a measure of weak identification 

using Z as the IV for DID. Specifically, this measure is defined as κ2 = δD
2 RTR/σε

2, where 

δD is defined in Proposition 1, σϵ
2 is the population residual variance from the first-stage 

regression. Heuristically, κ2 increases if we have a larger sample size n, larger δD
2 , or a larger 

limit of RTR/n. For the usual inference based on normal approximation to be accurate, κ2

must be large.

A commonly used estimate of κ2 is the F-statistic from the first-stage regression. When only 

summary-data are available, that is, only δD and its SE are available, one can also use the 

squared z-score as an estimate of κ2, where the z-score is the ratio of δD to its SE. When 

there are observed covariates, a measure of weak identification can also be easily calculated 

by defining R as the vector of residuals from regressing ZT  on 1, Z, T , X. We follow Stock 

et al. (2002) and recommend checking to make sure that an estimated κ2 is larger than 10 

before applying the inference methods in Sections 3 and 4.

6 | SIMULATIONS

To evaluate the finite sample performance of the proposed instrumented 

DID (iDID) methods, we simulate data as follows: X = X1, X2
T , X1 N(0,1), 

X2 N 0,1 , Z Binom expit 0.5IX1 > 0 + 0.5IX2 > 0 , T Binom 0.5 , Ut N 2t − 1,1 , ϵt N 0,1 , 

Dt Binom(expit( − 0.5 − ZUt + 1.5Ut)), Y t = 1 + X1 + X2 Dt + 2 + 2Ut + Z + 1 + X1 + X2 + ϵt, 

for t = 0, 1. We simulate n = 105 random samples from T, Z, X, D0, D1, Y 0, Y 1  and let 

D = TD1 + 1 − T D0, Y = TY 1 + 1 − T Y 0 .  The observed data are Zi, Xi, T i, Di, Y i, i = 1, …, n .

Under this data-generating process, Assumptions 1 and 2 do not hold unconditionally, but 

do hold in each of the four strata defined by IX1 > 0, IX2 > 0 . Hence, the Wald estimator in 

Equation (2) is valid when considering each stratum separately; we denote the obtained 

stratum-specific Wald estimators as βS1,wald , …, βS4,wald  and they are respectively estimating 

the stratum-specific ATE: −0.60, 1, 1, 2.60. On the other hand, Assumptions 1 and 2 
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hold when conditioning on X, and thus the three classes of semiparametric estimators 

ψreg, ψ ipw, ψg and the multiply robust estimator ψmr proposed in Section 3.2 are all valid. For 

the semiparametric iDID method, we consider two working models for the CATE: a constant 

working model β v; ψ = ψ with V = 1 and a linear working model β v; ψ = ψ1 + ψ2x1, 

with V = X1. The true values of ψ, ψ1, ψ2 are all equal to 1 because E(Y t
1 − Y t

0 ) = 1 and 

(Y t
1 − Y t

0 |X1) = 1 + X1. The weight function w v  in Equation (3) is set to be 1.

We also examine the effect of model misspecification for the semiparametric 

iDID estimators. Note that the data-generating process implies that 

t, 1, x = expit 0.5Ix1 > 0 + 0.5Ix2 > 0 /2, π t, 0, x = 1 − expit 0.5Ix1 > 0 + 0.5Ix2 > 0 /2, and δD x , 

δ x , bD x , bY x , mDZ x , mDT x , mY Z x , mY T x  are all linear in x. The misspecified model we 

fit for π t, z, x  is a product of two logistic regressions, one for Z and the other for T , both in 

terms of exp x1/2 , the misspecified models for δD x , δ x  are linear in x1, and for bD x , bY x , 

mDZ x , mDT x , mY Z x , mY T x  are linear in exp x1/2 .

We compare with two other methods, direct treated-versus-control outcome comparison 

using ordinary least squares (OLS) and the standard IV method using Z as the IV, where 

the latter is implemented using the R package ivpack (Jiang & Small, 2014). Direct 

outcome comparison is invalid because of the unmeasured confounder Ut; the standard IV 

method is also invalid due to the direct effect of Z on the outcome. Table 1 shows the 

simulation results based on 1,000 repetitions, which includes: (i) the simulation average 

bias and standard deviation (SD) of each estimator; (ii) the mean standard errors (SEs), 

which are calculated according to Equation (S4) in the supplementary materials for the 

Wald estimator, using standard M-estimation theory for the semiparametric estimators; (iii) 

simulation coverage probability (CP) of 95% confidence intervals.

The following is a summary based on the results in Table 1. The OLS and standard IV 

estimators have large bias due to violations of their assumptions. The stratum-specific iDID 

Wald estimators show negligible bias and adequate coverage probability. The three classes of 

semiparametric iDID estimators that rely on ℳ1, ℳ2, ℳ3 have negligible bias and adequate 

coverage probability when the corresponding models are correctly specified but are biased 

when misspecified. The multiply robust semiparametric iDID estimators exhibit negligible 

bias and adequate coverage probabilities when at least one of ℳ1, ℳ2, ℳ3  is correct, which 

supports the multiple robustness property.

7 | APPLICATION

We apply the proposed method to analyze the effect of cigarette smoking on lung cancer 

mortality. Given the lag between smoking exposure and lung cancer mortality, we adopt 

the two-sample instrumented DID design. Our analysis is based upon two datasets arranged 

by 10-year birth cohort: the 1970 National Health Interview Survey (NHIS) for nationally 

representative estimates of smoking prevalence (National Health Interview Survey, 1970), 

and the US Centers for Disease Control and Prevention’s (CDC) Wide-ranging ONline 

Data for Epidemiologic Research (WONDER) system for estimates of national lung cancer 

(ICD-8/9: 162; ICD-10: C33-C34) mortality rates (CDC, 2000a, 2000b, 2016). Only the 
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1970 NHIS is used because it is the first NHIS that records the initiation and cessation time 

of smoking such that a longitudinal structure is available. We closely follow the approach 

taken by Tolley et al. (1991, Chapter 3) to calculate the smoking prevalence rates.

Based on the data availability, we focus on four successive 10-year birth cohorts: 

1911–1920, 1921–1930, 1931–1940, 1941–1950, whose smoking prevalence is estimated 

respectively at year 1940, 1950, 1960, 1970 when they are at age 20–29, whose lung cancer 

mortality rates are estimated respectively at year 1975, 1985, 1995, 2005 when they are 

at age 55–64. Here, cohort of birth plays the role of time. Figure 2 shows the changes in 

prevalence of cigarette smoking among men and women aged 20–29 years, and the changes 

in lung cancer mortality rates 35 years later in the United States. From Figure 2, we see that 

the trends in lung cancer mortality rates follow the trends in smoking prevalence, with a lag 

of 35 years, which provides evidence that smoking increases lung cancer mortality rate.

There have been many direct comparisons of the lung cancer mortality rates between 

smokers and non-smokers which have found higher rates among smokers (International 

Agency for Research on Cancer, 1986). Additional studies that replicate direct comparisons 

of smokers and non-smokers may not add much evidence beyond the first comparison. It is 

argued in Rosenbaum (2010) that “in such a situation, it may be possible to find haphazard 

nudges that, at the margin, enable or discourage [the exposure]. ... These nudges may be 

biased in various ways, but there may be no reason for them to be consistently biased in 

the same direction, so similar estimates of effect from studies subject to different potential 

biases gradually reduce ambiguity about what part is effect and what part is bias.” The 

instrumented DID is one such method that attempts to exploit the “haphazard nudges”, that 

is, the targeted tobacco advertising to women in the 1960s that led to a rapid increase in 

smoking among young women in a way that is presumably independent of other causes of 

lung cancer mortality.

To quantitatively evaluate the effect of cigarette smoking on lung cancer mortality, we take 

gender—a surrogate of whether each individual received encouragement (targeted tobacco 

advertising) or not—as the IV for DID. Note that gender does not need to have a causal 

effect on smoking; as proved in the Supporting information, it suffices that gender is 

correlated with smoking due to the encouragement from targeted tobacco advertising. We 

consider two successive 10-year birth cohorts, setting the earlier birth cohort as T = 0 and 

the later birth cohort as T = 1. Gender is likely a valid IV for DID, as it clearly satisfies 

the trend relevance assumption, the lung cancer mortality rates for men and women would 

have evolved similarly had all subjects counterfactually not smoked, and there is no evident 

gender difference in the cancer-causing effects of cigarette smoking (Patel et al., 2004).

Table 2 summarizes (i) the F-statistic proposed in Section 5 to measure weak identification; 

and (ii) the two-sample iDID Wald estimators βTSwald defined in Section 4 and their SEs 

defined in Equation (S6). More details on the application are also in the Supporting 

information. From Table 2, under the assumption that gender is a valid IV for DID and 

the treatment effect is stable over time, we find evidence that smoking leads to significantly 

higher lung cancer mortality rates. Specifically, we find that smoking in one’s 20s leads to 

an elevated annual lung cancer mortality rate at age 55–64 years, with the effect size ranging 
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from 0.285% to 0.568%. This is of a similar magnitude as the findings in Thun et al. (1982, 

2013). Using different birth cohorts gives slightly different point estimates, but they are 

within two SEs of each other. Nonetheless, there is still concern about violating the stable 

treatment effect over time assumption (Assumption 2(d)), possibly because the cigarette 

design and composition have undergone changes that promote deeper inhalation of smoke 

(Thun et al., 2013; Warren et al., 2014). In Section S4, we perform a sensitivity analysis and 

find that increasing risk of smoking over time does not explain away the observed treatment 

effect.

8 | RESULTS AND DISCUSSION

In this paper, we have proposed a new method called instrumented DID that explicitly 

leverages exogenous randomness in the exposure trends, and controls for unmeasured 

confounding in repeated cross-sectional studies. The instrumented DID method evolves from 

two powerful natural experiment devices, the standard IV and standard DID, but is able to 

relax some of their most disputable assumptions. Our motivation of assessing the causal 

effect by linking the change in outcome mean and the change in exposure rate is also related 

to the trend-in-trend design (Ji et al., 2017) and etiologic mixed design (Lash et al., 2021).

In principle, any variable that satisfies Assumptions 2(a)–(c) can be chosen as the IV for 

DID. Here, we list two common sources of the IV for DID: (i) administrative information, 

such as geographic region and insurance type; and (ii) variables that are commonly used as 

standard IVs, such as physician preference, distance to care provider, and genetic variants—

see Baiocchi et al. (2014) for more examples; as discussed in Section 2, these variables are 

more likely to be an IV for DID compared to being a standard IV, because IVs for DID are 

allowed to have direct effects on the outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Directed acyclic graph (DAG) for instrumented difference-in-differences (DID). Suppose the 

existence of an unmeasured confounder Ut such that D0, D1 ⊥ Y 0, Y 1 |U0, U1, X. Assumption 

2(a) states that Z must be associated with the change in exposure D1 − D0, Assumption 2(b) 

states that Z is independent of any unmeasured confounders U0, U1 and cannot have any 

direct effect on the change in outcome Y 1 − Y 0 and does not modify the treatment effect.
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FIGURE 2. 
Changes in prevalence of cigarette smoking for men and women aged 20–29, lung cancer 

mortality rates for men and women aged 55–64 years among four successive 10-year birth 

cohorts: 1911–1920, 1921–1930, 1931–1940, 1941–1950
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TABLE 2

Two-sample iDID Wald estimates and their standard errors (in parentheses) using two successive birth cohorts 

(in %)

1911–1920 1921–1930 1931–1940

Birth cohort 1921–1930 1931–1940 1941–1950

F-statistic 13.94 47.28 21.33

βTSwald 0.285 (0.089) 0.497 (0.076) 0.568 (0.127)

0Notes: F-statistic is the squared z-score, βTSwald  defined in Section 4 estimates the ATE of smoking on lung cancer mortality. Abbreviations: ATE, 

average treatment effect; iDID, instrumented difference-in-differences.
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