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The myeloid neoplasms encompass acute myeloid leukemia,
myelodysplastic syndromes and myeloproliferative neoplasms. Most

cases arise from the shared ancestor of clonal hematopoiesis (CH).

Here we analyze data from 454,340 UK Biobank participants, of whom

1,808 developed a myeloid neoplasm 0-15 years after recruitment. We
describe the differences in CH mutational landscapes and hematology/
biochemistry test parameters among individuals that later develop myeloid
neoplasms (pre-MN) versus controls, finding that disease-specific changes
are detectable years before diagnosis. By analyzing differences between
‘pre-MN’ and controls, we develop and validate Cox regression models
quantifying the risk of progression to each myeloid neoplasm subtype. We
construct ‘MN-predict’, aweb application that generates time-dependent
predictions with the input of basic blood tests and genetic data. Our study
demonstrates that many individuals that develop myeloid neoplasms can
beidentified yearsinadvance and provides a framework for disease-specific
prognostication that will be of substantial use to researchers and physicians.

The myeloid neoplasms encompass the myeloproliferative neoplasms
(MPN), myelodysplastic syndromes (MDS), chronic myelomonocytic
leukemia (CMML) and acute myeloid leukemia (AML), and collectively
affect approximately 10 per 100,000 individuals per year. Advances in
understanding their molecular pathogeneses have led tothe development
of some new therapies; however, the majority of patients with myeloid
neoplasms still succumb to their disease’* Recently, it became clear
that in the majority of cases, myeloid neoplasms develop from clonal

hematopoiesis (CH), their shared preclinical ancestor’ . We and others
have shownthatindividuals enroute to developing AML canbeidentified
years in advance by the genetic characteristics of their CH®, propos-
ing that AML prevention may be a viable alternative to the treatment of
established disease’. However, our ability toidentify those at risk remains
limited and is largely derived from targeted case-control studies™.

The study of large cohorts of volunteers has been instrumental in
understanding genetic determinants of common and rare diseases™
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Fig.1|Summary of driver mutations in the 11 most commonly mutated genes
in CH. a, Percentages of cases per driver gene among the 22,735 UKB participants
with CH. b, Distribution of clone sizes (VAF) by driver mutation. Medians are
depicted by black dots and upper/lower quartiles by vertical lines. c, Rising
prevalence of CH mutations with advancing age. d, Increase in size (VAF) of CH

o4
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of mutations Years

clones with advancing age. The line follows the mean of VAFs in each integral age
group and the gray areaindicates the 5-95% confidence interval estimated by
Student’s t-distribution. LASSO regression was used to smoothen the curves
incandd. e, Number of individuals with1, 2,3, 4 and >5 driver mutations.

f, Cumulative incidence of different types of myeloid neoplasmsin the UKB.

and many investigators have pursued this approach to study the causes
and consequences of CH""2. We recently analyzed data from 200,453
UK Biobank (UKB) participants and found that certain drivers of CH
are associated with agreater risk of progression to myeloid neoplasms
than others and that some of these higher-risk mutations were associ-
ated with more significant changes in blood cell parameters”. In light
of these findings, the recent release of data from almost their entire
cohort offersan opportunity to use the linked genetic and phenotypic
data in the UKB to develop an improved approach for predicting the
risk of development of myeloid neoplasms in the general population.
To this end, here we study data from 454,340 UKB participants and
reveal the genomic landscape of individuals that went on to develop
myeloid neoplasms, capture the significance of blood cell and bio-
chemical parameters for myeloid neoplasm risk and construct a new
regression model that enables prognostication of the risk of progres-
sionto different types of myeloid neoplasms. We go on to validate our
model in two independent cohorts of patients with clonal cytopenia
of undetermined significance (CCUS), the evolutionary stage between
CH and myeloid neoplasm, thus confirming the robustness and clini-
cal utility of our approach. Finally, to help clinicians and researchers
dealing with patients with CH or clonal cytopenias, we developed
‘MN-Predict’ a user-friendly web application to generate individual-
ized risk predictions.

Results

To identify carriers of CH in the UKB, we analyzed whole-exome
sequencing (WES) data from all 454,340 participants using Mutect2
(ref. 14) focusing on 38 genes known to be recurrently mutated in CH
and myeloid neoplasmand applied filters adapted fromarecent study
aimed at harmonizing theidentification of CH mutations by removing
sequencingartifacts and germline variants” (Methods and Supplemen-
tary Table1). To overcome low coverage or mapping problems (U2AF1)",
we carried out a targeted analysis of 22 recurrent mutation hotspots

to complement the mutation calls (Methods and Supplementary
Tables 2 and 3). Using these criteria, we identified 23,951 CH driver
mutations among 22,735 individuals with driver gene prevalence, clonal
sizes, number of variants per sample and age distribution in line with
previous reports (Fig. la—e)".

To investigate the relationship between myeloid neoplasm risk
and genetic or nongenetic variables, we analyzed data from all 454,340
UKB participants, including age (56.5 + 8.1 years, mean £ s.d.), sex
(female:male (F:M) =1.18), CH driver mutations, blood test results at
recruitment and electronic health records obtained throughout the
study (follow-up: 7.4-15.5 years, median 12.6 years). At the time of
recruitment, 648 individuals (of whom 233 had CH driver mutations)
had been previously diagnosed with amyeloid neoplasm and an addi-
tional 108 had, according to the latest diagnostic criteria”, blood count
results that were consistent with a probable diagnosis of polycythemia
vera (n=26; hemoglobin concentration (HGB) =17.9 +1.43 g dl and
JAK2-V617F variant allele fraction (VAF) =0.38 + 0.2, mean +s.d.)
or essential thrombocythemia (n = 82; platelet count (PLT) = 675 +
225x10° " mean * s.d., 51 with JAK2-V617F, 25 with CALR and 6 with
MPL mutations). These individuals were excluded from subsequent
analyses. During follow-up, 1,937 of the remaining 453,584 individu-
als developed a myeloid neoplasm at a median of 7.9 years from
recruitment, including 372 diagnosed with de novo AML, 517 with
MDS, 892 with MPN and 27 with CMML (Fig. 1f). CMML cases shared
similar mutation patterns to MDS (Supplementary Fig. 1) and were
incorporated into the MDS category for subsequent analyses. Those
who developed a chronic myeloid neoplasm (that is, MDS, MPN or
CMML) and then progressed to AML were considered under their
first myeloid neoplasm diagnosis. The remaining 129 individuals were
diagnosed with multiple myeloid neoplasms contemporaneously or
with AML followed by another myeloid neoplasm. To avoid misclassi-
fication, these were classed as ‘MN-indeterminate’ and excluded from
analyses (Methods).
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Fig.2|Driver mutations in pre-MN individuals who later developed myeloid
neoplasms. a, Prevalence of common CH driver gene mutations among UKB
participants that developed a myeloid neoplasm (pre-MN) compared with
controls. b, Waterfall plots of mutation profilesin 126 pre-AML, 179 pre-MDS
(including pre-CMML) and 210 pre-MPN cases. Each column represents a
different pre-MN participant. ¢, Associations between the risk for different
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types of MN and common driver gene mutations (Fisher’s test, *P <107;

see Supplementary Table 10 for details). d, Distribution of clone sizes among
different pre-MNs by advancing age. In the box plots, central lines indicate
medians, boxes indicate 25-75% quantiles and ranges indicate 1.5 interquartile
ranges from the upper or lower quartiles. The numbers of cases in each age
bracket areindicated above the box plots.

Among the 1,808 included participants who went on to develop
myeloid neoplasm (‘pre-MN’), we identified CH mutations in WES
from 515 (28.5%), alower proportion thanreported with deep targeted
sequencing®. By contrast, we identified CH mutations in only 4.8%
(21,814 of 451,647) of those who did not develop myeloid neoplasms
(controls). Inline with previous studies, pre-MN cases commonly had
mutations in ‘high-risk’ genes such as JAK2, SRSF2, SF3B1 and IDH?2,
while mutationsin controls mainly affected DNMT3A, TET2and ASXL1
(Fig. 2a). The proportion of pre-MN participants harboring CH driver
mutations was similar among pre-AML (126/372 = 33.9%), pre-MDS
(179/544 = 32.9%) and pre-MPN (210/892 = 23.5%) cases. However,
there were marked differences in the relative prevalence of different
CH driver genes among different types of myeloid neoplasms that
reflected their known driver landscapes (Fig. 2b). For example, DNMT3A
R882 mutations were more common in AML; TET2, SRSF2 and SF3B1
mutations in MDS and JAK2; and CALR and MPL in MPN (Fig. 2c and
Supplementary Fig. 2). Clonal sizes increased with advancing age in
all pre-MN subtypes (Fig. 2d).

We previously showed that target gene identity and VAF of driver
mutations canbe used to predict the risk of developing AMLS. In addi-
tion, we and others found that changes in blood cell counts were also
associated with AML risk*®, but we were unable to investigate whether
combining gene mutations and blood counts canimprove prognostica-
tiondue to limited dataavailability. Also, the ability to predict the risk
of progression to MDS or MPN has not previously been investigated

inthis manner. As the UKB captures both gene mutations (genotype)
and blood test results (phenotype) from the same individual, we next
investigated whether the integration of both data types can improve
predictive models of myeloid neoplasm risk. Abbreviations of the
parameters are listed in Supplementary Table 5.

Before building myeloid neoplasm risk models, we considered
that pre-MDS, pre-AML and pre-MPN cases showed varying or even
inverse associations with certain blood count parameters (Supple-
mentary Fig.3). Toaccount for these divergent associations, we chose
to analyze each type of myeloid neoplasm separately. In addition, to
streamline onward analyses, we removed highly correlated blood
count parameters (Spearman correlation > 0.9), retaining only the
parameter most commonly used in clinical reporting (Methods and
Supplementary Fig. 4).

We proceeded to quasi-randomly partition the UKB cohort into
atraining set with 207,035 samples and a validation set with 207,039
samples and then trained time-dependent Cox proportional hazards
models on the training set, including death by other causes as a com-
petingrisk (Methods). Starting with acore model based solely on age,
sex, VAF and mutations in genes previously found to be predictive
of progression to myeloid neoplasms”'®, we used forward stepwise
regression to iteratively add additional parameters to each of three
distinct models for AML, MDS and MPN prediction. Parameters were
added to individual models one at a time such that the developing
model displayed the highest concordance until the improvement in
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Fig.3|Impact of individual prognostic parameters on myeloid neoplasm
prediction. a, HRs for AML, MDS and MPN, by gene mutation and blood test
parameter. The central squares indicate HRs and the lines indicate 5-95%
confidence intervals. Only parameters selected by stepwise multivariate
regression for inclusion into the relevant model are plotted. b-g, Kaplan-Meier
curves of the most significant genetic predictors by VAF of the driver mutation:
IDH2 and AML-free survival (b); SRSF2 and AML-free survival (c); SF3B1 and

MDS-free survival (d); SRSF2 and MDS-free survival (e); JAK2 and MPN-free
survival (f) and CALR and MPN-free survival (g). PDW, platelet distribution width;
RDW, red cell distribution width; CYS, cystatin-C (serum); GGT, y-glutamyl
transferase (serum); MPV, mean platelet volume; ALP, alkaline phosphatase
(serum); VITD, vitamin D (serum); TRIG, triglyceride concentration (serum);
CRE, creatinine (serum); IGF1, insulin-like growth factor 1 concentration; NE,
neutrophil count.

concordance was less than 0.1% of the total (Methods; Extended Data
Fig.1and Supplementary Tables 5and 6).

Using the three final models, we quantified the hazard ratios (HRs)
associated with each predictive variable for AML, MDS and MPN. This
revealed that HRs associated with individual parameters varied sub-
stantially for different myeloid neoplasms (Fig. 3a), something that is
also evident when applying univariate analyses (Supplementary Fig. 5).
For example, DNMT3A R882 mutations were specifically associated
with AML, SF3BI mutations with MDS and JAK2/CALR mutations with
MPN (Fig. 3a). By contrast, mutationsin genes such as SRSF2and IDH2
afforded similar HRs for different types of myeloid neoplasms. Also,
multiple phenotypic features, including increasing age, predicted an
increased risk of allmyeloid neoplasms. With other parameters such as
HGB, higher values predicted anincreased MPN risk, while lower values
predicted ahigher risk of MDS and AML (Fig. 3a). We also found that for
many of the higher-risk driver mutations, ahigher VAF was associated
with asignificant decrease in disease-free survival (Fig. 3b-g).

The presence of mosaic chromosomal abnormalities (mCAs)
in leukocyte DNA has also been associated with an increased risk of
hematological malignancy' and we observed significant associations
of pre-AML cases with mosaic loss of the long arm of chromosome
5(-5q), pre-MDS with =5q and 4q loss-of-heterozygosity (4q LOH),
and pre-MPN with 9p LOH, +9p and +9 in the UKB (Extended Data

Fig. 2a). Addition of mCAs to our models improved the identification
of pre-MNs among individuals with mCAs, while missing a smaller
number of pre-MNs who did not have mCA (Extended Data Fig. 2b).
However, the addition of mCAs only had amodest effect on overall test
performance (Extended Data Fig. 2c-e). In view of this and as mCAs
are not routinely captured by standard diagnostic assays, we did not
include them in our final models. Furthermore, to test the impact of
genetic ancestry on myeloid neoplasm prediction, we incorporated
the first five principal components of genetic ancestry into each of
the three MN-predictive models and found that this had a negligible
effect (Extended DataFig. 3).

To assess the performance of our models, we runthem on the UKB
validation set to predict the risk of developing different types of mye-
loid neoplasms, at any time from recruitment to the end of follow-up
(median =12.6 years). We found that the respective model performed
wellfor predicting future MPN (areaunder curve (AUC) = 0.82; concord-
ance =0.81+0.01), MDS (AUC = 0.86; concordance = 0.86 + 0.01) and
AML (AUC = 0.78; concordance = 0.76 + 0.02; Extended Data Fig. 4a).
Similar results were observed using logistic regression models trained
in a similar way on the training set, with the exception of AML, for
which the Cox regression model performed better (Extended Data
Fig. 4b). We also tested random survival forest models trained on all
mutational, blood and biochemistry datawith three sets of parameters
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and observed no significantimprovement in performance compared
with Cox models (Supplementary Fig. 6). Notably, the Cox models
performed very similarly on the training and validation sets (Sup-
plementary Fig. 7), indicating there was no significant overfitting or
underfitting. Furthermore, the predicted probability of developing a
myeloid neoplasm by the end of the follow-up period agreed closely
with the observed incidence of myeloid neoplasms in the UKB valida-
tion set (Extended DataFig. 5).

The UKB data are subject to selection biases toward European
ancestry, healthy individuals and those who are willing to volun-
teer, while the measurement of blood, biochemistry and genetic
data are subject to batch effects. To validate the performance of our

models outside the UKB, we tested our models on an independent
cohort (Leeds CCUS cohort) composed of 204 individuals with CCUS
recruited from 2014 t0 2016 (138 men and 76 women aged 31-91 years,
mean = s.d. =74 £ 9.6). Individuals were followed-up until 2019 with
a follow-up period of up to 5.5 years (mean = s.d. =3.0 £1.7), during
which8individuals developed AML, 35 developed MDS and 1developed
MPN (Supplementary Table 8). We ran our AML and MDS models on
this cohortand observed good performance for predicting both AML
(AUC = 0.74) and MDS (AUC = 0.73), as well as “any myeloid neoplasm’
(AUC = 0.76; Extended Data Fig. 6a-c). Furthermore, the predicted
probability of developing a myeloid neoplasm within 5 years agreed
well with the observed fraction of myeloid neoplasm diagnoses in
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relevant to the downstream diagnosis are shown on the left (gene mutations,
highest VAF and blood tests results depicted as normalized values relative to the
medianonalogscale) and the actual predictions on the right. The probability of
different outcomes is represented by the vertical height of the corresponding
coloratany given time.

the follow-up period, with a slight over-estimation of 5-year risks of
myeloid neoplasms (Extended Data Fig. 6d), which was most likely
dueto follow-up of most patients being less than 5 years. To overcome
this, we then analyzed a separate clinical cohort (Pavia CCUS cohort)
containing 312 individuals with CCUS (147 men and 165 women aged
18-89 years, mean + s.d. = 57 +17.3) and a longer follow-up period of
up to 15.1years, during which 49 developed MDS and 2 developed
AML (Supplementary Table 9). Our MDS model performed very wellin
predicting MDS development with areceiver operating characteristics
(ROC) curve AUC = 0.84 and avery good agreement between predicted
and observed cases of MDS (Extended Data Fig. 7).

Next, to understand the time-dependency of our models, we
tested their performance at1,2 and 5 years before myeloid neoplasm
diagnosis and found that performance generally improved nearer
the time of diagnosis, particularly for AML (Fig. 4a-c). To investigate

this further, we looked at how blood test parameters differed by time
before diagnosis of a myeloid neoplasm. This revealed that many key
blood test parameters changed with time to diagnosis, in patterns that
differed between different types of myeloid neoplasms (Fig. 4d-fand
Supplementary Figs. 8-10). For example, PLT was substantially higher
in pre-MPNs even 10 years before diagnosis, while the corresponding
fallin PLT associated with AML was not observed until the final year
before diagnosis (Fig. 4d-f). Also, parameters like mean corpuscular
volume (MCV) and hemoglobin concentration (HGB) only changed
substantially in pre-AML samples during the final year before diagno-
sis (Fig. 4d), reflecting the improved performance of our AML model
duringthis year. By contrast, for MDS and MPN, many of the predictive
parameters were substantially different >5 years before diagnosis.
Finally, to aid clinical hematologists managing patients with high-
risk CH, we built a user-friendly web-based application MN-predict
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(https://bioinf.stemcells.cam.ac.uk/shiny/vassiliou/MN_predict) that
can predict the risk of MN using selected genetic and blood test param-
eters (Methods). MN-predict enables individualized predictions of the
risk of developing different types of myeloid neoplasms over time and
also aggregates these predictions to infer the probability of MN-free
survival (Fig. 5).

Discussion

The demonstration that individuals at risk of developing AML can be
identified yearsin advance from the genetic characteristics of their CH
clones’® has spurned significant interest in the prospect of myeloid
cancer prevention””, However, less is known about the predictability of
myeloid malignancies like MPN and MDS, which also arise from CH>**3,
or the prognostic relevance of nongenetic variables such as blood cell
counts and biochemical tests/parameters®.

Here using data from 454,340 UKB participants, we investigate
the characteristics of individuals that went on to develop a myeloid
neoplasm and use these to construct three separate models for pre-
dicting the development of AML, MDS or MPN, whichincorporate both
genetic and nongenetic variables. We first found that while the CH
driver landscape in pre-MN participants reflected that of the onward
diagnosis, there was significant overlap among different myeloid
neoplasmsubtypes. Underlying this, we observed varying strengths of
association between particular gene mutations and each of the three
myeloid neoplasm subtypes (Fig. 2). For example, SF3BI mutations were
substantially associated with a higher risk of MDS, while SRSF2 muta-
tions were substantially associated with all myeloid neoplasm subtypes,
with SRSF2/TET2 comutated cases were more likely to develop MDS
and SRSF2/IDH2 comutated cases were more likely to develop AML.
Also, DNMT3A R882 mutations were specifically associated with AML.

Next, starting with a core model based on age, sex and muta-
tions in CH genes known to be associated with AML risk®, we used
forward stepwise regression to build three Cox regression models
for estimating the likelihood of developing AML, MDS and MPN, as
well as delineating the risk of different gene mutations in a multi-
variate context. This revealed that the incorporation of blood test
parametersimproved model performance. Notably, parameters like
HGB had opposite effects on the risk of developing MDS versus MPN,
justifying the construction of separate models for these myeloid neo-
plasm types. Predictive performance (AUC for validation set) of the
MDS and MPN models at >1 year and >5 years to diagnosis was better
than that of the AML model, while in the final year, all three models
performed similarly. In line with this, changes in blood cell counts/
indices were evident many years before diagnosis in both pre-MDS
and pre-MPN (Fig. 4). In general, the improved model performance
nearer the time of myeloid neoplasm diagnosis may reflect the fact
thatlarger clones have amore deterministic behavior thansmall ones,
whose fateis more dependent on chance. A similar conclusion canbe
drawn from a large study of JAK2-V617F mutation frequency, which
reported that small clones (VAF <1%) are a lot more abundant than
large ones?. Separately, as a further check of model performance, we
noted that predicted and observed numbers of myeloid neoplasmsin
thevalidation set agreed closely, despite aslightly higher number of
MPN diagnoses in the UKB than reported in other European popula-
tionstudies"”>. We separately developed and tested predictive models
based onlogistic regression and random survival forests, which also
displayed good predictive performances in our validation set but
did not exceed those of the Cox models (Extended Data Fig. 4b and
Supplementary Fig. 6).

Next, to ensure that our Cox models performwellinindependent
datasets, we tested them on two separate clinical CCUS cohorts of 204
(Leeds CCUS cohort) and 312 (Pavia CCUS cohort) patients. Despite
having toimpute certain missing parameters, we found that our models
performed well with both, supporting their generic applicability and
suitability for use in real-life clinical cohorts.

Using these Cox models, we then constructed MN-predict, an
accessible web-based tool that calculates the likelihood of developing
different types of myeloid neoplasms over 15 years after input of age,
sex, somatic mutations and a milted set of routine blood test results
(Fig.5). Of note, acontemporaneous study using UKB datadeveloped a
different prognostic approach that uses somatic mutations and blood
parameters to classify individuals into high, intermediate or low-risk
groups for myeloid neoplasms®. This is a very valid approach that
makes for an easy-to-use clinical tool but provides less granularity com-
pared with MN-Predict as it groups all types of myeloid neoplasms into
asingle category and does not capture the fact thatindividuals within
thesamerisk group can have very different likelihoods of progression
to myeloid neoplasms. By contrast, MN-Predict can help clinicians
to further individualize CH management by providing year-by-year
probabilities for each type of myeloid neoplasmover 15 years. Also, by
excluding individuals who met diagnostic criteria for MPN diagnosis
at UKB entry, MN-Predict gives more realistic estimates of MPN risk.

We anticipate that MN-predict will be of substantial use to
researchers and to hematologists managing patients with high-risk
CH and CCUS. Users of MN-predict need to be aware that UKB partici-
pants display a ‘healthy volunteer bias’. However, as epidemiological
factors are not major determinants of myeloid neoplasm risk, it is
unlikely that prediction accuracy will be substantially affected by this
bias. Also, as UKB participants are predominantly of Europeanancestry
(-80%)**, caution should also be exercised when using MN-predict in
other ancestries. The latter is partially mitigated by the fact that the
top five principal components of ancestry did not substantially alter
model performance.

Collectively, our study represents an important advance in the
field of myeloid cancer prediction and provides accessible predictive
models that can guide research in this field, assist the management
of patients with high-risk CH and help define entry criteria for future
interventional studies for myeloid cancer prevention.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41588-023-01472-1.
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Methods

Data acquisition

UKB is a large-scale biomedical database and research resource con-
taining genetic, lifestyle and health information from half a million
UK participants. UKB has approval from the North West Multicentre
Research Ethics Committee (11/NW/0382) and all participants provided
written informed consent. The present study has been conducted
under approved UKB application number 56844. Electronic health
records were downloaded from the UKB portalin April 2022. For each
participant, the disease phenotypes were extracted using the fol-
lowing ICD-9/1CD-10 codes: AML—205.0, 205.2, 205.3, 205.8, 205.9,
206.0,206.2,207.0, 207.2,238.4, 238.5, 238.7, C92.0, C92.2, C92.3,
C92.4,C92.5,C92.6,C92.7,C92.8,C92.9,C93.0,C93.2,C94.0 0or C94.2;
MDS-238.4,238.5,C94.6 or D46; MPN: 238.7, D45,D47.0,D47.1,D47.3
or D47.4; CMML-206.1, C93.1. The Pavia cohort study was approved
by the Ethics Committee of the IRCCS Policlinico San Matteo Founda-
tion, Pavia, Italy (reference: 20180009874). The Leeds cohort study
was approved by the North East—York Research Ethics Committee
(reference: 16/NE/0105).

Statistics and reproducibility

Individuals (n =129) with more than one myeloid neoplasm diagnosed
within35 d (n=71, of whom 60 had AML +another myeloid neoplasm),
and those diagnosed with AML and then another myeloid neoplasm
(n =58, withthe second diagnosis made 36-18,39 d later, mean =497 d),
were classed as ‘MN-indeterminate’ and excluded from analysis, as we
wanted to be certain of the specific myeloid neoplasm diagnosis given
thatouraimwasto develop different predictive models foreach of the
main myeloid neoplasm subtypes. Additionally, 39,465 samples with
more than two missing values in blood count and biochemistry data
were excluded from modeling to reduce noise.

Whole-exome sequence data processing, CH mutation calling
andfiltering

Whole-exome sequencing of blood DNA from 454,340 participants
was used to identify somatic mutations using Mutect2 software
(GATK version 4.1.3.0) through the DNAnexus platform using Docker
image broadinstitute/gatk:4.1.3.0. Mutect2 was run in ‘tumor-only’
mode with default parameters, over the exon intervals of 38 genes
previously associated with CH (Supplementary Table 1). To minimize
sequencing artifacts and to filter out potential germline variants, we
used a ‘panel-of-normals’ from the 1000 Genomes Project (1000GP)
and the Genome Aggregation Database (gnomAD) obtained from
the GATK best practices repository (https://gs://gatk-best-practices/
somatic-hg38). Raw variants called by Mutect2 were filtered out with
FilterMutectCalls using the estimated prior probability of areading ori-
entationartifact generated by LearnReadOrientationModel. Putative
variants marked ‘PASS’ by FilterMutectCalls were selected for filtering.
Variants marked as ‘germline’ or ‘weak_evidence’ were rescued if they
were present at least five times in the PASS ones. Gene annotation was
performed using Ensembl Variant Effect Predictor (v.102). For identi-
fying CH, we required variants with a minimum number of alternate
reads of 2, evidence of the variant on both forward and reverse strands,
aminimum depth of 7 reads for SNVs and 10 reads for short indels and
substitutions and aminor allele frequency in the population lower than
0.001 (according to 1000GP phase 3 and gnomAD r2.1).

From the resulting calls, we selected those meeting the inclusion
criteriaestablished by Vlasschaert et al.””, to optimize the exclusion of
germline variants and sequencing artifacts (Supplementary Table 1).
For TET2and CBL, for which individual driver definitions are not exhaus-
tively defined, variants were removed if they failed a one-sided exact
binomialtest (P> 0.01), where the null hypothesis was that the number
of alternative reads supporting the mutation were 50% of the total
number of reads. Variants with n <20 were all retained. To find the
best cut-off for the minimum number of reads required to call a CH

mutation, we tested three different cut-offs: >2, >3 and =5 reads on
Mutect2 output and found that >2 read is most suitable for our study
asitimproved concordance indices of our AML model while leaving the
MDS and MPN model performance unchanged (Supplementary Fig.11).

Samtools mpileup (version 1.15) was used to capture
single-nucleotide variations (SNVs) at 22 known hotspots (Supple-
mentary Table 2), including U2AF1 SNVs that were missed due to a
mistake in the human GRCh38 assembly’. SNVs with >3 reads and
VAF > 0.1 were retained and used for predictive models. Additionally,
4-nucleotide-insertions in NPM1 within the range of chr5:171410538-
171410544 were examined manually with prior knowledge of the com-
mon 4-ntinserts and only two known cases were identified™.

mCA datawere obtained from the UKB Application19808 Return
3094 (ref. 26). Associations between mCAs and myeloid neoplasms
were tested using Fisher’s exact test. Significant mCAs (P < 0.00001)
were extracted, including chromosome 1p LOH, 4q LOH, 5q loss,
7qLOH, 8gain,9p LOH, 9 gain,12qloss, 14q LOH, 17qloss and 20q loss.
X-and Y-chromosome mCAs were not investigated.

Predictive modeling for myeloid neoplasms
All datatypes used in model development with explanations of relevant
abbreviations are provided in Supplementary Table 5.

To optimize model performance, 39,465 samples with more than
2 missing values in blood count and biochemistry data (n =39,283
controls and n =171 pre-MNs) were excluded from modeling. Next,
weremoved interderivable variables, namely RBC, MCH and HT, from
the complete blood count results and retained HGB, MCV and MCHC.
Missing values were imputed using the median of the UKB population.
We excludedindividuals who had a myeloid neoplasm diagnosis before
blood collection (n = 648), individuals whose blood test results were
consistent with a probable diagnosis of polycythemia vera (n =26;
HGB >16.5 g dI™ and with JAK2-V617F) or essential thrombocythemia
(n=82; PLT > 450 x 10° I'"* and with JAK2-V617F/CALR/MPL mutations)
and individuals (n =129) with more than one myeloid neoplasm diag-
nosed within 35 d or with AML and then another myeloid neoplasm.
Whileitis possible that some additional UKB participants with slightly
abnormal blood counts at study entry had a myeloid neoplasm (for
example, MDS), we had no way to identify them and also note that their
blood test results did not trigger a clinical referral. Samples of remain-
ingindividuals were used to test for linear dependency between each
pair of parameters of phenotypic variables within the entire dataset
and within each type of myeloid neoplasm using Spearman correla-
tion (Supplementary Fig. 4). For each highly dependent pair or cluster
(Spearman correlation > 0.9 in allmyeloid neoplasms), we selected the
most commonly used parameter in clinics and excluded the others,
retaining PLT over plateletcrit (PCT), reticulocyte count (RET) over high
light scatter reticulocytes (HLR) and cholesterol (CHOL (serum)) over
apolipoprotein B/low-density lipoprotein direct. We did not attempt to
distinguish between CH and CCUS in our models, as blood test results
that define CCUS areincluded and as aformal CCUS diagnosis requires
persistence of cytopenia over several months as well as the clinical
exclusion of other etiologies"”.

Samples were split quasi-randomly into training and validation
sets to obtain roughly equal numbers of cases of pre-AML, pre-MDS,
pre-MPN and pre-CMML in each set. Specifically, we first separated
each type of pre-MN and controls, and then randomly split each into
two similar size sets using the random function (Math.random() in
Java). We then merged one control with one pre-MN set to generate
the training set of 207,035 samples and a validation set of 207,039
samples. All subsequent model development was performed on the
training set using both genotype and phenotype parameters and model
performance was tested on the validation set. For each type of myeloid
neoplasm, aninitial Cox proportional hazards model was trained using
the R package of ‘survival’ with all 38 binary genotypic variables (Sup-
plementary Table 1), 30 continuous preselected phenotypic variables
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(Supplementary Table 5), sex, age, body mass index (BMI) and the
highest VAF. All continuous variables including phenotype, age and
BMI were standardized using the following:

, _ X;—Med(x)
YT T

where Med(x) is the median and o(x) is the standard deviation of the
variable. A Cox proportional cause-specific hazard model was used for
each of the myeloid malignancies, considering death by other causes
before the end of the censoring period as a competing risk. To reduce
the number of variables in the final model, we used forward stepwise
regressions starting with aset of 13 MN-related variables, namely sex,
age, VAF and somatic mutations inany of 11 genes that were commonly
mutated in CH and/or known to be associated with progression to
myeloid neoplasms™®'® (DNMT3A,JAK2, MPL, CALR, SRSF2, SF3B1,IDH2,
TP53, TET2,ASXL1and U2AFI). To avoid overfitting, we excluded genes
with <4 mutations (that is, <2 mutations in the training or validation
set) intherelevant pre-MN sample group, namely JAK2, MPL, CALR and
U2AFIfrom pre-AML, CALR and MPL from pre-MDS, and TP53, MPL and
U2AFIfrompre-MPN. Then from the candidate pool of the 27 remaining
genes, BMland 30 blood/biochemistry parameters, we proceeded to
iteratively add one variable to the model at atime. Ineachiteration, we
added each of the n variables to the starting set, resulting in n sets of
variables and trained n Cox models on these sets. Of the n models, we
selected the one with the highest concordance index (C-index)* as the
new starting set and removed the newly added variable from the can-
didate poolfor the nextiteration. We drew the threshold at the iteration
where the increase in C-index was <0.1% of the maximum increase of
all iterations (that is, the highest C-index of all iterations minus the
C-index of the starting concordance), with the variablesinthatiteration
chosen for the final model (Supplementary Table 6). To test the per-
formance of the final models, we constructed time-dependent ROC
curves by examining three groups of individuals who developed mye-
loid neoplasms 0-1year, 1-5 years and >5 years after the blood assess-
ment separately. For eachgroup, ‘observed positives’ were defined as
the individuals who developed this myeloid neoplasm within this
period and ‘observed negatives’ were defined as the ones who devel-
oped this myeloid neoplasm outside this period or ones who never
developed the myeloid neoplasm. Predicted probabilities of develop-
ing myeloid neoplasmsinatime period were calculated as the average
of predicted values of all time points within this period from the out-
come of Cox regression models. By varying the threshold of predicted
probability from its lowest to highest, we compared predicted posi-
tives/negatives with observed positives/negatives to obtain pairs of
sensitivity and specificity and plotted the ROC curves.

Additionally, we used logistic regressions with the ‘glm’ function of
R to obtain similar results as Cox proportional hazard models. We also
trained models with random survival forest on the training set using the
‘randomForestSRC’ package of R. We scanned three sets of parameters
across various numbers of trees (that is n(tree)), and numbers of node
splits pertree (thatisn(split)) foreachmodel: n(tree) = 50 and n(split) =10;
n(tree) =100 and n(split) =10; n(tree) =100, n(split) = 20. Time-dependent
ROC curves were constructed using the same method as described.

Validation onindependent cohorts

To validate our models, we obtained the genotype, blood and bio-
chemistry data of 204 individuals with CCUS, including 7 pre-AML, 31
pre-MDS and 1pre-MPN cases (Leeds CCUS cohort). Available genotypic
parameters were mutations in genes DNMT3A, IDH2, TET2, U2AF1,
ASXL1, SRSF2,JAK2, TP53, SF3B1, CALR and MPL and VAFs of the largest
clone. Available phenotypic parameters are sex, age, MCV, PLT and
HGB. Missing phenotypic parameters were imputed as the median of
the UKB population and input parameters were processed in the same
way as we processed UKB data. We applied all three models to this
cohort and compared the predicted probabilities of developing each

type of myeloid neoplasm in the next 5 years with observed myeloid
neoplasm diagnosisin the follow-up period (up to 5.5years), using the
same methods as we used for the UKB analysis.

To validate the MDS model, we obtained anindependent cohort
of 312 individuals, containing 49 cases of pre-MDS and 263 control
cases (Pavia CCUS cohort). Available genotypic parameters were
mutationsingenes DNMT3A, SRSF2, SF3B1, IDH2, TP53, TET2, ASXL1,
U2AF1, JAK2, MPL and CALR and VAFs of the largest clone. Available
phenotypic parameters include age, sex, PLT, HGB, MCV and NE.
Missing phenotypic values were imputed as the median of the UKB
population and input parameters were processed in the same way as
we processed UKB data. To validate our MDS model, we applied the
MDS model to this cohort and compared the predicted probabilities
of developing each type of myeloid neoplasmin the next 15 years with
observed myeloid neoplasm diagnosis in the follow-up period (up to
15.1years), using the same methods as we used for the UKB analysis.

MN-predict: a web-based myeloid neoplasm risk calculator
As CH can progress to any of the main types of myeloid neoplasms,
itwould be useful to assess the probability of progression to any of the
myeloid neoplasm subtypes for eachindividual with CH. To achieve this
andto provide aone-stop predictive tool for researchers and clinicians
managing high-risk CH, we built MN-predict, an accessible web-based
tool that generates time-dependent predictions of future risk of pro-
gression to AML, MDS or MPN. To do this, we amalgamated the prob-
abilities of developing each of the three myeloid neoplasm subtypes
calculated fromtheir respective models using the following approach:
Disease-free survival probabilities for each myeloid neoplasmare
predicted as a function of time and the overall probability of getting
myeloid neoplasm x (where x is AML, MDS or MPN) at time point ¢ is
calculated as

1—Surv(x,t)
Zie(AML,MDS,MPN)(l = Surv (i, 1)

Pr(x,t) = (1 - Surv(i, t))

i€(AML,MDS,MPN)

where Surv(x,t) is the probability of disease-free survival for each of
the myeloid neoplasm subtypes at time point ¢.

After inputting the genotypic and phenotypic parameters
includedintheir respective Cox models, the MN-predict website gen-
erates time-dependent plots of projected probabilities for developing
AML, MDS and MPN (or remaining MN-free) over 15 years.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Individual-level UK Biobank data can be requested via application to
the UK Biobank (https://www.ukbiobank.ac.uk). The CH call has been
returned to the UK Biobank to enable individual-level data linkage for
approved UK Biobank applications.

Code availability

The MN-predict web applicationis hosted at https://bioinf.stemcells.
cam.ac.uk/shiny/vassiliou/MN_predict. Codes for analyses and figure
reproduction have been uploaded to https://github.com/muxingu/
mnpredict_paper.
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Extended Data Fig.1| Feature selection in different pre-MN models using
stepwise regression. Improvement in concordance by the stepwise addition
of predictive variables to the core Cox regression model for developing
disease-specific Cox regression models for: (a) AML, (b) MDS and (c) MPN.

Variables were added one ata time, such that eachiteration resulted in the
greatestimprovement in concordance index until the increase in concordance
<0.1% of the maximum increase of all iterations. The iterations (that is number of
additional variables) used in the final models are indicated by the red lines.
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Extended Data Fig. 2| Impact of mosaic chromosomal abnormalities on

MN prediction models. (a) Associations between the risk for different types

of MN and mosaic chromosomal alterations (mCA, *=Fisher’s test p<107~, see
Supplementary Table 10 for details; OR = odds ratio). (b) Number of true pre-MN
cases whose prediction changed by the inclusion of mCAs to the models. We
calculated differences between 15-year MN-free survival probabilities of models
including mCAs (with mCA) vs excluding mCAs (without mCA). We then tested
three thresholds for the difference in MN probability between the two models.

The lowest probability difference of 0.2 led to the correct identification of an
additional 45 pre-MN cases (true positives), at the expense of missing 12 such
cases (false negatives). Higher difference thresholds still identified more true
positives than false negatives. (c-e) Inclusion of mCA to our MN prediction
models did not significantly improve model performance as assessed by area
under curve (AUC) of recover operating curve for (c) AML, (d) MDS or (e) MPN.
Dotted diagonal linesindicate AUC=0.5.
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Extended Data Fig. 3| Genetic ancestry does not have amajorimpact on MN
prediction models. Hazard ratios (HRs) associated with predictive variables,
after incorporation of the first five principal components of genetic ancestry
(PC1-PC5) into MN predictive models for: (a) AML, (b) MDS and (c) MPN. The plots
show that ancestry has a negligible impact on these models, with HRs close to 1

(Logl =0).Central squares indicate estimated HRs and lines represent the 5-95%
confidence intervals. VAF = variant allele frequency of the largest clone. The
central squares indicate hazard ratios and the lines indicate 5-95% confidence
intervals. Vertical dotted lines indicate HR = 1. Abbreviations for blood/
biochemistry parameters are defined in Supplementary Table 5.
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Extended Data Fig. 4 | Comparison of Cox to logistic regression models for
MN prediction. (a) Recover operating curve (ROC) curves from Cox proportional
hazard models for prediction of progression to AML, MDS and MPN. (b) ROC
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curves from logistic regression models. To make the models comparable, we
used MN outcomes at any time to the end of the study to compute ROC curves.
AUC =area under curve. Dotted diagonal lines indicate AUC = 0.5.
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Extended DataFig. 5| Close agreement between prediction and actual
incidence of MN. Comparison of the predicted probability of developing any
MN with the observed MN incidence in the UKB validation cohort of 207,039
individuals at any time during the follow-up/observation period (dots showing
the mean and error bars showing 1.96 standard deviations that is 5-95% CI).

Samples were binned according to predicted probability ranges as follows:
0-0.05,0.05-0.1,0.1-0.3,0.3-0.5 and 0.5-1. Individuals who died during
the observation period without having developed MN were not included in
the calculations. The plot shows close agreement (along the dotted line y = x)
between prediction and observed incidence.
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Extended Data Fig. 6 | Validation of models on the Leeds CCUS cohort.

(a-c) Receiver Operating Characteristics (ROC) curves of the independent cohort
computed from predicted probabilities in 5 years versus clinical diagnosis of
individuals who developed MN within 5 years after blood sampling. AUC=area

under curve. (@) AML model. (b) MDS model. (c) ROC curves of combined
probabilities of any MN versus clinical diagnosis. Diagonal lines indicate
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AUC=0.5. (d) Comparison of the predicted probability of developing any MN in
the next 5 years with the observed MN diagnosed at any time during the follow-up
period (dots showing the mean and error bars showing 1.96 standard deviations
thatis 5-95% CI). Individuals who died before the end of the follow-up period
without developing any MN were excluded from the calculation.
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Extended Data Fig. 7| Validation of MDS model on the Pavia CCUS cohort.

(a) ROC curve of Cox proportional hazard model for MDS prediction established
from predicted 15-year probability of developing MDS and diagnosis by the end
ofthe 15-year follow-up period. AUC = area under curve. Diagonal line indicates
AUC=0.5. (b) Comparison of the predicted MDS probability and observed MDS

o
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incident at any time during the follow-up period (dots showing the mean and
error bars showing 1.96 standard deviations that is 5-95% CI). Individuals who
died before the end of the follow-up period without developing any MDS were
excluded from the calculation. Dotted line shows y = x.
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approved UK Biobank application numbers 56844.
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Sample size For this study, we analyzed 454,340 individuals who had whole-exome sequencing (WES) data released as of March 2022.
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Study protocol N/A
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