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Single-cell multi-omics identifies chronic 
inflammation as a driver of TP53-mutant 
leukemic evolution
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Understanding the genetic and nongenetic determinants of tumor protein 
53 (TP53)-mutation-driven clonal evolution and subsequent transformation 
is a crucial step toward the design of rational therapeutic strategies. Here we 
carry out allelic resolution single-cell multi-omic analysis of hematopoietic 
stem/progenitor cells (HSPCs) from patients with a myeloproliferative 
neoplasm who transform to TP53-mutant secondary acute myeloid 
leukemia (sAML). All patients showed dominant TP53 ‘multihit’ HSPC clones 
at transformation, with a leukemia stem cell transcriptional signature 
strongly predictive of adverse outcomes in independent cohorts, across 
both TP53-mutant and wild-type (WT) AML. Through analysis of serial 
samples, antecedent TP53-heterozygous clones and in vivo perturbations, 
we demonstrate a hitherto unrecognized effect of chronic inflammation, 
which suppressed TP53 WT HSPCs while enhancing the fitness advantage 
of TP53-mutant cells and promoted genetic evolution. Our findings will 
facilitate the development of risk-stratification, early detection and 
treatment strategies for TP53-mutant leukemia, and are of broad relevance 
to other cancer types.

Tumor protein 53 (TP53) is the most frequently mutated gene in human 
cancer, typically occurring as a multihit process with a point mutation 
in one allele and loss of the other wild-type (WT) allele1,2. TP53 muta-
tions are also strongly associated with copy number alterations (CNA) 
and structural variants, reflecting the role of p53 in the maintenance 

of genomic integrity2,3. In myeloid malignancies, the presence of a 
TP53 mutation defines a distinct clinical entity1, associated with com-
plex CNA, lack of response to conventional therapy and dismal out-
comes2,4,5. Understanding the mechanisms by which TP53 mutations 
drive clonal evolution and disease progression is a crucial step toward 
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cloning and computational analysis (Extended Data Fig. 1h–j). Integra-
tion of index-sorting data revealed that dominant TP53 multihit clones 
were enriched in progenitor populations as previously described in 
de novo AML19, whereas TP53-mutant cells were less frequent in the HSC 
compartment (Extended Data Fig. 3a). CNA analysis using single-cell 
transcriptomes showed that all TP53 multihit clones harbored at least 
one highly clonally-dominant CNA, with very few TP53-mutant cells 
without evidence of a CNA (3.4 ± 1.2%) and an additional 5 of 14 (36%) 
patients also showing cytogenetically-distinct subclones (Fig. 1f,g and 
Extended Data Fig. 2p,q).

To confirm that dominant HSPC clones were functional LSCs, 
we established patient-derived xenografts (PDX) for two TP53-sAML 
patients (Fig. 1h). Mice developed leukemia in 27–31 weeks with high 
numbers of human CD34+ myeloid blast cells in the bone marrow  
(BM; Extended Data Fig. 3b–d), with a progenitor phenotype, TP53 
mutations and CNAs similar to the dominant clone from patients’ 
primary cells (Fig. 1i and Extended Data Fig. 3e–l). In patient IF0131, a 
monosomy 7 subclone (Fig. 1f) preferentially expanded in PDX models 
(Fig. 1i). Monosomy 7 cells showed a distinct transcriptional profile 
with increased WNT, RAS, MAPK signaling and cell cycle associated 
transcription (Extended Data Fig. 3m,n). Together, these data are com-
patible with a fitness advantage of monosomy 7 cells, a recurrent event 
in TP53-sAML (Extended Data Fig. 1b,c), driven by activation of signaling 
pathways that may relate to deletion of chromosome 7 genes such as 
EZH2 (ref. 20). In summary, the dominant leukemic clones in TP53-sAML 
were invariably characterized by multiple hits affecting TP53 (multihit 
state), indicating strong selective pressure for complete loss of WT 
TP53, together with the gain of CNAs and complex cytogenetic evolu-
tion, with very few TP53 multihit cells with a normal karyotype (Fig. 1j).

Molecular signatures of TP53-mutant-mediated 
transformation
To understand the cellular and molecular framework through which 
TP53 mutations drive clonal evolution, we next analyzed single-cell 
RNA-seq data from 10,459 TP53-sAML HSPCs alongside 2,056 MF and 
5,002 HD HSPCs passing quality control. Force-directed graph analysis 
revealed separate clustering of TP53-mutant HSPC in comparison with 
healthy and MF donor cells, with a high degree of interpatient hetero-
geneity (Extended Data Fig. 4a) as observed in other hematopoietic 
malignancies21. This could potentially be explained by patient-specific 
cooperating mutations and cytogenetic alterations (Extended Data 
Fig. 1). TARGET-seq analysis uniquely enabled the comparison of TP53 
multihit HSPC to TP53-WT preleukemic stem cells (‘pre-LSCs’) from the 
same TP53-sAML patients as well as healthy and MF donors, to derive a 
specific TP53 multihit signature including known p53-pathway genes 
(Extended Data Fig. 4b,c).

Integration of single-cell transcriptomes and diffusion map analy-
sis of HSPCs from TP53-sAML patients showed that TP53 multihit HSPCs 
clustered separately from TP53-WT pre-LSCs in two distinct popula-
tions with enrichment of LSC and erythroid-associated transcription, 
respectively (Fig. 2a and Supplementary Table 3), and a differentiation 
trajectory toward the erythroid-biased population (Fig. 2b), an unex-
pected finding given that erythroleukemia is uncommon in TP53-sAML 
(refs. 22,23). Sorted CD34+ TP53-multi-hit cells exhibited potential for 
erythroid differentiation in vivo and in vitro, supporting that this occurs 
downstream of the LSC population (Extended Data Fig. 5a–c). TP53 
multihit LSCs showed enrichment of cell cycle, inflammatory, signal-
ing pathways and LSC-associated transcription, whereas TP53 multihit 
erythroid cells were depleted of the latter (Extended Data Fig. 4d).

To further explore this erythroid-biased population, we projected 
TP53 multihit cells onto a previously published HD hematopoietic 
hierarchy24. TP53-sAML differed from de novo AML with an enrichment 
into HSC and early erythroid populations, whereas de novo AML was 
enriched in myeloid progenitors (Fig. 2c,d)25. A similar enrichment 
was observed for TP53 multihit cells when mapped on a Lin-CD34+ MF 

the development of rational strategies to diagnose, stratify, treat and 
potentially prevent this condition.

Myeloproliferative neoplasms (MPN) arise in hematopoietic stem 
cells (HSC) through the acquisition of mutations in JAK/STAT signaling 
pathway genes (JAK2, CALR or MPL), leading to aberrant proliferation 
of myeloid lineages6. Progression to secondary acute myeloid leuke-
mia (sAML) occurs in 10–20% of MPN and is characterized by cytope-
nias, increased myeloid blasts, acquisition of aberrant leukemia stem 
cell (LSC) properties by hematopoietic stem/progenitor cells (HSPCs) 
and median survival of less than 1 year7,8. TP53 mutations are detected 
in approximately 20–35% of post-MPN sAML9–11 (collectively termed 
TP53-sAML), often in association with loss of the remaining WT allele12 
and multiple CNAs13. Furthermore, deletion of Trp53 combined with JAK2 
V617F mutation leads to highly penetrant myeloid leukemia in mice11,14.

Notwithstanding the established role of TP53 mutation in MPN 
transformation, TP53-mutant subclones are also present in 16% of 
chronic phase MPN (CP-MPN), and in most cases, this does not herald 
the development of TP53-sAML (ref. 15). However, little is known about 
the additional genetic and nongenetic determinants of clonal evolution 
following the acquisition of a TP53 mutation. Resolving this question 
requires unraveling multiple layers of intratumoral heterogeneity, 
including reliable identification of the TP53 mutation, loss of the WT 
allele and presence of CNA. Integrating this mutational landscape 
with cellular phenotype and transcriptional signatures will resolve 
aberrant hematopoietic differentiation and molecular properties of 
LSC in TP53-sAML. This collectively requires single-cell approaches, 
which combine molecular and phenotypic analysis of HSPCs with 
allelic-resolution mutation detection, an approach recently enabled 
by the TARGET-seq technology16.

Results
Convergent clonal evolution in TP53 leukemic transformation
To characterize the genetic landscape of TP53-sAML, we analyzed 
33 TP53-sAML patients (Supplementary Table 1) through bulk-level  
targeted next-generation sequencing and single nucleotide polymor-
phism (SNP) array (Extended Data Fig. 1). We detected MPN-driver muta-
tions (JAK2 and CALR) in 28 patients (85%), and co-occurring myeloid 
driver mutations in 24 patients (73%). Multiple TP53 mutations were 
present in one-third (n = 11) of patients, including 2 patients with 3 
TP53 mutations; 82% (18 of 22) of patients with a single TP53 mutation 
showed a high variant allelic frequency (VAF) of >50%. CNAs were pre-
sent in all patients analyzed, and 87% (20 of 23) had a complex karyotype 
(≥3 CNAs; Extended Data Fig. 1a–g). Deletion or copy-neutral loss of 
heterozygosity affecting the TP53 locus (chr17p13.1) was detectable 
at the bulk level in 43% of patients (10 of 23; Extended Data Fig. 1b–d). 
Taken together, these findings support that TP53-sAML is associated 
with complex genetic intratumoral heterogeneity.

To characterize tumor phylogenies and subclonal structures, 
we performed TARGET-seq analysis16, a technology that allows 
allelic-resolution genotyping, whole transcriptome and immunophe-
notypic analysis from the same single-cell, on 17517 Lin-CD34+ HSPCs 
from 14 TP53-sAML patients (Extended Data Fig. 1a), 9 age-matched 
healthy donors (HDs) and 8 previously published myelofibrosis (MF) 
patients (Fig. 1a, gating strategy shown in Extended Data Fig. 2a).  
HSPCs WT for all mutations analyzed were present in 10 of 14  
patients (Extended Data Fig. 2b–o), providing a valuable population 
of cells for intrapatient comparison with mutation-positive cells17. 
In all cases, the dominant clone showed loss of WT TP53 through the 
following four patterns of clonal evolution: (1) bi-allelic TP53 muta-
tions by acquisition of a second mutation on the other TP53 allele, 
(2) hemizygous TP53 mutations (deleted TP53 WT allele), (3) parallel 
evolution with two clones harboring different TP53 alterations and 
(4) a JAK2 negative dominant clone with bi-allelic TP53 mutations in 
patients with previous JAK2-mutant MPN18 (Fig. 1b–e and Extended 
Data Fig. 2b–o). Bi-allelic mutations were confirmed by single molecule 
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cellular hierarchy (Extended Data Fig. 5d,e), with erythroid-biased 
populations being highly enriched in immunophenotypically defined 
MEPs (Extended Data Fig. 5f). Taken together, these findings support 
an aberrant erythroid-biased differentiation trajectory in TP53-sAML.

To determine whether upregulation of erythroid-associated tran-
scription was a more widespread phenomenon in TP53-mutant AML, 
we investigated erythroid–myeloid-associated transcription in the 
BeatAML and The Cancer Genome Atlas (TCGA) cohorts26,27. Erythroid 
scores were increased in TP53 mutant compared to TP53-WT AML, 
whereas there was no significant difference in myeloid scores (Fig. 2e–f, 
Extended Data Fig. 5g–j and scores described in Supplementary Table 3).  
Concomitantly, patients with high erythroid scores also showed 
decreased TP53-target gene expression (Extended Data Fig. 5k). We next 
investigated the expression of key transcription factors for erythroid/
granulomonocytic commitment and found increased GATA1 expression 
in Lin-CD34+ TP53 multihit HSPCs, whereas CEBPA was only expressed 
at low levels (Fig. 2g). Analysis of the BeatAML cohort revealed 
increased GATA1 and reduced CEBPA expression in association with 
TP53 mutation (Extended Data Fig. 5l), with consequent reduction in the  
CEBPA/GATA1 expression ratio (Fig. 2h). Similar findings were observed 
in TP53 knock-out or mutant isogenic MOLM13 cell lines (Extended 
Data Fig. 5m)28. These observations suggest that the CEBPA/GATA1 
expression ratio, an important transcription factor balance that affects 
erythroid versus myeloid differentiation in leukemia29,30, is disrupted 
by TP53 mutation.

To determine whether p53 directly influences myeloid–eryth-
roid differentiation, we knocked down TP53 in JAK2V617F CD34+ 
cells from MPN patients (Extended Data Fig. 5n). TP53 knock-down  
led to increased erythroid (CD71+CD235a+) and decreased myeloid 
(CD14+/CD15+/CD11b+) differentiation in vitro (Fig. 2i), and conse-
quently decreased CEBPA/GATA1 expression ratio (Fig. 2j), suggest-
ing that p53 may directly contribute to the aberrant myelo-erythroid 
differentiation observed.

As ‘stemness scores’ have previously been applied to determine 
prognosis in AML31, we next asked whether a single-cell defined TP53 
multihit LSC signature might identify AML patients with adverse 
outcomes. Single-cell multi-omics allowed us to derive a 44-gene 
‘p53LSC-signature’ (Supplementary Table 4) by comparing gene expres-
sion of HD, JAK2-mutant MF HSPC and TP53 WT pre-LSC to transcrip-
tionally defined TP53-mutant LSCs (Fig. 2a,k). High p53LSC-signature 
score (Extended Data Fig. 6a,b) was strongly associated with TP53 
mutation status, although some TP53-WT patients also showed a 
high p53LSC score. A high p53LSC score predicted poor survival in 
the independent BeatAML and TCGA cohorts, irrespective of TP53 
mutational status (Fig. 2l and Extended Data Fig. 6c–e). The p53LSC 
signature performed well as a predictor of survival, including in sAML 
patients, as compared to the previously published LSC17 score31 and 
p53-mutant score generated using all TP53-mutant HSPC rather than 
LSCs (Extended Data Fig. 6f,g and Supplementary Table 4), providing 
a powerful tool to aid risk stratification in AML.

a

MF samples

Age-matched healthy donors

Lin-CD34+ HSPCs

TARGET-seq

n = 14
10,459 cells

n = 9
5,002 cells

b

CD34
Li

ne
ag

e

Bulk genomic analysis

Multi-omic integration

c d e
Biallelic
mutation

(n = 4)

Hemizygous
mutation

(n = 6)

WT
JAK2/CALR MPN mutation LOH

TP53-HET
TP53-hemizygous
TP53-biallelic

Mutation

Transcriptome

Surfaceome
Secondary AML samples

n = 8
2,056 cells

Ref. 16

g

Parallel
evolution

(n = 2)

<1%

3.6%

JAK2
negative
evolution

(n = 2)

69.6%

1.4% <1%

13.6%

<1%

3.7 %

i

MPN collaborating

<1%

6.1 %

8.8%

17.0%

1.1%

67.0%

2.7%

3.3%

75.2%

<1%

6.0%90.1%

18.4%

10.4%

Pr
op

or
tio

n 
of

 T
P5

3
m

ul
tih

it 
ce

lls

Patient ID

G
H

00
1

G
R0

01
G

R0
02

G
R0

03
G

R0
04

G
R0

06
G

R0
07

IF
01

31
IF

03
08

IF
03

18
IF

03
91

IF
03

92
IF

03
93

G
R0

05

Normal 
karyotype CNAs

JAK2 LOH

31 donors, 17,517 cells

Subclonal
CNAs

Study layout

Pt. ID IF0131
100

80

60

40

20

0

100

80

60

40

20

0

 PDX
CD34

+

C
el

ls
 w

ith
 C

N
A 

(%
)

f

N
um

be
r o

f m
ut

at
io

ns

Number of CNAs

chr17del
(TP53 hemi)

TP53 p.278+
9abn

U2AF1

del 7

TP53 p.272+
TP53 c.672+
abn3 + del5q

Pt. ID IF0131Pt. ID GR001

JAK2CALR

TP53 
p.162+
del5q+
amp21

del5

amp5

Pt. ID GR001

 PDX
CD34

+

del5q, 
abn17
amp21

amp5

(IF0131)

(IF0391)

(GR001) (GR006)

CD34+

Sublethal irradiation 
(1.5 Gy)

Serial PB readouts

Every 4–6 weeks

h

0

0.25

0.50

0.75

1.00

abn3, del7

TP53 multihit

j
JAK2/CALR +

TP53 het

TP53 
multihit

Loss TP53-WT

+CNAs

TP53-sAML
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sAML genetic evolution. Created with BioRender.com.
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TP53-WT cells display self-renewal and differentiation defects
TARGET-seq uniquely enabled phenotypic and molecular characteri-
zation of rare TP53-WT cells, referred to as pre-LSCs, which include 
both residual HSPCs that were WT for all mutations analyzed, as well 
as HSPCs that form part of the antecedent MPN clone. These pre-LSCs 
were obtained in sufficient numbers (>20 cells) from 9 of 14 TP53-sAML 
patients, including all patterns of clonal evolution (Fig. 3a and Extended 
Data Fig. 7a). Pre-LSCs representing the antecedent MPN clone (positive 
for MPN-associated driver mutations) were more frequent (60.5%) than 
pre-LSCs that were WT for all mutations (39.5%). Pre-LSCs were enriched 
in HSC-associated genes and mapped onto HSC clusters in healthy 
and MF donor hematopoietic hierarchies (Fig. 3a,b). Index sorting 
revealed that pre-LSCs were strikingly enriched in the phenotypic HSC 
compartment, unlike TP53 multihit HSPCs (Fig. 3c and Extended Data 
Fig. 3a). Pre-LSCs were rare, as reflected by a reduction in the numbers 
of phenotypic HSCs present within the Lin-CD34+ HSPC compartment 
in TP53-sAML compared to HDs (Extended Data Fig. 7b).

We reasoned that the HSC phenotype of pre-LSCs, with reduced 
frequency in progenitor compartments, might reflect impaired dif-
ferentiation. To explore this hypothesis, we carried out scVelo analy-
sis, which showed the absence of a transcriptional differentiation 
trajectory in pre-LSCs, unlike HD HSCs (Fig. 3d). Pre-LSCs showed 
increased expression of HSC and Wnt β-catenin genes and decreased 
cell cycle genes as compared to HD and MF cells (Fig. 3e–g and Sup-
plementary Table 3). To functionally confirm these findings, we sorted 
phenotypic HSCs (to purify pre-LSCs), as well as other progenitor cells, 
from HDs, MF and TP53-sAML patients for long-term culture-initiating 
cell (LTC-IC) and short-term cultures (Fig. 3h and Extended Data  
Fig. 7c). Pre-LSC LTC-IC activity was similar to HDs and increased 
compared to MF patients, with preserved terminal differentiation 
capacity and confirmed TP53 WT genotype (Fig. 3i and Extended Data  
Fig. 7d–g). In short-term liquid culture, pre-LSCs showed reduced clo-
nogenicity, with retained CD34 expression and decreased proliferation  
(Fig. 3j and Extended Data Fig. 7h–i). In summary, we identified rare 
and phenotypically distinct pre-LSCs from TP53-sAML samples, which 
were characterized by differentiation defects and distinct stemness, 
self-renewal and quiescence signatures. As these cells were TP53 WT 
and showed normal differentiation after prolonged ex vivo culture, we 
reasoned that these functional and molecular abnormalities are likely 
to be cell-extrinsically mediated. Indeed, pre-LSCs showed enrichment 
of gene signatures associated with certain cell-extrinsic inflammatory 
mediators (TNFα, IFNγ, TGFβ and IL2; Fig. 3k).

Inflammation promotes TP53-associated clonal dominance
To understand the transcriptional signatures associated with leukemic  
progression, we analyzed samples from 5 CP-MPN patients who 
subsequently developed TP53-sAML (pre-TP53-sAML) alongside 6 
CP-MPN patients harboring TP53-mutated clones who remained in CP  
(CP TP53-MPN, median 4.43 years (2.62–5.94) of follow-up; Fig. 4a and 
Extended Data Fig. 8). Compared to TP53-sAML samples, CP TP53-MPN 
had a lower VAF and number of TP53 mutations (Extended Data  

Fig. 8a–d). The type, distribution and pathogenicity score of TP53 muta-
tions were similar between chronic and acute stages (Extended Data  
Fig. 8e,f). All five pre-TP53-sAML samples and four of the six CP TP53-MPN 
were then analyzed by TARGET-seq (Fig. 4a). HSPC immunophenotype 
was similar for pre-TP53-sAML and CP TP53-MPN patients (Extended Data 
Fig. 9a–c), and clearly distinct from the TP53-sAML stage (Extended Data 
Fig. 9d). Heterozygous TP53 clones were identified in 3 pre-TP53-sAML 
patients and all 4 CP TP53-MPN (Fig. 4b and Extended Data Fig. 9e–m). 
A minor homozygous TP53-mutated clone initially present in one CP 
TP53-MPN patient was undetectable after 4 years (Extended Data  
Fig. 9h). As TP53-heterozygous mutant HSPCs represent the direct 
genetic ancestors of TP53 ‘multihit’ LSCs, we compared gene expression 
of heterozygous TP53-mutant HSPC from pre-TP53-sAML (n = 296) to 
CP TP53-MPN (n = 273; Fig. 4b, blue box) to identify putative media-
tors of transformation. TP53-heterozygous HSPC from pre-TP53-sAML 
patients showed downregulation of TNFα- and TGFβ-associated gene 
signatures, both of which are known to be associated with HSC attri-
tion32,33, with upregulated expression of oxidative phosphorylation, 
DNA repair and interferon (IFN) response genes (Supplementary Table 5  
and Fig. 4c–e), without changes in IFN receptor expression levels or 
concurrent IFN treatment (Extended Data Fig. 9n and Supplemen-
tary Table 1). Upregulation of inflammatory signatures was detected 
in TP53-homozygous cells from the same pre-TP53-sAML patients 
at a higher level than in TP53-heterozygous cells (Extended Data  
Fig. 9o). Collectively, these findings raise the possibility that inflam-
mation might contribute to preleukemic clonal evolution toward  
TP53-sAML.

To evaluate the role of inflammation in TP53-driven leukemia 
progression, we performed competitive mouse transplantation experi-
ments between CD45.1+ Vav-iCre Trp53R172H/+ and CD45.2+ Trp53+/+ BM 
cells followed by repeated poly(I:C) or lipopolysaccharide (LPS) intra-
peritoneal injections. These experiments recapitulate chronic inflam-
mation through induction of multiple pro-inflammatory cytokines34,35 
known to be increased in the serum of patients with MPN36, including 
IFNγ (Fig. 5a and Extended Data Fig. 10a). Trp53-mutant peripheral 
blood (PB) myeloid cells, BM HSCs (Lin-Sca1+c-Kit+CD150+CD48−) 
and LSKs (Lin-Sca1+c-Kit+) were selectively enriched upon poly(I:C) 
treatment (Fig. 5b,c and Extended Data Fig. 10b–e). Crucially, the 
fitness advantage of Trp53-mutant HSCs and LSKs was exerted both 
through an increase in the numbers of Trp53R172H/+ HSPCs and a reduc-
tion in the numbers of WT competitors (Fig. 5d,e and Extended Data  
Fig. 10f,g). Treatment of chimeric mice with LPS (Fig. 5a), which induces 
an inflammatory response mediated through the release of IL1β and 
IL6 (ref. 37), among others, led to a similar increase in the number 
of Trp53-mutant PB myeloid cells and LSKs (Fig. 5f,g). These results  
indicate that a variety of inflammatory stimuli can promote expansion 
of the Trp53-mutant clone.

To determine how inflammation might alter hematopoietic  
differentiation and exert a selective pressure to drive the expansion 
of the Trp53-mutant clone, we established an inducible SCL-CreERT 
Trp53R172H/+ mouse model (Fig. 5h). Poly(I:C) treatment led to 

Fig. 2 | Distinct differentiation trajectories and molecular features of TP53-
sAML. a, Three-dimensional diffusion map of 8988 Lin-CD34+ cells from 14 sAML 
samples colored by TP53 genotype (left), LSC score (middle) and erythroid 
transcription score (right). b, Monocle3 pseudotime ordering of the same 
single cells as in a. c,d, UMAP representation of an HD hematopoietic hierarchy 
(c; ref. 24) and latent semantic index projection of TP53 multihit cells from 14 
sAML patients (d, top) and cells from de novo AML patients (d, bottom; ref. 25) 
onto the HD hematopoietic hierarchy atlas (c). e,f, Expression of an erythroid 
(e) and myeloid (f) gene score in AML patients from the BeatAML dataset 
stratified by TP53 mutational status (n = 329 TP53 WT; n = 31 TP53 mutant). 
g, CEBPA (top) and GATA1 (bottom) expression in the same cells as in a and b. 
h, CEBPA and GATA1 expression ratio in the same patient cohort as in e and f. 
i,j, Proportion of immature erythroid (CD235a+CD71+) and myeloid (CD14+, 

CD15+ or CD11b+) cells (i) and ratio of CEBPA to GATA1 expression in total cells 
(j) after 12 d of differentiation of peripheral blood CD34+ cells from patients 
with MPN transduced with shRNA targeting TP53 or shCTR. n = 5 patients, three 
independent experiments. Barplot indicates mean ± s.e.m. and two-tailed paired 
t-test P value (related to Extended Data Fig. 5n). k, Schematic representation  
of the key analytical steps to derive a 44-gene TP53-LSC sAML signature.  
l, Kaplan–Meier analysis of AML patients (n = 322) from the BeatAML cohort 
stratified by p53-LSC signature score (high, above median; low, below median) 
derived in k (related to Extended Data Fig. 6). P indicates log-rank test P value and 
HR, hazard ratio. All boxplots represent the median, first and third quartiles, and 
whiskers correspond to 1.5 times the interquartile range; ‘P’ indicates Wilcoxon 
rank sum two-sided test P value in panels e,f,h.
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inflammation-associated changes in blood cell parameters, includ-
ing anemia, leucopenia and thrombocytopenia (Extended Data  
Fig. 10h–j). Similar to the Vav-iCre model, poly(I:C) treatment pro-
moted the selection of myeloid Trp53-mutant cells in the PB (Extended 
Data Fig. 10k), with a myeloid bias induced by the inflammatory stimu
lus in PB leukocytes specifically associated with Trp53-mutation 
(Fig. 5i,j and Extended Data Fig. 10l). Analysis of HSPCs showed the 
expected selection for Trp53-mutant HSCs and LSKs following Poly(I:C) 

treatment (Extended Data Fig. 10m). Numbers of WT competitor  
erythroid progenitors were reduced upon poly(I:C) treatment as 
expected38, whereas Trp53-mutation was associated with an increase 
in erythroid progenitors that was not impacted by inflammation  
(Fig. 5k and Extended Data Fig. 10n) in line with the erythroid bias 
detected in patient samples. Finally, to determine the mecha-
nisms by which inflammation might promote a fitness advantage 
for Trp53-mutated cells, we performed cell cycle and apoptosis 
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Fig. 3 | Molecular and functional analysis of pre-LSCs in TP53-sAML patients. 
a, Three-dimensional diffusion map of 8,988 Lin-CD34+ cells from TP53-
sAML patients (related to Fig. 2a) colored by expression of an HSC signature 
(Supplementary Table 3). b, Projection of TP53-WT (n = 880) pre-LSCs on HD (left) 
and MF (right) hematopoietic hierarchy (related to Fig. 2c and Extended Data 
Fig. 5d). c, Immunophenotype of Lin-CD34+CD38− cells from four representative 
sAML patients colored by genotype. Lin-CD34+CD38−CD90+CD45RA− cells 
(HSCs) were enriched using the sorting strategy outlined in Extended Data 
Fig. 2a. d, scVelo analysis of differentiation trajectories of Lin-CD34+ cells from 
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indicates the mean for each group. P indicates the Wilcoxon rank sum test P value. 
h–j, Functional analysis of pre-LSCs. Schematic representation of HSC in vitro 
assays (h), LTC-IC colony forming unit activity (i) and short-term in vitro liquid 
culture clonogenicity (j) of HSC from HDs (n = 4), MF (n = 3) and pre-LSCs from 
TP53-sAML patients (n = 3, samples used (IF0131, IF0391 and GR001) were known 
to have TP53-WT pre-LSC in the HSC compartment). Violin plot indicates points’ 
density; dashed lines, median and quartiles, two independent experiments (i); 
barplot indicates mean ± s.e.m., three independent experiments with 30 colonies 
plated per experiment (j). P indicates two-tailed t-test P value. k, GSEA analysis of 
HALLMARK inflammatory pathways in pre-LSCs compared to HDs; positive NES 
in the heatmap represents significant (FDR q value < 0.25) enrichment in  
pre-LSCs, values indicate NES for each pathway.
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analysis following chronic poly(I:C) treatment. Cell cycle was similarly 
increased in poly(I:C)-treated WT and Trp53-mutated LSKs39; however, 
Trp53-mutated LSKs were resistant to inflammation-induced apop
tosis40 in comparison with their WT counterparts (Fig. 5l,m).

Inflammation promotes the genetic evolution of 
Trp53-mutant HSPC
As exit from dormancy promotes DNA-damage-induced HSPCs attri-
tion41, we reasoned that Trp53 mutation might rescue HSPCs that 
acquire DNA damage (and would otherwise undergo apoptosis) driven 
by chronic inflammation-associated proliferative stress. To explore this 
possibility, we carried out multiplex fluorescence in situ hybridization 
(M-FISH) karyotype analysis of Trp53+/+ LSKs expanded in vitro from 
mice following poly(I:C) treatment and Trp53R172H/+ LSKs from mice 
with or without poly(I:C) treatment. WT competitor LSK-derived cells 
from poly(I:C) treated mice were karyotypically normal. In contrast, we 
observed a striking increase in the frequency and number of karyotypic 
abnormalities in Trp53-mutated LSK-derived cells upon poly(I:C) treat-
ment (Fig. 6a–d). Collectively, these results support a model whereby 
chronic inflammation promotes the survival and genetic evolution of 
TP53-mutated cells while suppressing WT hematopoiesis, ultimately 
promoting the clonal expansion of TP53-mutant HSPCs (Fig. 6e).

Discussion
Here we unravel multilayered genetic, cellular and molecular intra
tumoral heterogeneity in TP53 mutation-driven disease transformation 
through single-cell multi-omic analysis. Allelic resolution genotyping  
of leukemic HSPCs revealed a strong selective pressure for gain  
of TP53 missense mutation, loss of the TP53-WT allele and acquisition of 
complex CNAs, including cases with parallel genetic evolution during  
TP53-sAML LSC expansion. Despite the known dominant negative 
and/or gain of function effect of certain TP53 mutations28,42, loss of 
the TP53-WT allele, a genetic event associated with a particularly  
dismal prognosis2, confers an additional fitness advantage to 
TP53-sAML LSCs. As CNA were universally present in TP53-sAML with 
a very high clonal burden, it is not possible, even with high-resolution 
single-cell analyses, to disentangle the impact of TP53-multi-hit muta-
tion versus the effects of patient-specific CNA that were inextricably 
linked in all patients analyzed.

Three distinct clusters of HSPCs were identified in TP53-sAML, 
including one characterized by overexpression of erythroid genes, 
of particular note as erythroleukemia is a rare entity, associated with 
adverse outcomes and TP53 mutation43,44. Analysis of a large AML 
cohort also revealed overexpression of erythroid genes as a more wide-
spread phenomenon in TP53-mutant AML, with disrupted balance of 
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Fig. 4 | Inflammatory pathways are upregulated in TP53-mutant HSPCs 
before transformation. a, Schematic study layout of the CP and paired samples 
patient cohort selected for TARGET-seq analysis. Created with BioRender.com. 
b, Clonal evolution of TP53-mutant CP patient samples without clinical evidence 
of transformation (CP-TP53-MPN, n = 4) and pre-TP53-sAML (patients who 
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Fig. 5 | Inflammation promotes TP53-associated clonal dominance.  
a, Experimental design of Vav-iCre WT:Trp53R172H/+ chimera serial poly(I:C) and 
LPS treatment. b–e, Analysis of chimera mice 20 weeks post-transplantation 
following three cycles of six poly(I:C) injections. Percentage of CD45.1 Trp53R172H/+ 
Mac1+ cells in the PB (b) or BM HSCs (Lin-Sca-1+c-Kit+CD150+CD48−; c), number 
of BM CD45.1 Trp53R172H/+ HSC (d) and CD45.2 WT HSC (e) per million BM cells. 
n = 11–12 mice per group in two independent experiments and three biological 
replicates. Mean ± s.e.m. is shown and P indicates a two-tailed unpaired t-test 
P value. f,g, Analysis of chimera mice 20 weeks post-transplantation following 
three cycles of eight LPS injections. Percentage of CD45.1 Trp53R172H/+ Mac1+ cells 
in the PB (f), or BM LSKs (Lin-Sca-1+c-Kit+; g). n = 10–11 mice per group in two 
independent experiments and two biological replicates. Mean ± s.e.m. is shown 
and P indicates a two-tailed unpaired t-test P value. h, Experimental design of  

SCL-Cre-ERT WT:Trp53R172H/+ chimera serial poly(I:C) treatment. i,j, Absolute counts  
of CD45.1 WT or CD45.2 Trp53R172H/+ granulo-monocytic (Ly6G+ and/or Mac1+; i)  
and lymphoid (B220+/NK1.1+/CD3+; j) PB cells at 17 weeks post-transplant.  
k, Percentage of CD45.1 WT or CD45.2 Trp53R172H/+ erythroid progenitors (Lin-Sca-1-
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from two independent experiments. Bars indicate mean ± s.e.m. and P indicates 
two-tailed unpaired t-test P value. l,m, Analysis of cell cycle (l) and apoptosis (m) 
in BM LSK cells from chimeric mice 18 weeks post-transplantation following three 
cycles of six poly(I:C) injections as in h. n = 13 control, n = 17 poly(I:C) groups (l) 
or n = 13 control, n = 14 poly(I:C) groups (m) from two independent experiments, 
mean ± s.e.m. is shown and P indicates adjusted P value from one-way Anova  
(in l, the P value was calculated using G0/G1 cell cycle phase).
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GATA1 and CEBPA expression. CEBPA knockout or mutation is reported 
to cause a myeloid to erythroid lineage switch with increased expres-
sion of GATA1 (refs. 29,30) and, in addition, GATA1 interacts with and 
inhibits p53 (ref. 45). Notably, our data do not distinguish whether 
this lineage-switch is primarily an instructive versus permissive effect 
of TP53-mutation46. A second ‘TP53-sAML LSC’ cluster allowed us to 
identify a p53LSC-signature, which can predict outcomes in AML 
independently of TP53 status. This powerful approach could be more 
broadly applied in cancer, whereby single multi-omic cell-derived 
gene scores can be used to stratify larger patient cohorts using bulk 
gene expression data.

A third TP53 WT ‘pre-LSC’ HSPC cluster was characterized by quies-
cence signatures and defective differentiation, reflecting the impaired 
hematopoiesis observed in patients with TP53-sAML. Through the 
integration of single-cell multi-omic analysis with in vitro and in vivo 
functional assays, we show that TP53-WT pre-LSCs are cell-extrinsically 
suppressed while chronic inflammation promotes the fitness advan-
tage of TP53-mutant cells, ultimately leading to clonal selection  
(Fig. 6e). Inflammation is a cardinal regulator of HSC function with many 
effects on HSC fate and function47, including proliferation-induced 
DNA-damage and depletion of HSCs41. There is emerging evidence that 
clonal HSCs can become inflammation-adapted47–49 and by altering 
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c, Violin plot of the number of karyotypic aberrations per single Trp53R172H/+ cell 
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TP53-mutant-driven transformation in MPN. Created with BioRender.com.
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the response to inflammatory challenges, mutations can thus confer a  
fitness advantage to HSCs. Here we demonstrate a hitherto unrecog-
nized effect of TP53 mutations, which conferred a marked fitness advan-
tage to HSPCs in the presence of chronic inflammation induced with 
both poly(I:C) as well as LPS. We provide evidence that TP53-mutant 
HSPCs showing dysregulated inflammation-associated gene expres-
sion are enriched in patients who will develop TP53-sAML. We propose 
that HSCs that would otherwise undergo inflammation-associated 
and DNA-damage-induced attrition are rescued by TP53 mutation, 
ultimately leading to the accumulation of HSCs that have acquired 
DNA damage, thus promoting genetic evolution that underlies disease 
progression. This hypothesis was strongly supported through in vivo 
experiments in which inflammation promoted genetic evolution of 
Trp53-mutant mouse HSPCs. Further studies are required to charac-
terize the key inflammatory mediators and molecular mechanisms 
involved, which we believe are unlikely to be restricted to a single axis, 
with a myriad of inflammatory mediators overexpressed in MPN50. 
Furthermore, loss of the Trp53-WT allele confers an additional fitness 
advantage to Trp53-mutant HSPC following DNA damage as previously 
described28, providing an explanation for the selection for multihit 
TP53-mutant clones observed in patients. Consequently, we believe 
that approaches that target the inflammatory state, rather than a spe-
cific cytokine, are likely to be required to restrain disease progression, 
as reported for bromodomain inhibitors, which, when combined with 
JAK2 inhibition, markedly reduce the serum levels of inflammatory 
cytokines51. Collectively, our findings provide a crucial conceptual 
advance relating to the interplay between genetic and nongenetic 
determinants of TP53-mutation-associated disease transformation. 
This will facilitate the development of early detection and treatment 
strategies for TP53-mutant leukemia. Because TP53 is the most com-
monly mutated gene in human cancer3,52, we anticipate that these 
findings will be of broader relevance to other cancer types.
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Methods
Ethical approval, banking and processing of human samples
Primary human samples (PB or BM; described in Supplementary  
Table 1) were analyzed with approvals from the Inserm Institutional 
Review Board Ethical Committee (project C19-73, agreement 21-794, 
CODECOH DC-2020-4324) and from the INForMeD Study (REC: 199833, 
26 July 2016, University of Oxford). Patients and normal donors pro-
vided written informed consent in accordance with the Declaration of 
Helsinki for sample collection and use in research. For secondary AML 
patients, we specifically selected samples from patients with known 
TP53 mutation.

Cells were subjected to Ficoll gradient centrifugation and for some 
samples, CD34 enrichment was performed using immunomagnetic 
beads (Miltenyi). Total mononuclear cells (MNCs) or CD34+ cells were 
frozen in FBS supplemented with 10% dimethyl sulfoxide for further 
analysis.

Targeted bulk sequencing
Bulk genomic DNA from patient samples’ mononuclear or CD34+ cells 
was isolated using DNeasy Blood & Tissue Kit (Qiagen) or QIAamp 
DNA Mini Kit (Qiagen) as per the manufacturer’s instructions.  
Targeted sequencing was performed using a TruSeq Custom Amplicon 
panel (Illumina) or a Haloplex Target Enrichment System (Agilent  
Technologies) with amplicons designed around 32, 44 or 77 genes53.  
Targets were chosen based on the genes/exons most frequently 
mutated and/or likely to alter clinical practice (diagnostic, prognostic, 
predictive or monitoring capacity) across a range of myeloid malig-
nancies (for example, MDS/AML/MPN). Targets covered in all panels 
include ASXL1, CALR, CBL, CEBPA, CSF3R, DNMT3A, EZH2, FLT3, HRAS, 
IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PHF6, RUNX1, SETBP1, 
SF3B1, SRSF2, TET2, TP53, U2AF1, WT1 and ZRSR2. Sequencing was per-
formed with a MiSeq sequencer (Illumina), according to the manufac-
turer’s protocols. Raw sequence data in FASTQ format were analyzed 
using the following variant callers and as previously described16,53: 
BWA v-0.7.12 (read alignment); Picard-tools (marking duplicates); sam-
tools v-1.2; v-1.139 (BAM file creation); GATK HaplotypeCaller v-3.4-46 
GRVC v-1.1; snpEff v-4.0 (variant calling). Run quality control included 
%DP_100X (>95%), %DP_200X (>90%), number of reads per sample 
and % reads q30 forward and reverse (>85%), read quality mean (>30) 
and percentage of mapped reads (>75%). A minimum of ten reads was 
required for variant calling. Results were analyzed after alignment of 
the reads using two dedicated pipelines, SOPHiA DDM (Sophia Genet-
ics) and an in-house software GRIO-Dx. All pathogenic variants were 
manually checked using Integrative Genomics Viewer software. The 
analysis is presented in Extended Data Figs. 1a and 8a.

Pathogenic scores for each TP53 variant (Extended Data Fig. 8e) 
were derived from the Catalog of Somatic Mutations in Cancer using 
the FATHMM-MKL algorithm. The FATHMM-MKL algorithm integrates 
functional annotations from ENCODE with nucleotide-based hidden 
Markov models to predict whether a somatic mutation is likely to have 
functional, molecular and phenotypic consequences. Scores greater 
than 0.7 indicate that a somatic mutation is likely pathogenic, while 
scores less than 0.5 indicate a neutral classification.

The type and location of TP53 mutations from this study, de novo 
AML patients and CHIP individuals represented in Extended Data  
Fig. 8f were generated using Pecan Portal54. De novo AML TP53 muta-
tions were downloaded from ref. 55 and ref. 27; CHIP-associated TP53 
mutations were obtained from refs. 56–58.

Sanger sequencing of patient-associated mutations  
in PDX models
Genomic DNA from PDX sorted populations (LMPP: hCD45+Lin-CD34+C
D38−CD45RA+CD90− and GMP: hCD45+Lin-CD34+CD38+CD45RA+CD123
+) was extracted using QIAamp DNA Mini Kit (Qiagen). Sanger sequenc-
ing was performed with forward or reverse primers (Supplementary 

Table 6a) targeting mutations identified by targeted bulk sequencing 
in the corresponding primary samples using Mix2seq kit (Eurofins 
Genomics) and sequences were analyzed with the ApE editor.

SNP array sample preparation, copy number variant and loss 
of heterozygosity analysis
Bulk genomic DNA from patients’ MNCs was isolated using DNeasy 
Blood & Tissue Kit (Qiagen) as per the manufacturer’s instructions. 
250 ng of gDNA was used for hybridization on an Illumina Infinium 
OmniExpress v1.3 BeadChips platform.

To call mosaic copy number events in primary patient samples, 
genotyping intensity data generated were analyzed using the Illumina 
Infinium OmniExpress v1.3 BeadChips platform. Haplotype phas-
ing, calculation of log R ratio (LRR) and B-allele frequency (BAF), and 
calling of mosaic events were performed using MoChA WDL pipe-
line v2021-01-20 (MoChA: a BCFtools extension to call mosaic chro-
mosomal alterations starting from phased VCF files with either BAF 
and LRR or allelic depth) as previously described59,60. In brief, MoChA 
comprises the following steps: (1) filtering of constitutional duplica-
tions; (2) use of a parameterized hidden Markov model to evaluate the 
phased BAF for variants on a per-chromosome basis; (3) deploying a  
likelihood ratio test to call events; (4) defining event boundaries;  
(5) calling copy number and (6) estimating the cell fraction of mosaic 
events. A series of stringent filtering steps were applied to reduce the 
rate of false positive calls. To eliminate possible constitutional and 
germline duplications, we excluded calls with lod_baf_phase <10, those 
with length <500 kbp and rel_cov >2.5, and any gains with estimated 
cell fraction >80%, log(R) > 0.5 or length <24 Mb. Given that interstitial 
LOH are rare and likely artefactual, all LOH events <8 Mb were filtered59. 
Events on genomic regions reported to be prone to recurrent artifact59 
(chr6 < 58 Mb, chr7 > 61 Mb and chr2 > 50 Mb) were also filtered, and 
those where manual inspection demonstrated noise or sparsity in  
the array.

To find common genomic lesions on a focal and arm level, 
Infinium OmniExpress arrays were initially processed with Illumina 
Genome Studio v2.0.4. Following this, LRR data were extracted 
for all probes and array annotation was obtained from Illumina 
(InfiniumOmniExpress-24v1-3_A1). LRR data were then smoothed and 
segmentation called using the CBS algorithm from the DNACopy61,62 
v1.60.0 package in R. A minimum number of five probes was required 
to call a segment, and segments were analyzed using GenomicRanges63 
v1.38.0. Definitions of amplification, gain, loss and deletion events 
were as outlined in ref. 64. Segmentation data were then analyzed in 
GISTIC65 v2.023.

For PDX models, genomic DNA from sorted populations (LMPP: 
hCD45+Lin-CD34+CD38−CD45RA+CD90− and GMP: hCD45+Lin-CD34+ 
CD38+CD45RA+CD123+) was extracted using QIAamp DNA Mini Kit 
(Qiagen). SNP-CGH array hybridization was performed using the 
Affymetrix Cytoscan HD (Thermo Fisher Scientific) according to the 
manufacturer’s recommendations. DNA amplification was checked 
using BioSpec-nano spectrophotometer (Shimadzu) with expected 
concentrations between 2,500 ng μl−1 and 3,400 ng μl−1. DNA length dis-
tribution post fragmentation was checked using D1000 ScreenTapes 
on Tapestation 4200 instrument (Agilent Technologies). Cytoscan 
HD array includes 2.6 million markers combining SNP and nonpoly-
morphic probes for copy number evaluation. Raw data CEL files were 
analyzed using the Chromosome Analysis Suite software package (v4.1, 
Affymetrix) with genome version GRCh37 (hg19) only if achieving the 
manufacturer’s quality cut-offs. Only CNAs >10 kb were reported in 
the analysis presented in Extended Data Fig. 3k,l.

Single-molecule cloning and sequencing of patient-derived 
cDNA
To experimentally verify the bi-allelic nature of TP53 mutations  
in TP53-sAML patients, cDNA from a selected patient with putative 
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TP53 bi-allelic status (patient ID GR004) was PCR-amplified using 
cDNA-specific primers spanning both TP53 mutations (fwd: 
5′-GACCCTTTTTGGACTTCAGGTG-3′ and rev: 5′-CCATGAGCGCTG 
CTCAGATAG-3′). PCR amplification was performed with KAPA 2X Ready 
Mix (Roche), a Taq-derived enzyme with A-tailing activity, for direct 
cloning into a TA vector (pCR2.1 TOPO vector, TOPO TA Cloning Kit, 
Invitrogen) as per the manufacturer’s instructions. Sanger sequencing 
for 10 different colonies was performed using M13 forward and reverse 
primers; a representative example is shown in Extended Data Fig. 1h.

Fluorescence-activated cell sorting (FACS) and single-cell 
isolation
Single-cell FACS-sorting was performed as previously described16, 
using BD Fusion I and BD Fusion II instruments (Becton Dickinson) for 
96-well plate experiments or bulk sorting experiments, and SH800S or 
MA900 (SONY) for 384-well plate experiments. Experiments involving 
the isolation of human HSPCs included single color stained controls 
(CompBeads, BD Biosciences) and Fluorescence Minus One controls 
(FMOs). Antibodies used for HSPC staining are detailed in Supplemen-
tary Table 7a (combinations indicated as Panel A or B).

Briefly, single cells were directly sorted into 384-well plates con-
taining 2.07 μl of TARGET-seq lysis buffer66. Lineage-CD34+ cells were 
indexed for CD38, CD90, CD45RA, CD123 and CD117 markers, which 
allowed us to record the fluorescence levels of each marker for each 
single cell. The 7-aminoactinomycin D (7-AAD) was used for dead cell 
exclusion. Flow cytometry profiles of the human HSPC compartment 
(Extended Data Figs. 2 and 9) were analyzed using FlowJo software 
(version 10.1, BD Biosciences).

Single-cell TARGET-seq cDNA synthesis
Reverse transcription (RT) and PCR steps were performed as previously 
described66. Briefly, SMARTScribe (Takara, 639537) retrotranscriptase, 
RNAse inhibitor (Takara, 2313A) and a template-switching oligo were 
added to the cell lysate to perform the retrotranscription step. Imme-
diately after, a PCR mix comprised of SeqAMP (Takara, 638509) and 
ISPCR primer (binding to a common adapter sequence in all cDNA 
molecules) was used for the PCR step with 24 cycles of amplification. 
Target-specific primers spanning patient-specific mutations were also 
added to RT and PCR steps (Supplementary Table 6a). After cDNA syn-
thesis, cDNA from up to 384 single-cell libraries was pooled, purified 
using Ampure XP Beads (0.6:1 beads to cDNA ratio; Beckman Coulter) 
and resuspended in a final volume of 50 μl of EB buffer (Qiagen). The 
quality of cDNA traces was checked using a high-sensitivity DNA kit in 
a Bioanalyzer instrument (Agilent Technologies).

Whole transcriptome library preparation and sequencing
Pooled and bead-purified cDNA libraries were diluted to 0.2 ng μl−1 
and used for tagmentation-based library preparation using a custom 
P5 primer and 14 cycles of PCR amplification66. Each indexed library 
was purified twice with Ampure XP beads (0.7:1 beads to cDNA ratio), 
quantified using Qubit dsDNA HS Assay Kit (Invitrogen, Q32854) and 
diluted to 4 nM. Libraries were sequenced on a HiSeq4000, HiSeqX 
or NextSeq instrument using a custom sequencing primer for read1 
(P5_seq: GCCTGTCCGCGGAAGCAGT GGTATCAACGCAGAGTTGC*T, 
PAGE purified) with the following sequencing configuration: 15 bp 
R1; 8 bp index read; 69 bp R2 (NextSeq) or 150 bp R1; 8 bp index read; 
150 bp R2 (HiSeq).

TARGET-seq single-cell genotyping
After RT-PCR, cDNA + amplicon mix was diluted 1:2 by adding 6.25 μl of 
DNAse/RNAse free water to each well of 384-well plate. Subsequently, 
a 1.5 μl aliquot from each single-cell derived library was used as input 
to generate a targeted and Illumina-compatible library for single-cell 
genotyping66. In the first PCR step, target-specific primers containing a 
plate-specific barcode (Supplementary Table 6b) were used to amplify 

the target regions of interest. In a subsequent PCR step, Illumina com-
patible adapters (PE1/PE2) containing single-direction indexes (Access 
Array Barcode Library for Illumina Sequencers-384, Single Direction, 
Fluidigm) were attached to pre-amplified amplicons, generating 
single-cell barcoded libraries. Amplicons from up to 3,072 libraries 
were pooled and purified with Ampure XP beads (0.8:1 ratio beads to 
product; Beckman Coulter). These steps were performed using Biomek 
FxP (Beckman Coulter), Mosquito (TTP Labtech) and VIAFLO 96/384 
(INTEGRA Biosciences) liquid handling platforms. Purified pools were 
quantified using Qubit dsDNA HS Assay Kit (Invitrogen, Q32854) and 
diluted to a final concentration of 4 nM. Libraries were sequenced on 
a MiSeq or NextSeq instrument using custom sequencing primers as 
previously described66 with the following sequencing configuration: 
150 bp R1; 10 bp index read; 150 bp R2.

Targeted single-cell genotyping analysis
Data preprocessing. For each cell, the FASTQ file containing both 
targeted gDNA and cDNA-derived sequencing reads was aligned to 
the human reference genome (GRCh37/hg19) using Burrows–Wheeler 
Aligner (BWA v0.7.17) and STAR67 (v2.6.1d). Custom perl scripts were 
used to demultiplex the gDNA and mRNA reads in the BAM file into 
separate SAM files based on targeted-sequencing primer coordinates 
(https://github.com/albarmeira/TARGET-seq). Next, Samtools68 (v1.9) 
was used to concatenate the BAM header to the resulting SAM files 
before reconverting the SAM file to BAM format, which was subse-
quently sorted by genomic coordinates and indexed. Both gDNA and 
mRNA reads were tagged with the cell’s unique identifier using Picard 
(v2.3.0) ‘AddOrReplaceReadGroups’ and duplicate reads were subse-
quently marked using Picard ‘MarkDuplicates’. The sequencing reads 
overhanging into intronic regions in the mRNA reads were additionally 
hard-clipped using GATK (v4.1.2.0) SplitNCigarReads69,70.

Variant calling. Variants were called from the processed BAM 
files using GATK Mutect2 with the options (--tumor-lod-to-emit 
2.0 --disable-read-filter NotDuplicateReadFilter --max-reads-per- 
alignment-start) to increase the sensitivity of detecting low-frequency 
variants. The frequency of each nucleotide (A, C, G, T) and indels at each 
predefined variant site were also called using a Samtools mpileup as 
previously described16. Lastly, the coverage at each predefined variant 
site was computed using Bedtools71 (v2.27.1).

To determine the coverage threshold of detection for each variant 
site, the coverage for ‘blank’ controls (empty wells) was first tabulated. 
A cut-off coverage outlier value was computed as having a coverage 
exceeding 1.5 times the length of the interquartile range from the 75th 
percentile. Next, a value of 30 was added to this outlier value to yield 
the final coverage threshold to be used for genotype assignment.

Genotype assignment. For each predefined variant site, the number 
of reads representing the reference and alternative (variant) alleles 
for indels (insertion and deletions) and single nucleotide variants 
(SNVs) were tabulated from the outputs of GATK Mutect2 and Samtools 
mpileup, respectively.

Here a genotype scoring system was introduced to assign each variant 
site into one of the following three possible genotypes: WT, heterozygous 
or homozygous mutant. Chi-square ( 2) test was first used to compare the 
observed frequency of reference and alternative alleles against the 
expected fraction of reference and alternative alleles corresponding to 
the three genotypes. The expected fraction of the reference alleles was 
0.999, 0.5 and 0.001, and the expected fraction of the alternative alleles 
was 0.001, 0.5 and 0.999 for WT, heterozygous and homozygous mutant 
genotype, respectively. The 2 statistics were then tabulated for each fitted 
model and converted to genotype scores using the following formula:

Scoregenotype =
1

log10(χ2 + 1)
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The genotype assigned to the variant site was based on the geno-
type model with the highest score.

Next, the variant (alternative) allele frequency (VAF) was com-
puted and variant sites with 2 < VAF < 4 and 96 < VAF < 98 were reas-
signed as ‘ambiguous’. For cells with no variants detected at the specific 
variant sites by the mutation callers (either due to the absence of the 
variants, that is WT genotype, or that such variants were present below 
the detection limit), a ‘WT’ genotype was assigned to those cells with 
coverage above the specific threshold and ‘low coverage’ to those cells 
with coverage below such threshold.

Taken together, each variant site was assigned one of the  
five following genotypes: WT, heterozygous, homozygous mutant, 
ambiguous or low coverage. Variants with ambiguous or low  
coverage assignments for a particular cell were excluded from  
the analysis.

Computational reconstruction of clonal hierarchies
Genotypes for each single cell were recoded for input to SCITE in a 
manner inspired by ref. 72; each mutation in each gene was coded as 
two loci, representing two different alleles. In the first recorded loci, 
all homozygous calls from each mutation where coded as heterozy-
gous genotype calls. In the second recorded loci, all heterozygous and 
homozygous genotype calls in the original mutation matrix were coded 
as homozygous reference (that is, WT) and heterozygous, respec-
tively. For example, if for a certain mutation 0 represents WT status,  
1 encodes heterozygous and 2 refers to homozygous status, these would 
be encoded as (0,0), (1,0) and (1,1), respectively, where the first term 
in the parenthesis corresponds to the first loci and the subsequent to 
the second loci.

Then, SCITE was used (git revision 2016b31, downloaded from 
https://github.com/cbg-ethz/SCITE.git; ref. 73) to sample 1,000 muta-
tion trees from the posterior for every single-cell genotype matrix cor-
responding to a particular patient, where all possible mutation trees 
are equally likely a priori. For patients in which several disease time 
points were available, all time points were merged for SCITE analysis. 
As parameters for every SCITE run ‘-fd 0.01’ (corresponding to the allelic 
dropout (ADO) rate of reference allele in our adapted SCITE model), 
‘-ad 0.01’ (corresponding to the ADO of the alternate allele), a chain 
length (-l) of 1e6 and a thinning interval of 1 while marginalizing out 
cell attachments (-p 1 -s) were used.

To summarize the posterior tree sample distribution, the number 
of times a particular sample matched each tree was computed. For 
each patient, the most common tree topology in the posterior tree 
samples is reported (Extended Data Figs. 2b–o and 9e–m), where ‘pp’ 
is the proportion of samples that match this tree. For each clade in 
the most common posterior tree, clade probabilities were estimated  
as the proportion of trees in the posterior that contained the clade. 
These are indicated in each square for each mutation in Extended Data 
Figs. 2b–o and 9e–m.

Clone assignment. For every patient’s most common posterior tree, 
we assigned every cell to the tree node that matches the genotype of 
that particular cell. If an exact match was not found, then for every tree 
node, the loss of assigning a cell to that node was calculated using the 
following loss function:

l(M) = log (ADO) (M [1, 2] +M [3, 2]) + log (FD) (M [2, 1] +M [2, 3])

+log(ADO2FD)(M [1, 3] +M [3, 1])

where M is a confusion matrix generated across all loci of a cell in which 
the first index represents the genotype that was measured for that 
particular cell (1 = homozygous reference, 2 = heterozygous, 
3 = homozygous alternate), and the second index represents the geno-
type implied by the tree node. ADO = 0.01 and FD = 0.001 were used. 
Every cell was assigned to the node with the lowest loss l. For the trees 

presented in Extended Data Figs. 2b–o and 9e–m, only the numbers of 
cells with exact genotype matches were reported.

Testing for evidence of homozygous genotypes. Due to the nature 
of our loci-specific mutation encoding (each gene is encoded as two 
loci), homozygous mutations are placed in the clonal hierarchy inde-
pendently of their accuracy. Therefore, for every patient and at every 
locus with observed homozygous alternate genotype calls, the tested 
null hypothesis was that all homozygous alternate genotype calls are 
due to ADO at a level not exceeding 0.05 using a one-tailed binomial 
test. The total number of draws for the test is the number of heterozy-
gous and homozygous alternate genotype calls at the locus, the number 
of successful draws is the number of homozygous alternate calls and 
the success rate is 0.05. Only homozygous alternate genotype calls 
below this 0.05 cut-off were reported in Extended Data Figs. 2b–o and 
9e–m; the results of the binomial test are reported for each patient and 
mutation in Supplementary Table 8.

Computational validation of TP53 bi-allelic status from 
single-cell targeted genotyping datasets
To further validate the bi-allelic status of TP53 mutations in our dataset, 
the patterns of ADO in TARGET-seq single-cell genotyping data from 
patients carrying at least two different TP53 mutations were investi-
gated (n = 6; Extended Data Fig. 1j).

To test the hypothesis that the observed TP53-WT/TP53- 
homozygous (TP53-WT/HOM; or (0,2)) cells are the result of a chro-
mosomal loss (and therefore, in different alleles), the following null 
hypothesis (H0) was formulated: observed TP53-WT/HOM cells are dou-
ble ADO events. Under H0, every TP53-WT/HOM cell (0,2), TP53-HOM/
WT cell (2,0), TP53-HOM/HOM (2,2) as well as an unknown number of 
TP53-WT/WT (0,0) are the result of a TP53-HET/HET (1,1) cell undergo-
ing ADO at both sites. The following assumptions were made: (1) ADO 
is unbiased toward HOM or WT and (2) ADO events at each TP53 site are 
independent. The null hypothesis was then tested with a binomial test, 
where the number of (2,2) events should be half the sum of (0,2) + (2,0) 
events (Extended Data Fig. 1j). (0,0) events were disregarded.

If TP53 mutations are bi-allelic, the expected number of WT/HOM 
and HOM/WT would be higher than HOM/HOM cells considering 
TARGET-seq expected ADO rates (1–5%).

Single-cell 3′-biased RNA-sequencing data preprocessing
FASTQ files for each single cell were generated using bcl2fastq (version 
2.20) with default parameters and the following read configuration: 
Y8N*, I8, Y63N*. Read 1 corresponds to a cell-specific barcode, index 
read corresponds to an i7 index sequence from each cDNA pool and 
read 2 corresponds to the cDNA molecule. PolyA tails were trimmed 
from demultiplexed FASTQ files with TrimGalore (version 0.4.1). Reads 
were then aligned to the human genome (hg19) using STAR (version 
2.4.2a), and counts for each gene were obtained with FeatureCounts 
(version 1.4.5-p1; options–primary). Counts were then normalized 
by dividing each gene count by the total library size of each cell and 
multiplying this value by the median library size of all cells processed, 
as implemented in the ‘normalize_UMIs’ function from the SingCellaR 
package74 (version 1.2.1; https://github.com/supatt-lab/SingCellaR).  
A summary of the preprocessing pipeline can be found at https://
github.com/albarmeira/TARGET-seq-WTA.

Quality control was performed using the following parameters: 
number of genes detected >500, percentage of ERCC-derived reads 
<35%, percentage of mitochondrial reads <0.25% and percentage of 
unmapped reads <75%. Cells with less than 2,000 reads in batch1, 5,000 
reads in batch2 and 20,000 reads in batch3 were further excluded. 
This QC step was performed independently for each sequencing batch 
owing to differences in sequencing depth (mean library size: 42,949 
batch 1, 93,580 batch 2 and 171,393 batch 3). After these QC steps, 7,123 
cells passed QC for batch 1, 5,779 for batch 2 and 6,319 for batch 3 (79.3%, 
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68.9% and 80.3% of cells processed, respectively). Then, 2,734 cells from 
a previously published study16 corresponding to 8 MF patients and 2 
normal donor controls were further integrated, encompassing a final 
dataset of 21,955 cells in total.

Identification of highly variable genes
Highly variable genes above technical noise were identified by fitting 
a gamma generalized linear model (GLM) of the log2(mean expression 
level) and coefficient of variation for each gene, using the ‘get_vari-
able_genes_by_fitting_GLM_model’ from SingCellaR package and the 
following options: mean_expr_cutoff = 1, disp_zscore_cutoff = 0.1, 
quantile_genes_expr_for_fitting = 0.6 and quantile_genes_cv2_for_ 
fitting = 0.2. Those genes with a coefficient of variation above the fitted 
model and expression cut-off were selected for further analysis, exclud-
ing those annotated as ribosomal or mitochondrial genes.

CNA inference from single-cell transcriptomes
InferCNV (v1.0.4) was used to identify CNAs in single-cell transcrip-
tomes75 (https://github.com/broadinstitute/inferCNV/wiki). Briefly, 
inferCNV creates genomic bins from gene expression matrices and 
computes the average level of expression for each of these bins. The 
expression across each bin is then compared to a set of normal control 
cells, and CNAs are predicted using a hidden Markov model. For each 
patient, inferCNV was performed with the following parameters: ‘cut-
off = 0.1, denoise = T, HMM = T’, compared to the same set of normal 
donor control cells (n = 992). To identify CNA subclones, inferCNV in 
analysis_mode = ‘subclusters’ was used. CNAs identified by inferCNV 
were manually curated by removing those with size <10 kb, merging 
adjacent CNA calls with identical CNA status into larger CNA intervals 
and comparing them to SNP-Array bulk CNA calls. Finally, to generate 
combined TARGET-seq single-cell genotyping and CNA-based clonal 
hierarchies, the CNA status from each inferCNV cluster was assigned 
to its predominant genotype.

Dimensionality reduction, data integration and clustering
PCA was performed using ‘runPCA’ function from the SingCellaR  
R package, and Force-directed graph analysis was subsequently per-
formed using the ‘runFA2_ForceDirectedGraph’ with the top 30 PCA 
dimensions to generate the plots in Extended Data Fig. 4a.

For the analysis of patient IF0131 presented in Extended Data  
Fig. 3m, PCA was performed using ‘runPCA’ function from the  
SingCellaR R package and then UMAP was performed using the  
‘runUMAP’ function with the top ten PCA dimensions and the follow-
ing options: n.neighbors = 20, uwot.metric = ‘correlation’, uwot.min.
dist = 0.30, n.seed = 1.

Integration of TARGET-seq single-cell transcriptomes from 10,459 
cells corresponding to 14 TP53-sAML samples was performed using 
‘runHarmony’ function implemented in the SingCellaR package, using 
the patient ID as covariate and the following options: n.dims.use = 20, 
harmony.theta = 1, n.seed = 1. Diffusion map analysis was performed 
using ‘runDiffusionMap’ with the integrative Harmony embeddings 
and the following parameters: n.dims.use = 20, n.neighbors = 5, dis-
tance = ‘euclidean’. Signature scores were calculated using ‘plot_diffu-
sionmap_label_by_gene_set’ to generate the plots in Figs. 2a and 3a. Only 
cells with assigned genotypes ‘TP53 multihit’ and ‘TP53-WT’ are shown.

Pseudotime trajectory analysis
Monocle3 (ref. 76; https://cole-trapnell-lab.github.io/monocle3/) 
was used to infer differentiation trajectories from single-cell tran-
scriptomes. Raw UMI count matrix and clustering annotations were 
extracted from the SingCellaR object to build a Monocle3 ‘cds’ object. 
Next, we retrieved the first two components of the diffusion map (DC1 
and DC2), and the ‘learn_graph’ function was used to calculate the tra-
jectory on the two-dimensional diffusion map, using TP53-WT preleu-
kemic cell cluster as the root node. Pseudotime was calculated using 

‘order_cells’ function and overlayed on the diffusion map embeddings 
to generate the plot in Fig. 2b.

Differential expression analysis
Differentially expressed genes from TARGET-seq datasets were iden-
tified using a combination of nonparametric Wilcoxon test, to com-
pare the expression values for each group, and Fisher’s exact test, to 
compare the frequency of expression for each group, as previously 
described17. Logged normalized counts were used as input for this 
comparison, including genes expressed in at least two cells. Combined 
P values were calculated using Fisher’s method and adjusted P values 
were derived using Benjamini–Hochberg procedure. Significance level 
was set at P-adjusted < 0.05. For the analysis presented in Extended Data 
Fig. 4b and Supplementary Table 2, the top 100 differentially expressed 
genes with log2(FC) > 0.3 and at least 20% expressing cells are shown. 
Differentially expressed genes identified between TP53-multihit versus 
TP53-WT cells were further assessed for the enrichment of known p53 
target genes (337 curated p53 target genes from ref. 77) for the analysis 
presented in Extended Data Fig. 4c. We assessed the extent of overlap 
of these gene lists using the R package GeneOverlap. The overlapping 
genes were further assessed for the enrichment of p53-related path-
ways using the R package clusterProfiler.

For the analysis presented in Fig. 2k,l, only genes overexpressed 
in TP53 multihit cells and log2(FC) > 0.75 were included; for Fig. 4d, 
only those with log2(FC) > 1 were considered. Violin plots (Fig. 4e and 
Extended Data Fig. 9n) from selected differentially expressed genes 
were generated using ‘ggplot2’ package in R.

Gene-set enrichment analysis
For analysis involving <600 cells (Fig. 4c and Supplementary Table 5),  
GSEA was performed using GSEA software version 4.0.3 (www.
gsea-msigdb.org/gsea/index.jsp) with default parameters and 1,000 
permutations on the phenotype, using log2(normalized counts).

For analysis involving >600 cells per group (Fig. 3k and Extended 
Data Figs. 4d and 9o), GSEA was performed with ‘identifyGSEAPre-
rankedGene’ function from SingCellaR R package with default options. 
Briefly, differential expression analysis was performed between two 
cell populations using the Wilcoxon rank sum test, and the result-
ing P values were adjusted for multiple testing using the Benjamini–
Hochberg approach. Before the differential expression analysis, 
down-sampling was performed so that both cell populations had 
the same number of cells. Next, −log10(P value) transformation was 
performed and the resulting P values were multiplied by +1 or −1 if the 
corresponding log2(FC) was >0.1 or <−0.1, respectively. The gene list 
was ranked using this statistic in ascending order and used as input 
for GSEA analysis using ‘fgsea’ function from the fgsea R package with 
default options.

MSigDB HALLMARK v7.4 50-gene sets or previously published 
signatures (https://www.gsea-msigdb.org/gsea/msigdb/cards/ 
GENTLES_LEUKEMIC_STEM_CELL_UP) were used for all analysis. Nor-
malized enrichment scores were displayed in a heatmap using pheat-
map R package. Gene sets with false discovery rate (FDR) q value lower 
than 0.25 were considered significant.

Projection of single-cell transcriptomes
A previously published human hematopoietic atlas was downloaded 
from https://github.com/GreenleafLab/MPAL-Single-Cell-2019 and 
used as a normal hematopoietic reference to project TP53-sAML and 
de novo AML transcriptions using Latent Semantic Index Projection24. 
Common genes to all datasets were selected, and then TP53-sAML 
or previously published de novo AML cells25 were projected using 
‘projectLSI’ function for the analysis presented in Fig. 2c,d. A previ-
ously published human MF atlas78 was used as a reference to project 
TP53-sAML multihit cells in the analysis presented in Extended Data 
Fig. 5d,e, using previously defined force-directed graph embeddings.
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Velocyto analysis
Loom files were generated for each single cell using velocyto (v0.17.13) 
with options -c and -U, to indicate that each BAM represents an inde-
pendent cell and reads are counted instead of molecules (UMIs), respec-
tively79. The individual loom files were subsequently merged using the 
combine function from the loompy Python module.

HDs with at least 300 cells with RNA-sequencing data and patients 
with at least 300 cells consisting of >50 preleukemic (TP53 WT) cells and 
>50 TP53 multihit cells were included for analysis. For each individual, 
the Seurat object was created from the merged loom file and processed 
for downstream RNA-velocity analysis80. Specifically, for each patient, 
the spliced RNA counts were normalized using regularized negative 
binomial regression with the SCTransform function81. Next, linear 
dimension reduction was performed using RunPCA function and the 
first 30 principal components were further used to perform nonlinear 
dimension reduction using the RunUMAP function. Ninety-six multiple 
rate kinetics (MURK) genes previously shown to possess coordinated 
step-change in transcription and hence violate the assumptions behind 
scVelo were removed82. The processed and MURK gene-filtered Seurat 
object was then saved in h5Seurat format using the SaveH5Seurat func-
tion and finally converted to h5ad format using the ‘Convert’ function.

AnnData object was created from the h5ad file using the scvelo 
python module for RNA velocity analysis83. Highly variable genes were 
identified and the corresponding spliced and unspliced RNA counts 
were normalized and log2-transformed using the scvelo.pp.filter_
and_normalize function. Next, the first- and second-order moments 
were computed for velocity estimation using the scvelo.pp.moments 
function. The velocities (directionalities) were computed based on 
the stochastic model as defined in the scvelo.t1.velocity function, and 
the velocities were subsequently projected on the UMAP embeddings 
generated from Seurat above. Finally, the UMAP embeddings were 
annotated using the HSPC and erythroid lineage signature scores74 
and TP53 mutation status. For each cell, the cell lineage signature score 
was computed using the average SCTransform expression values of the 
individual cell lineage genes.

Analysis of bulk BeatAML and TCGA gene expression datasets
Data retrieval and preprocessing. Two publicly available AML cohorts 
with genetic mutation and RNA-sequencing data available were used to 
validate findings from our single-cell analysis, namely BeatAML26 and 
TCGA27. Gene expression values in FPKM (fragments per kilobase of 
transcript per million mapped reads) were retrieved from the National 
Cancer Institute (NIH) Genomic Data Commons (GDC)84. Gene expres-
sion values were then offset by 1 and log2 transformed. TP53 point 
mutation status was retrieved from the cBio Cancer Genomics Portal 
(cBioPortal)85. Clinical data including survival data for BeatAML and 
TCGA were retrieved from the BeatAML data viewer (Vizome) and NIH 
GDC, respectively.

We selected samples from the BeatAML cohort with an AML 
diagnosis (540 de novo AML and 96 secondary AML) collected within  
1 month of the patient’s enrollment in the study, and with both TP53 
mutation status and RNA-sequencing data available. For patients for 
whom multiple samples were available, samples were collapsed to 
obtain patient-level data. Specifically, the mean gene expression value 
for each gene from multiple samples was used to represent patient-level 
gene expression value. Furthermore, patients with at least one sample  
with a TP53 mutation were considered TP53-mutant. Analysis of  
TP53 VAF and reported karyotypic abnormalities indicated that  
the vast majority of patients could be classified as ‘multi-hit’, and  
therefore patients were classified as TP53-mutant or WT without  
taking into account TP53 allelic status. In total, 360 patients with  
TP53 mutation status (329 TP53 WT and 31 TP53 mutant) and RNA- 
sequencing data available were included for analysis. Of these, 322 
patients had concomitant survival data available (294 TP53 WT  
and 28 TP53 mutant).

The TCGA cohort consisted of 200 de novo AML patients repre-
sented by one sample each, of which 151 patients had TP53 mutation 
status (140 TP53 WT and 11 TP53 mutant) and RNA-sequencing data 
available, and were included for analysis. Of these, 132 patients had 
concomitant survival data available (124 TP53 WT and 8 TP53 mutant).

Cell lineage gene signature scores. For each sample, a given cell line-
age gene signature score was computed as the mean expression values 
of the individual genes belonging to the cell lineage gene signature. 
Here the gene signature scores for two cell lineages were computed, 
namely myeloid and erythroid populations. Two gene sets for each 
cell lineage were compiled. The first gene set was based on cell line-
age markers previously reported in the literature, whereas the second 
gene set was based on cell lineage markers derived from analyzing a 
published single-cell dataset24. Genes from each score are described 
in Supplementary Table 3.

For the former approach, six erythroid genes (KLF1, GATA1, ZFPM1, 
GATA2, GYPA and TFRC; Fig. 2e and Extended Data Figs. 5k,m and seven 
myeloid genes (FLI1, SPI1, CEBPA, CEBPB, CD33, MPO and IRF8; Fig. 2f) 
were identified. For the latter approach, the expression values of eryth-
roid and myeloid cell clusters were first compared separately against 
all other cell clusters using Wilcoxon ranked sum test. The erythroid 
cluster consisted of the early and late erythroid populations, while 
the myeloid cluster consisted of granulocyte, monocyte and den-
dritic cell populations. Erythroid and myeloid-specific gene signatures 
were defined as genes having FDR values <0.05 and log2(FC) > 0.5 in 
≥20 and 17 comparisons, respectively. In total, 100 erythroid genes 
and 135 myeloid genes were identified from this single-cell dataset  
(Supplementary Table 3) and were used to compute the scores  
presented in Extended Data Fig. 5g–j.

TP53 target gene score. Genes downregulated in TP53-multihit com-
pared to TP53-WT cells (defined as per ‘differential expression analysis’ 
section above; related to Extended Data Fig. 4b) and p53 targets posi-
tively regulated from ref. 77 were used to compute a TP53-target gene 
score presented in Extended Data Fig. 5k.

Prognostic signatures and Cox-regression survival models
LSC signature score. The 17-gene LSC17 gene set was retrieved  
from ref. 31. For each sample, the LSC17 score was defined as the linear 
combination of gene expression values weighted by their respective 
regression coefficients.

To identify TP53-sAML LSC signatures from our TARGET single-cell 
dataset, two different approaches were used. First, differentially 
expressed genes were identified as overexpressed in all Lin-CD34+ 
TP53-multihit cells regardless of their transcriptional classification 
(p53-all-cells) versus MF, HD and TP53-WT preleukemic cells; this gene 
set consists of 29 genes (Supplementary Table 4a). For the second  
approach, the same analysis was performed, but TP53-multihit cells 
transcriptionally defined as LSCs (falling in the LSC-like cluster;  
Fig. 2a, middle) were specifically selected; this gene-set is comprised 
of 51 genes (p53LSC; Supplementary Table 4a).

Next, lasso cox regression with tenfold cross-validation imple-
mented in the glmnet R package (version 4.1-1) was used to identify 
p53-all-cells and p53-LSC genes that were associated with survival 
and to estimate their respective regression coefficients86. Specifically, 
Harrel’s concordance measure (C-index) was used to assess the perfor-
mance of each fitted model during cross-validation. The best model 
was defined as the fitted model with the highest C-index. Subsequently, 
the coefficient for each gene estimated using the best model was used 
to compute the gene signature scores. Only genes with nonzero coef-
ficient values were included in the final gene set. In total, 9 and 44 
genes were retained from the p53-all-cells and p53-LSC gene sets, 
respectively. For each sample, the gene signature score for each gene 
set was defined as the linear combination of gene expression values 
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weighted by their respective regression coefficients31,86. The list of 
p53-LSC and p53-all-cells gene signatures is provided in Supplementary  
Table 4b.

Survival analysis. For each gene expression signature, patients were 
first split using the median gene expression signature score. This resulted 
in two groups of patients, namely patients with high expression scores 
(greater than or equal to the median) and patients with low expression 
scores (lower than the median), exemplified in Extended Data Fig. 6a,b.

The Cox proportional hazards regression model implemented by 
the survival R package (version 3.5–5) was fitted to estimate the hazard 
ratio associated with each feature. The log-rank test was used to test 
the differences between survival curves. The features analyzed here 
were LSC17, p53-all-cells and p53-LSC signatures. Patients with low 
gene expression signature scores (below median) and patients with 
TP53 WT status were specified as the reference groups in the model. 
Kaplan–Meier curves were plotted using the survminer R package 
(version 0.4.9) to visualize the probability of survival and sample size 
at a respective time interval.

In vitro assays
Short-term liquid culture experiments. For short-term liquid  
culture differentiation experiments (Fig. 3j and Extended Data  
Fig. 7h,i), single cells from different Lineage-CD34+ HSPC populations 
(HSC: CD34+CD38-CD45RA-CD90+, MPP: CD34+CD38−CD45RA−CD90−, 
LMPP: CD34+CD38−CD45RA+ and more committed progenitors 
CD34+CD38+) were directly sorted into a 96-well tissue culture plate 
containing 100 μl of differentiation media: StemSpan (StemCell  
Technologies, 09650), 1% penicillin+streptomycin, 20% BIT9500 (Stem-
Cell Technologies, 9500), 10 ng ml−1 SCF (Peprotech, 300-07), 10 ng ml−1 
FLT3L (Peprotech, 300-19), 10 ng ml−1 TPO (Peprotech, 300-18-10), 
5 ng ml−1 IL3 (Peprotech, 200-03), 10 ng ml−1 G-CSF (Peprotech, 300-23), 
10 ng ml−1 GM-CSF (Peprotech, 300-03), 1 IU ml−1 EPO ( Janssen, erythro
poietin alpha, clinical grade) and 10 ng ml−1 IL6 (Peprotech, 200-06).

For all liquid culture experiments, 50 μl of fresh 1× differentiation 
media was added on day 4. Readout was performed by flow cytometry 
after 12 d of culture using the antibodies detailed in Supplementary 
Table 7c (combination indicated as Panel D).

LTC-IC assay. Fifty cells from each Lin-CD34+ population (HSC; MPP; 
LMPP and CD38+) and donor type (HDs, MF and TP53-sAML) were 
sorted in triplicate. Cells were resuspended in 100 μl of MyeloCult 
(StemCell Technologies, H5150) supplemented with hydrocortisone 
(10−6 M; StemCell Technologies, 74142) and plated into an irradiated 
supportive stromal cell layer (5,000 SI/SI cells and 5,000 M2-10B4 cells 
per well) in a 96-well tissue-culture plate coated with Collagen type I 
(Corning, 354236).

The medium was changed weekly and after 6 weeks of culture, 
cells were washed in IMDM + 20% fetal calf serum (FCS) and plated 
into 1.4 ml of cytokine-rich methylcellulose (StemCell Technologies,  
MethoCult H4435). Colonies were scored 14 days later under an inverted 
microscope, and each colony was classified according to its morphol-
ogy as BFU-E (Burst-forming unit erythroid), CFU-G (Colony Form-
ing Unit granulocyte), CFU-GM (granulocyte-macrophage), CFU-M 
(macrophage) or CFU-GEMM (granulocyte, erythrocyte, macrophage 
and megakaryocyte). Selected colonies were used for cytospin and 
genotyping as outlined below.

LTC-IC colony genotyping. LTC-IC colonies were picked from methyl-
cellulose media, washed, resuspended in 10 μl of PBS and transferred 
to individual wells in a 96-well PCR plate. 15 μl of lysis buffer (Triton 
X-100 0.4%, Qiagen Protease 0.1 AU ml−1) was added to each well, and 
samples were incubated at 56 °C for 10 min and 72 °C for 20 min. A 3 μl 
aliquot from each lysate was used as input to generate a targeted and 
Illumina-compatible library for colony genotyping. The preparation 

of single-cell genotyping libraries involves three PCR steps. In the 
first PCR step, target-specific primers spanning each mutation of 
interest are used for amplification (Supplementary Table 6a); in the 
second PCR step, nested target-specific primers (Supplementary  
Table 6b) attached to universal CS1/CS2 adapters (forward adapter—
CS1: ACACTGACGACATGGTTCTACA; reverse adapter—CS2: TACG-
GTAGCAGAGACTTGGTCT) further enrich for target regions; and 
in the third PCR step, Illumina-compatible adapters containing 
sample-specific barcodes are used to generate sequencing libraries.

TP53 knockdown and differentiation of human CD34+ cells. shRNA 
sequence for p53 knockdown has been previously cloned into the lenti-
viral vector pRRLsin-PGK-eGFP-WPRE and validated87. Primary human 
CD34+ cells from patients with MPN (Supplementary Table 1) were 
infected twice with scramble (shCTL) or shTP53 with a multiplicity of 
infection of 15 and sorted 48 h later on CD34 and GFP expression. Cells 
were cultured in serum-free medium with a cocktail of human recom-
binant cytokines containing EPO (1 IU ml−1, Amgen), FLT3-L (10 ng ml−1,  
Celldex Therapeutics), G-CSF (20 ng ml−1, Pfizer), IL-6 (10 ng ml−1,  
Miltenyi), GM-CSF (5 ng ml−1, Peprotech), IL-3 (10 ng ml−1, Miltenyi), 
TPO (10 ng ml−1, Kirin Brewery) and SCF (25 ng ml−1, Biovitrum AB).

On day 12 of the culture, cells were stained with the antibodies 
detailed in Supplementary Table 7c (combination indicated as Panel C).  
DAPI was used for dead cell exclusion before acquisition on a  
FACSCanto II (BD Biosciences) instrument and on a BD FACS Diva soft-
ware (version 8.0.2). Analysis of FACS data was performed using Kaluza 
(version 2.1, Beckman Coulter) software.

Quantitative real-time PCR in shRNA experiments
In TP53 knockdown experiments, RNA from either CD34+ cells sorted 
after transduction or bulk cells at day 12 of culture was extracted 
using Direct-Zol RNA MicroPrep Kit (Zymo Research) and reverse 
transcription was performed with SuperScript Vilo cDNA Synthesis Kit  
(Invitrogen). Quantitative RT–PCR was performed on a 7,500 real-time 
PCR Machine using SYBR-Green PCR Master Mix (Applied Biosystems). 
Expression levels were normalized to PPIA (housekeeping gene).  
Primers used are listed in Supplementary Table 6c.

Xenotransplantation
Purified CD34+ cells from AML patients were transplanted via retroorbi-
tal vein injection in sublethally irradiated (1.5 Gy) NOD.CB17-Prkdcscid 
IL2rgtm1/Bcgen mice (B-NDG, Envigo) (female, 8 weeks old, n = 1 for 
IF0131, n = 3 for GR001). All experiments were approved by the French 
National Ethical Committee on Animal Care (2020-007-23589). Blood 
cell counts were performed monthly by submandibular sampling of 
mice with blood chimerism assessed by flow cytometry using hCD34, 
hCD45 and mCD45 antibodies (Supplementary Table 7b, PDX PB panel). 
The following endpoints were applied: >50% of human blast cells in 
the blood, abnormalities of blood cell count (hemoglobin <7 g dl−1, 
platelets <150 × 109 l−1 or white blood cells >60 × 109 l−1), altered general 
conditions or >15% of weight loss. At sacrifice, BM was stained with the 
antibodies listed in Supplementary Table 7b (PDX BM panel) and HSPC 
fractions were sorted on an Influx Cell sorter (BD Biosciences).

Evaluation of cell morphology
Cell morphology from PDX models (Extended Data Fig. 3d) and in vitro 
LTC-IC cultures (Extended Data Fig. 7f) was assessed after cytospin of 
50–100,000 cells onto a glass slide (5 min at 500 r.p.m.) and May–Grün-
wald Giemsa staining, according to standard protocols. Images were 
obtained using an AxioPhot microscope (Zeiss).

Mouse bone marrow chimeras and ethical approval
Trp53tm2Tyj Commd10Tg(Vav1-icre)A2Kio or Trp53tm2Tyj Tg(Tal1-cre/ERT)42-056Jrg  
C57/BL6 mice (hereafter referred to as Vav-iCre Trp53R172H/+ or 
SCL-CreERT Trp53R172H/+, respectively) and C57/BL6 WT mice used for BM 
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chimera experiments were bred and maintained in accordance to UK 
and France Home Office regulations. All experiments carried out were 
performed under Project License P2FF90EE8 approved by the Univer-
sity of Oxford Animal Welfare and Ethical Review Body or under Project 
License no. 2020-007-23589, approved by the French National Ethical 
Committee on Animal Care. Trp53tm2Tyj (ref. 88), Commd10Tg(Vav1-icre)A2Kio 
(ref. 89; Jackson Laboratory, 008610) and Tg(Tal1-cre/ERT)42-056Jrg (ref. 90) 
have been previously described.

For in vivo experiments, two different chimera settings were used. 
For the first setting (Fig. 5a), 1 million BM cells from Vav-iCre Trp53R172H/+ 
CD45.1 mice and 1 million BM CD45.2 WT cells from competitor mice 
were transplanted intravenously into lethally irradiated (10 Gy total 
body irradiation, split dose) congenic CD45.2 mice. Male and female 
recipient CD45.2 mice were used and were 6–8 weeks old at transplan-
tation, while male and female CD45.1 experimental BM donors were 
5–6 weeks old at the time of BM collection. For the second setting  
(Fig. 5h), 0.9 million BM cells from Trp53LSL-R172H/+ CD45.2 mice (two 
males for two independent experiments, 8 and 13 weeks old) and  
2.1 million BM CD45.1 WT competitor mice (four males for two inde-
pendent experiments, 11 and 17 weeks old) were transplanted intrave-
nously into lethally irradiated (9.5 Gy total body irradiation) congenic 
CD45.2 mice (females, 8 weeks old) and Trp53 mutation was induced 
4 weeks after transplantation by tamoxifen (gavage 200 mg kg−1, 
Sigma-Aldrich) during 4 d, followed by tamoxifen feeding during  
2 weeks (Ssniff Diet). In each cohort, a selection of mice was injected 
intraperitoneally with three rounds of six injections, each of 200 μg 
poly(I:C) (first setting) or 100 μg poly(I:C) (second setting; GE Health-
care, 27-4732-01) or placebo (PBS1X). Alternatively, Vav-iCre Trp53R172H/+ 
mice were injected with three rounds of eight injections, each of 35 μg 
LPS from Escherichia Coli O111:B4 (LPS; L4391-1MG and L5293-2ML; 
Sigma-Aldrich).

Poly(I:C) and LPS were administered during weeks 6–8, 10–12 
and 14–16 (setting 1), or during weeks 7–8, 11–12 and 15–16 (setting 
2) post-transplantation. Within each round, injections were spaced 
one or two days apart. Blood cell counts and analysis of PB chimer-
ism along with mature lymphoid and myeloid populations were per-
formed every 2–4 weeks by submandibular sampling of mice, while 
BM chimerism and HSPC populations were analyzed 18–20 weeks after 
transplantation. The antibodies used are detailed in Supplementary 
Table 7d. For dead cell exclusion, 7-AAD (Sigma-Aldrich) or DAPI (BD 
Biosciences) were used. FACS analyses were carried out on BD Fortessa 
or BD Fortessa X20 (BD Biosciences) and profiles were later analyzed 
using FlowJo (version 10.1, BD Biosciences) or Kaluza (version 2.1,  
Beckman Coulter) software.

LSK apoptosis and cell cycle
BM LSK cells (setting 2) were stained with Annexin-V and DAPI in 
Annexin V binding buffer 1X (BD Biosciences) for apoptosis analysis. 
BM LSK cell cycle was assessed by flow cytometry using Ki-67 and DAPI 
staining, after fixation and permeabilization (BD Cytofix/Cytoperm 
and Permeabilization Buffer Plus, BD Biosciences).

M-FISH
Fifty CD45.1 (Trp53R172H/+) or CD45.2 (WT) LSK (Lin-Sca1+c-Kit+) cells 
from poly(I:C)-treated and control recipient mice were sorted and 
cultured for 1 week into Complete X-vivo15 media (BE-04-418Q, 
Lonza) supplemented with 10% FCS (Sigma-Aldrich, F9665), 0.1 mM 
2-mercaptoethanol (Gibco, 21985023), 1% penicillin-streptomycin 
(PAA laboratories), 2 ng ml−1 mouse stem cell factor (mSCF; PeproTech, 
250-03), 10 ng ml−1 mouse granulocyte–monocyte colony-stimulating 
factor (mGM–CSF; Immunex), 5 ng ml−1 human thrombopoi-
etin (hTPO; PeproTech, 300-18-10), 10 ng ml−1 human granulocyte 
colony-stimulating factor (hG-CSF; Neopogen) 5 ng ml−1 human FLT3 
ligand (hFL; Immunex, 300-19), 5 ng ml−1 mouse interleukin 3 (mIL-3; 
PeproTech, 213-13). Cells were cultured at 37 °C 5% CO2. On day 7 of 

culture, metaphase spreads were collected following synchroniza-
tion with Colcemid (KaryoMAX; Thermo Fisher Scientific, 11519876) 
50 ng ml−1, for 3 h at 37 °C. The cells were then incubated with KCl 75 mM 
for 15 min at 37 °C and spun down. Following this, the cells were fixed in 
a methanol-acetic acid and then dropped onto glass slides.

M-FISH was performed with the 21XMouse-Multicolor FISH probe 
kit (Metasystem Probes, D-0425-060-DI), following the manufacturer’s 
instructions. For microscopy analysis, slides were mounted in Vectash-
ield Antifade Mounting Medium with DAPI (2BScientific, H-1200). 
Images were acquired and analyzed using Leica Cytovision software 
(v7.3.1), on an Olympus BX-51 epifluorescence microscope equipped 
with a JAI CVM4+ progressive-scan 24 fps B&W fluorescence CCD cam-
era. All cells were karyotyped, excluding metaphases severely damaged 
for technical reasons.

The analysis of the M-FISH hybridized cells was blinded. The cells 
on each slide were scored for the presence of structural aberrations 
(translocations, and/or derivative chromosomes and fragments) and/or  
numerical abnormalities. The presence of more than 40 chromo-
somes per cell was considered a numerical abnormality, except for 
cases where it could clearly be attributed to the presence of adjacent 
metaphases. Chromosome counts lower than 40 were not scored 
as numerical abnormalities for the impossibility to rule out techni-
cal issues (that is, metaphases bursting at the hypotonic step). We 
scored as follows: translocations and presence of one chromosome plus 
one or more extra chromosomal fragment(s)/derivative(s) as ‘struc-
tural abnormalities’ (except for sex chromosomes); presence of two  
chromosomes (or one in case of sex chromosomes) plus one or more 
extra chromosomal fragment(s)/derivative(s) as ‘partial chromosome 
gains’; two chromosomes (or one in case of sex chromosomes) plus 
one or more extra chromosomes as ‘whole chromosome gains’; two 
chromosomes plus two chromosomes with at least five different chro-
mosomes present in number = 4n as ‘tetraploidy or sub-tetraploidy’. 
Counts of numbers of karyotypic aberrations per cell were per-
formed scoring every type of event occurring on one chromosome 
as a single event (that is, presence of four chromosomes is counted as  
one aberration).

IFNγ ELISA assay
WT mice were injected intraperitoneally with a single dose of 200 μg 
poly(I:C) and spleens were collected from injected mice and non-
treated controls 4 h after injection. Spleens were processed into a 
single-cell suspension in 200 μl PBS, spun down at 500 g for 5 min and 
supernatant was collected and used as spleen serum. IFNγ levels were 
assessed using mouse IFNγ Quantikine ELISA assay (R&D Systems, 
MIF00) following the manufacturer’s instructions. Optical densities 
of 450 nm and 540 nm were determined using Clariostar microplate 
reader (BMG Labtech).

Statistical analysis
Statistical analyses are detailed in figure legends (Figs. 2–6 and 
Extended Data Figs. 4–10) and performed using GraphPad Prism  
software (7 or later version) or R (version 3.6.1 and 4.0.5) software. The 
number of independent experiments, donors and replicates for each 
experiment are detailed in figure legends.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Subsets of the single-cell genotyping and RNA-sequencing data were 
part of a previous study16 (GSE105454). Raw single-cell genotyp-
ing sequencing data from this study are deposited at the Sequence 
Reads Achieve (SRA; https://www.ncbi.nlm.nih.gov/sra) under the 
accession number PRJNA930152. Processed single-cell genotyping 
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data is available at https://zenodo.org/record/8060602 (https://doi.
org/10.5281/zenodo.8060602) (metadata_MPNAMLp53_with_index_
genotype.revised.txt; columns ‘Genotype_curated’, ‘Genotype_labels’ 
and ‘genotype.classification’). Raw and processed (counts matrix) 
single-cell RNA-sequencing data from this study are deposited at the 
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 
under the accession number GSE226340. Single-cell dataset from this 
study is also available as an interactive Shiny app (https://wenweixiong. 
shinyapps.io/TP53_MPN_AML_Single_Cell_Atlas/). Raw and processed 
SNP array data are available at https://zenodo.org/record/8073857 
(https://doi.org/10.5281/zenodo.8073857). Requests for material(s) 
should be addressed and will be fulfilled by corresponding authors. 
Source data are provided with this paper.

Code availability
Scripts to reproduce data preprocessing and all figures are available 
on GitHub (https://github.com/albarmeira/p53-transformation) and 
source data to reproduce the scripts is available at: https://zenodo.org/
record/8038152 (https://doi.org/10.5281/zenodo.8038152; data pre-
processing) and https://zenodo.org/record/8060602 (https://doi.org/ 
10.5281/zenodo.8060602; source data for figures).
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Extended Data Fig. 1 | Genetic landscape of TP53-sAML. a, Mutations, CNAs, 
TP53 VAF and allelic status identified in a cohort of 33 TP53-sAML patients by bulk 
sequencing. The barplot on the right indicates the frequency of each mutation in 
the cohort. The panel at the bottom indicates samples processed by TARGET-seq. 
b-c, Graphical representation of all CNAs identified by MoChA (b) and GISTIC 
analysis of recurrently lost (blue) and amplified (red) focal regions (c) in the 
same patients as in (b). In b, GISTIC q-values of arm-level gains (red) and loses 
(blue) are indicated for each chromosome arm. In c, TP53 chromosomal location 
is indicated in blue (17p13.1). d-g, Summary of CNA events spanning recurrently 
mutated genes TP53 (d), JAK2 (e), EZH2 (f ) and TET2 (g), with evidence of deletion 
or loss of heterozygosity in the single-cell phylogenies computed in Extended 
Data Fig. 2b-o. For each gene, top panel shows a whole chromosome view and the 
bottom one, the gene-level view and RefSeq track. Points indicate the location 

of each point mutation and solid lines indicate CNA status (blue:loss; red:gain; 
green:LOH). h, Sanger sequencing of single-molecule patient-derived TP53 cDNA 
showing mutually exclusive alleles in the same cDNA molecule. i, VAF of TP53 
mutations in patients in which at least two TP53 mutations were detected. Blue 
line represents the linear fit of the points, which deviates from the indicated 
slope that would be expected if mutations were on the same allele. When more 
than 2 mutations were present, the 2 with the highest VAF were analyzed.  
j, Contingency table of TP53 zygosity status in single cells from patients carrying 
two TP53 mutations. Double-mutant heterozygous cells are colored in red, 
mutually exclusive WT/homozygous or homozygous/WT genotypes in orange 
and homozygous/homozygous cells, in blue. “p” indicates exact one-sided 
binomial test p-value.
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Extended Data Fig. 2 | TARGET-seq sorting strategy and phylogenetic 
reconstruction of clonal hierarchies in TP53-sAML patients using a Bayesian 
model. a, Sorting strategy for TARGET-seq: Lineage-CD34+ cells were sorted 
into 384-well plates for subsequent library preparation. Selective enrichment 
of immunophenotypically defined populations (HSC: CD38−CD90+CD45RA−; 
CD117−) is indicated with orange boxes. b-o, In each panel, corresponding to a 
different patient sample, the phylogenetic tree computed using SCITE is  
shown on the left and the number of cells mapping to each clone on the right. 
“pp” indicates the posterior probability of each consensus mutation tree, and 
the probability of each genotype transition is indicated inside each square for 
each mutation. The size of the circles is proportional to the size of each clone and 
is colored according to the genotype indicated. The number of cells mapping 
to each clone is indicated in each circle and the type of TP53 clonal evolution 
(biallelic mutation, hemizygous, parallel or JAK2-negative) below each patient’s 
ID. (*) indicates patients for which the high clonality of the sample prevented the 
faithful reconstruction of the order of mutation acquisition. Horizontal lines 

indicate mutation acquisition where none of the experimentally-detected clones 
matched that particular combination of mutations and therefore the order of 
mutations cannot be reliably determined. Due to selective enrichment of certain 
subpopulations of cells (a), the numbers of cells assigned to each subclone in 
this figure is not necessarily representative of overall clonal burden, and early 
clones are likely over-represented due to selective enrichment of preleukemic 
HSCs. In contrast, the relative subclone percentages displayed in Fig. 1 for the 
same patients have been corrected according to each populations’ frequency 
in the Lin−CD34+ compartment. p, Schematic representation of the strategy 
to reconstruct integrated clonal hierarchies based on single-cell TARGET-seq 
genotyping and inferCNV transcriptomic-based CNAs. q, Representative 
example of combined mutation and CNA hierarchies for patient IF0131, in 
which three cytogenetically-distinct subclones were detected. Corresponding 
cytogenetic lesions detected at the bulk level through high-density SNP arrays 
are shown in the bottom panels.
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01480-1

Extended Data Fig. 3 | TP53-sAML xenograft characteristics. a, Integration 
of index sorting and single cell genotyping of TP53 multi-hit HSPC from two 
representative patients (left) and quantification of genotypes across HSPC 
populations (right). b, Serial readouts of human chimerism based on hCD34 
and hCD45 expression in mouse PB for IF0131 (n = 1) and GR001 (n = 3, mean ± 
s.e.m. indicated). c, Proportion of hCD45 and hCD34-positive cells in total bone 
marrow (BM) from each PDX sample. d, Representative images from BM blasts 
isolated from PDX models e-f, Representative HSPC flow cytometry profiles 
of patient IF0131 PB mononuclear cells (MNCs) (e) and BM engrafted cells in 
immunodeficient mice at 31 weeks post transplantation (f ). g-h, Representative 
HSCP flow cytometry profiles of patient GR001 PB MNCs (g) and BM engrafted 

cells in immunodeficient mice at 27 weeks post-transplantation (h). i-l, 
Mutations (i,j) and CNAs (k,l) detected in sorted LMPPs (Lin−CD34+CD38−CD90-

CD45RA+) from indicated PDX samples (f,h). Boxes indicate location of each 
mutation (orange for mutant allele and blue, for WT) m, UMAP representation 
of TP53 multi-hit cells from patient IF0131; cells are colored according to their 
CNA status as in Fig. 1g. n, GSEA analysis of cytogenetically distinct subclones 
in patient IF0131. Pathways enriched in TP53 multi-hit abn3+del5+monosomy7 
versus TP53 multi-hit abn3+del5 Lin−CD34+ are shown and colored according to 
pathway’s functional category. NES: Normalized Enrichment Score. FDR: False 
Discovery Rate.
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Extended Data Fig. 5 | Aberrant erythroid differentiation in TP53 mutant 
AML. a-b, Analysis of erythroid populations in TP53-sAML PDX models. Gating 
strategy used to identify CD253a+ and erythroid progenitor cells (“ProgE”) 
(a) and percentage of each erythroid population in hCD45+ bone marrow 
cells from PDX models (b). n = 5, bars indicate mean ± s.e.m. c, Percentage of 
cells expressing erythroid markers after culturing CD34 + TP53-sAML cells 
in conditions promoting myelo-erythroid differentiation in vitro. n = 4, bars 
indicate mean ± s.e.m. d-e, Force Atlas representation of a CD34+ myelofibrosis 
(MF) atlas (d; Psaila et al, 2020) and latent-semantic index projection of TP53 
multi-hit cells from TP53-sAML patients into the MF cellular hierarchy (e).  
f, Projection of immunophenotypically-defined MEPs into a diffusion map of 
the single cells from all 14 TP53-sAML patients (as in Fig.2a). g-j, Expression of 
a comprehensive erythroid (g,h) and myeloid (i,j) gene score derived from 
a human haematopoietic atlas (Granja et al, 2019) in AML patients from the 
BeatAML dataset (g,i) and TCGA (h,j) stratified by TP53 mutational status 

(BeatAML: n = 329 TP53-WT and n = 31 TP53-mutant; TCGA: n = 140 TP53-WT, 
n = 11 TP53-mutant). k, Expression of a TP53-target gene score using the same p53 
target genes as in Extended Data Fig. 4c in patients with high (above median) and 
low (below median) erythroid scores. l, GATA1/CEBPA gene expression in AML 
patients from the BeatAML dataset stratified by TP53 mutational status. In (g-l), 
boxplots represent median, first and third quartiles, and whiskers correspond 
to 1.5 times the interquartile range. “p” indicates two-sided Wilcoxon rank 
sum test p-values. m, Erythroid score (left) and CEBPA/GATA1 gene expression 
ratios (right) in MOLM13 TP53-mutant isogenic cell lines (Boettcher et al, 2019). 
Boxplots represent median, first and third quartiles, and whiskers correspond to 
1.5 times the interquartile range. “p” indicates two-tailed unpaired t-test p-value. 
n, Fold-change TP53 expression in CD34+GFP+ MPN primary cells following 
transduction with a lentiviral shRNA vector targeting TP53 compared to a 
scramble control (shCTR). n = 3 patients, 3 independent experiments. Barplot 
indicates mean ± s.e.m. and “p”, two-tailed unpaired t-test p-value.
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Extended Data Fig. 6 | Validation of p53-LSC signature score in two 
independent cohorts. a-b, Distribution of p53-LSC scores in BeatAML (a) and 
TCGA (b) cohorts stratified by TP53 mutational status. c-e, Kaplan-Meier analysis 
of de novo AML patients from the full TCGA AML dataset (n = 132) (c), TP53-WT 
AML patients from BeatAML (n = 294) (d) and TP53-WT AML patients from TCGA 
(n = 124) (e) stratified according to high or low p53 LSC signature score. f-g, Hazard  
ratio of all AML patients (n = 322) (f) or secondary AML patients (n = 49) (g) from  

the BeatAML cohort using LSC17 score (Ng et al, 2016), p53-all-cells score 
(derived from all TP53-mutant sAML cells) and p53-LSC signature score (derived 
from transcriptionally-defined LSCs; related to Fig. 2a). Boxes represent hazard 
ratios and lower and upper bounds of error bars, 95% confidence intervals. Genes 
used for each score are listed in Supplementary Table 4. “p” indicates log-rank 
test p-value.
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of HSCs in mobilized PB or BM from healthy donors (n = 7) and TP53-sAML 
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(e) from healthy donor (HD, n = 4), MF (n = 3) and preLSCs from TP53-sAML 
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Extended Data Fig. 9 | Clonal evolution and molecular signatures of 
TP53-mutant patients at chronic phase. a-b, Flow cytometry profiles of the 
Lin−CD34+ HSPC compartment in two CP TP53-MPN patients without evidence of 
clinical transformation (a) and in a representative paired chronic phase  
(b, up; pre-TP53-sAML) and acute phase (b, bottom; TP53-sAML) sample (Related 
to Fig. 4a). c-d, Percentage of immunophenotypic HSPC populations in normal 
donors (n = 8), CP TP53-MPN (n = 4) and pre-TP53-AML patients (n = 5) (c) or in 
the 5 paired pre-TP53-AML and TP53-AML samples (d). None of the population 
frequencies are significantly different (p < 0.05) between patient groups by 
multiple unpaired t-test analysis. In (c), barplot indicates mean ± s.e.m.  
e-h, Phylogenetic reconstruction of clonal hierarchies in CP TP53-MPN patients 
from single-cell TARGET-seq genotyping data. In each panel, the phylogenetic 
tree computed using SCITE is shown on the left, and the number of cells mapping 
to each clone for each patient, on the right. “pp” indicates posterior probability 
or each consensus mutation tree, and the probability of each genotype transition 
is indicated in the square for each mutation. For patient IF9118 (h), baseline (left) 

and 4 years of follow-up (right) samples are shown separately. i-m, Phylogenetic 
reconstruction of clonal hierarchies in pre-TP53-AML patients from single-cell 
TARGET-seq genotyping data (related to Extended Data Fig. 2). In panels (e-m), 
the size of the circles is proportional to each clone’s size, and is colored according 
to the genotype indicated in the genotype key. Blue boxes indicate TP53-
heterozygous clones used for the analysis presented in Fig. 4c-e. n, Expression of 
interferon receptors in TP53-heterozygous cells from CP TP53-MPN (n = 273 cells) 
and pre-TP53-sAML patients (n = 296 cells). “p-adj” indicates adjusted p-value 
from combined Fisher’s exact test and Wilcoxon tests, calculated using Fisher’s 
method and adjusted using Benjamini & Hochberg procedure; “fc” indicates 
fold-change (related to Fig. 4d,e). Violin plots indicate log2(counts) distributions 
and each point represents the expression value of a single-cell. o, GSEA of 
inflammatory pathways in TP53-mutant heterozygous (n = 284) and homozygous 
(n = 622) cells from patients GH001 and GR005 at the pre-TP53-sAML stage.  
NES: Normalized Enrichment Score. FDR: False Discovery Rate.
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Extended Data Fig. 10 | Analysis of Trp53-mutant mice following 
inflammatory challenge. a, IFNγ level in spleen serum 4 h after poly(I:C) 
injection. n = 6 mice per group from 2 independent experiments. Lines indicate 
mean ± s.e.m. and “p”, two-tailed unpaired t-test p-value. b-c, Gating strategy  
for mouse chimaera experiments (Related to Fig. 5) used to quantify BM LSK  
and HSCs populations (b) and myeloid cells in the peripheral blood (PB) (c).  
d-g, Analysis of WT:Trp53R172H/+ chimaera mice treated with 3 cycles of 6 poly(I:C) 
injections (related to model setting 1, Fig. 5a) with serial readouts of CD45.1 
Trp53R172H/+ Mac1+ PB cells (d), percentage of CD45.1 Trp53R172H/+ BM LSK (Lin−Sca-1+ 
c-Kit+) (e), number of CD45.1 Trp53R172H/+ BM LSK (f ) and CD45.2 WT BM LSK  
per million BM cells (g) 20 weeks post transplantation. n = 11-12 mice  
per group from 3 biological replicates in 2 independent experiments.  

h-k, Analysis of WT:Trp53R172H/+ chimaera mice treated with 3 cycles of  
6 poly(I:C) injections (related to model setting 2, Fig. 5h) with serial readouts of 
white blood cells (h), hemoglobin (i) and platelet ( j) counts measured every  
2 weeks, and percentage of CD45.2 Trp53R172H/+ granulomonocytic (Ly6G and/or  
Mac1 + ) PB cells (k). l, Gating strategy for granulomonocytic (neutrophils and 
monocytes) and lymphoid (T, NK and B cells) populations in WT:Trp53R172H/+ 
chimaera mice. m, Percentage of CD45.2 Trp53R172H/+ BM HSC and LSK at 18 weeks 
post transplantation. n, Gating strategy for CFUE and PreCFUE populations in 
WT:Trp53R172H/+ chimaera mice. n = 22 control, n = 23 poly(I:C) groups (h-k) or 
n = 13 control, n = 14 poly(I:C) groups (m) from 2 independent experiments.  
Bars indicate mean ± s.e.m. and “p”, two-tailed unpaired t-test p-value.
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