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Abstract
Tigecycline (TGC) is an important antimicrobial agent used as a last resort for difficult-to-treat infections mainly caused by 
carbapenem-resistant Enterobacteriaceae, but TGC-resistant strains are emerging, raising concerns. In this study, 33 whole-
genome characterized multidrug-resistant (MDR) strains (Klebsiella species and Escherichia coli) positive mainly to mcr-1, 
bla, and/or qnr from the environment were investigated for TGC susceptibility and mutations in TGC resistance determinants, 
predicting a genotype–phenotype relationship. TGC minimum inhibitory concentrations (MICs) of Klebsiella species and 
E. coli ranged from 0.25 to 8 and 0.125 to 0.5 mg/L, respectively. In this context, KPC-2-producing Klebsiella pneumoniae 
ST11 and Klebsiella quasipneumoniae subsp. quasipneumoniae ST4417 strains were resistant to TGC, while some E. coli 
strains of ST10 clonal complex positive for mcr-1 and/or blaCTX-M exhibited reduced susceptibility to this antimicrobial. 
Overall, neutral and deleterious mutations were shared among TGC-susceptible and TGC-resistant strains. A new frameshift 
mutation (Q16stop) in RamR was found in a K. quasipneumoniae strain and was associated with TGC resistance. Deleterious 
mutations in OqxR were identified in Klebsiella species and appear to be associated with decreased susceptibility to TGC. 
All E. coli strains were determined as susceptible, but multiple point mutations were identified, highlighting deleterious 
mutations in ErmY, WaaQ, EptB, and RfaE in strains exhibiting decreased susceptibility to TGC. These findings demonstrate 
that resistance to TGC is not widespread in environmental MDR strains and provide genomic insights about resistance and 
decreased susceptibility to TGC. From a One Health perspective, the monitoring of TGC susceptibility should be constant, 
improving the genotype–phenotype relationship and genetic basis.

Keywords Enterobacterales · Tigecycline · Antimicrobial resistance · Aquatic ecosystems

Introduction

Bacterial species, highlighting Klebsiella pneumoniae 
and Escherichia coli, exhibiting multidrug resistance 
have been spreading at the human-animal-environment 
interface worldwide, supporting antimicrobial resistance 
as a multifactorial and public health problem [1]. The 
environment is a hotspot for xenogenetic pollutants, spreading 
antimicrobial resistance to different sectors [2, 3]. In clinical 

settings, tigecycline (TGC), a bacteriostatic antimicrobial 
agent belonging to the glycylcycline class, has been used 
as a last resort for difficult-to-treat infections caused by 
multidrug-resistant (MDR) and carbapenem-resistant 
Enterobacteriaceae (CRE) [4]. In addition, TGC has good 
activity against extended-spectrum β-lactamase-producing 
Enterobacteriaceae and antimicrobial-resistant Gram-
positive bacteria [5]. In this context, TGC monotherapy is 
used to treat skin, soft-tissue, and intra-abdominal infections 
caused by CRE [6]. Worryingly, MDR and CRE clinical 
strains exhibiting resistance to TGC have been reported, 
threatening the success of antimicrobial therapy [7, 8].

TGC is similar in structure to tetracyclines, acting as 
an inhibitor of bacterial protein translation via reversible 
binding to the 30S ribosomal subunit. This antimicrobial 
agent has a glycyclamide moiety to the 9-position and was 
developed to overcome the main molecular tetracycline 
resistance mechanisms, highlighting Tet proteins. In this 
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regard, TGC resistance is mediated by chromosomal or 
accessory gene-encoded mechanisms [6, 9]. Investigation 
about TGC susceptibility has been carried out mainly in 
Enterobacteriaceae strains from humans and food-producing 
animals [10, 11], but not in environmental strains. By studying 
bacterial resistance in environmental bacteria, it is possible to 
gain insights into the complex dynamics of TGC resistance 
transmission among different ecosystems. Therefore, this 
study aimed to determine TGC susceptibility, provide 
genomic insights, and understand the genotype–phenotype 
relationship of resistance or decreased susceptibility to TGC 
in MDR strains from the Brazilian environment.

Material and methods

Bacterial strains

Thirty-three MDR strains (20 E. coli and 13 Klebsiella 
species) previously whole-genome characterized by our 
research group were selected. Strains were isolated from 
aquatic environments (rivers, streams, and sewage treat-
ment plants) and agricultural soils from the Southeast and 
Midwest regions of Brazil. These strains belonged to various 
sequences types, including high-risk clones, were resistant 
to critically important antimicrobials, highlighting polymyx-
ins, carbapenems, extended-spectrum cephalosporins, and/
or fluoroquinolones, and carried a broad resistome, spot-
lighting mcr-1 (mcr-1.1, mcr-1.26), bla (blaKPC-2, blaNDM-1, 
blaCTX-M-2, blaCTX-M-8, blaCTX-M-14, blaCTX-M-15, blaCMY-2, 
blaOXA-2, blaOXA-9, blaTEM), and/or qnr (qnrS1, qnrB1, 
qnrB19, qnrVC1) (Supplementary Table S1).

TGC susceptibility testing

Susceptibility assays were performed by disk diffusion and/or 
broth microdilution methods. For E. coli strains, the tigecycline 
susceptibility was first tested by disk diffusion method using 
disks of tigecycline (15 µg) (Liofilchem, Italy). Afterward, 
the minimum inhibitory concentration (MIC) for tigecycline 
(Sigma-Aldrich, USA) was determined for E. coli and Kleb-
siella sp. strains by broth microdilution method using freshly 
prepared (< 12 h) BBL™ Mueller Hinton II Broth (BD, USA). 
E. coli ATCC® 25922™ was used as quality control. The cell 
viability was assessed using resazurin (0.02%). The results were 
interpreted following the European Committee on Antimicro-
bial Susceptibility Testing (EUCAST) guidelines for E. coli 
(Zone diameter: susceptible ≥ 18 mm, and resistant < 18 mm; 
MIC: susceptible ≤ 0.5 mg/L, and resistant > 0.5 mg/L) [12] 
and Klebsiella species (MIC: susceptible ≤ 2 mg/L, and resist-
ant > 2 mg/L) [13].

Whole‑genome sequence‑based analysis

TGC resistance determinants [E. coli: AcrB, EmrY, MarR, 
Lon, WaaQ, EptB, RfaC, RfaE, LpcA, RpsI, and RpoB; 
Klebsiella species: RamR, RpsJ, and OqxR; Both: AcrR, 
Tet(A), Tet(X), and TMexCD1-TOprJ1)] were mapped and 
extracted from genomes using Geneious Prime® v.2022.2.2 
(Biomatters Ltd., New Zealand). Subsequently, the sequences 
were aligned using Clustal Omega v.1.2.3 [14]. For mutation 
analysis, wild-type strains E. coli K-12 substr. MG1655 
(GenBank accession number U00096.3), K pneumoniae 
MGH 78578 (GenBank accession number CP000647), 
K. quasipneumoniae subsp. similipneumoniae ATCC® 
700603™ (GenBank accession number CP014696), and 
K. quasipneumoniae subsp. quasipneumoniae (GenBank 
accession number NZ_CCDF00000000) were used to 
compare specie-specific sequences. Specifically, E. coli 
EC168wt was used as wild-type strain for WaaQ and E 
coli plasmid RP1 (GenBank accession number X00006) 
for Tet(A). Sequences of Bacteroides thetaiotaomicron 
transposon CTnDOT (GenBank accession number AJ311171) 
and Klebsiella pneumoniae plasmid pHNAH8I-1 (GenBank 
accession number MK347425) were used to identify Tet(X) 
and TMexCD1-TOprJ1, respectively [7, 15–18]. Mutations 
were predicted as neutral or deleterious using Protein 
Variation Effect Analyzer software [19]. The frequency of 
mutated sequences was analyzed using BLASTn (https:// blast. 
ncbi. nlm. nih. gov/ Blast. cgi).

Genotype–phenotype relationship

Discrepant results between genotype (neutral or deleterious) 
and phenotype (susceptible or resistant) were confirmed by 
repeated disk diffusion and/or MIC testing.

Data availability

Genomic sequences have been deposited in the National 
Center for Biotechnology Information under accession num-
bers available in Supplementary Table S1.

Results

TGC susceptibility and genotype–phenotype 
relationship in Klebsiella species

TGC MICs ranged from 0.25 to 8 mg/L in Klebsiella 
species. KPC-2-producing K. pneumoniae ST11 strain 
(EW666), and K. quasipneumoniae subsp. quasipneu-
moniae ST4417 strain (SWT10) exhibited resistance to 
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TGC. A stop codon was found in RamR (Q16stop) of 
SWT10 and point mutations were identified in OqxR 
and Tet(A). No amino acid substitutions were found in 
AcrR and RpsJ, and the Tet(X) and TMexCD1-TOprJ1 
sequences were not detected. In BLASTn analysis, no 
Q16stop RamR sequence was found, evidencing a new 
RamR variant related to TGC resistance (MIC 8 mg/L). 
Deleterious mutations V130A in K. pneumoniae strains, 
and M46I and E117A in K. quasipneumoniae subsp. qua-
sipneumoniae of OqxR were identified and appears to be 
associated with a decrease in TGC susceptibility. The sin-
gle (V130A) and multiple (M46I, E117A) point mutations 
found in OqxR were assigned as frequent and infrequent, 
respectively (Table 1; Supplementary Table S2).

Despite the several neutral mutations detected in 
Tet(A), none of the profiles seem to be exclusively related 
to TGC resistance. Furthermore, BLASTn analysis rev-
elated that mutated Tet(A)-type sequences (Type 1: I5R, 
V55M, I75V, T84A, S201A, F202S, V203F; and Type 2: 
I5R, S12C, V55M, I75V, T84A, H132Y, G155S, G156S, 
T176M, C178I, S201A, F202S, V203F, A206V, V212I, 
V228A, A231T, A245T, T247L, A271T, A272T, T289A, 
F296L, M323V, L389F, A393V) are frequent in Entero-
bacteriaceae, especially in K. pneumoniae, E. coli, and 
Salmonella Infantis (Table 1; Supplementary Table S2).

TGC susceptibility and genotype–phenotype 
relationship in E. coli strains

All E. coli strains were susceptible to TGC since presented 
zone diameter sizes > 21 mm and MIC values from 0.125 
to 0.5 mg/L. There was no correlation between zone diam-
eters sizes and MIC values. In general, multiple point muta-
tions (neutral or deleterious) were identified in AcrB, EmrY, 
AcrR, MarR, WaaQ, EptB, LpcA, RfaC, RfaE, and Tet(A). 
On the other hand, no amino acid substitutions were identi-
fied in sequences of Lon, RpsI, and RpoB, and the Tet(X) 
and TMexCD1-TOprJ1 sequences were not found. Deleteri-
ous mutations were found in ErmY (L252V, L370M), AcrR 
(H115Y), WaaQ (A109T, L153V), EptB (L80Q, R157H, 
D246N), RfaC (A42T, R130C), and RfaE (T302P), which 
were distributed among E. coli with different TGC MICs. A 
mutated Tet(A) sequence (I5R, V55M, I75V, T84A, A93T, 
S201A, F202S, V203F), denominated Type 3, was found in 
a strain with a MIC of 0.25 for TGC and was determined as 
infrequent (Table 2).

In this context, the mutations L252V in EmrY, A109T 
and L153V in WaaQ, R157H, and D246N in EptB, seem 
to be related to decreased susceptibility to TGC (MIC 
0.5 mg/L). Furthermore, unique neutral mutations found in 
strains with TGC MIC of 0.5 mg/L, including M320I in 

Table 1  TGC susceptibility and amino acid substitutions in TGC resistance determinants of Klebsiella species strains

1 Sequence type, ST
2 Tigecycline, TGC; Minimum inhibitory concentration, MIC. The MIC value of the control strain was 0.25 mg/L; Resistance is shown in bold
3 Substitutions predicted in silico to be deleterious are highlighted in bold. Wild-type, WT; Gene not found, –

Strain (ST)1 TGC 
MIC (mg/L)2

Amino acid  substitutions3

RamR OqxR Tet(A)

SWT10 (ST4417) 8 Q16stop WT I5R, V55M, I75V, T84A, S201A, F202S, V203F
EW666 (ST11) 4 WT V130A –
EW671 (ST307) 2 WT WT I5R, V55M, I75V, T84A, S201A, F202S, V203F
EW706 (ST5569) 2 WT WT –
EW606 (ST6325) 2 WT M46I, E117A –
EW807 (ST340) 1 WT V130A I5R, S12C, V55M, I75V, T84A, H132Y, G155S, G156S, T176M, 

C178I, S201A, F202S, V203F, A206V, V212I, V228A, A231T, 
A245T, T247L, A271T, A272T, T289A, F296L, M323V, L389F, 
A393V

EW608 (ST11) 1 WT V130A –
EW775 (ST340) 1 WT V130A –
EW158 (ST661) 1 WT WT I5R, V55M, I75V, T84A, S201A, F202S, V203F
EW160 (ST4415) 1 WT WT I5R, V55M, I75V, T84A, S201A, F202S, V203F
EW704 (ST30) 1 WT WT –
EW714 (ST889) 1 WT WT –
EW185 (ST4416) 0.25 WT WT I5R, V55M, I75V, T84A, S201A, F202S, V203F
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EmrY, G44D in LpcA, E85K in RfaC, and A135E in RfaE, 
may also be related to decreased susceptibility to TGC 
(Table 2). Therefore, the genotype–phenotype relationship 
should be further investigated. Worryingly, E. coli strains of 
ST10 clonal complex with decreased susceptibility to TGC 
were positive for mcr-1 and/or blaCTX-M genes (Supplemen-
tary Table S1).

In general, frequent mutations were identified among the 
TGC resistance targets studied. On the other hand, muta-
tions L252V and M320I in EmrY, E85K and G44D in RfaC, 
have not yet been identified. In addition, some single point 
mutation or mutation profiles in AcrB, EmrY, MarR, WaaQ, 
EptB, and RfaC were infrequent, highlighting the identifica-
tion of a single sequence identical to profiles I46V, R157H, 
A557T, E559V and I46V, A505T, A557T, E559V of EptB 
(Supplementary Table S2).

Discussion

The acquisition of resistance or decreased susceptibility to 
TGC in Enterobacteriaceae is complex and multifactorial. 
Among the known mechanisms associated with these phe-
nomena in K. pneumoniae and E. coli, overexpression of 
RND-type efflux pumps caused by mutations in their tran-
scriptional activators and/or repressors is the most common. 
Additionally, mutated sequences of the lipopolysaccharide 
biosynthesis pathway, ribosomal S10 protein (RpsJ), and 
RNA polymerase β subunit (RpoB) were also reported [6, 
15, 16, 20]. Moreover, plasmid-encoded Tet(A), Tet(X) and 
TMexCD1-TOprJ1 have been associated with resistance or 
reduced susceptibility to TGC, drawing attention to rapid 
spread mediated by horizontal gene transfer [17, 18, 21]. 
In the latter, TMexCD1-TOprJ1 confers multidrug resist-
ance and was already identified in Enterobacteriaceae from 
human- and animal-associated samples, and even in a mcr-
8.1-bearing plasmid of a Klebsiella pneumoniae strain from 
chicken [18].

In Klebsiella species, efflux-mediated resistance 
mechanisms are commonly associated with TGC resistance. 
In this regard, RamR was involved in the overexpression of 
RamA, which upregulated the expression of the AcrAB efflux 
pump. A frameshift mutation was found in a TGC-resistant 
K. quasipneumoniae subsp. similipneumoniae strain from 
a sewage treatment plant, supporting the TGC resistance 
mediated by this mechanism [8, 10, 22]. Deleterious 
mutations in OqxR, a local repressor responsible for the 
downregulation of the OqxAB efflux pump, were found 
mainly in strains with decreased susceptibility to TGC. The 
V130A mutation has been identified in TGC-resistant and 
TGC-susceptible strains, supporting our findings [8, 18, 22].

In E. coli strains, TGC resistance may involve alterations 
in a variety of genetic loci. Mutations in targets encoding 1  Se
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AcrAB and EmrY efflux pumps may mediate TGC resist-
ance, while amino acid substitutions in its regulators (AcrR, 
MarR, Lon) seem to be more associated with this phenotype 
[15, 16, 24]. In addition, the overexpression of the AcrAB 
efflux pump can concomitantly be associated with resistance 
to fluoroquinolones and TGC [25]. Amino acid substitutions 
in targets (WaaQ, EptB, RfaC, RfaE, LpcA) that affected 
the lipopolysaccharide biosynthesis pathway were reported 
in strains with MICs below of resistance breakpoint. These 
mutated targets may cause a significant reduction of por-
ins, causing the slow rate of porin-independent diffusion 
of TGC and leading to reduced susceptibility to TGC. In 
addition, a relatively low-level resistance associated with 
mutated sequences of efflux regulatory network and lipopol-
ysaccharide core biosynthesis pathway has been described, 
endorsing our results [15, 16]. Despite the great diversity 
of mutations in the beforementioned targets, no data have 
been found to support their exact role in TGC susceptibility. 
Therefore, the phenotype-genotype relationship should be 
further explored and mutations, especially deleterious ones, 
should be experimentally confirmed.

The Tet(A) mutants have been related to reduced 
susceptibility to TGC and can act synergistically with RamR 
mutated sequences to increase the level of TGC resistance 
[8, 17]. Although Tet(A) sequence Type 1 has already been 
associated with resistance or reduced susceptibility to TGC 
since presented mutations in the interdomain region that affect 
its affinity for TGC, our findings evidence that it is widespread 
in TGC-susceptible strains, contrasting with its role in TGC 
resistance [11, 17, 26, 27]. In addition, Tet(A) sequences Type 
2 and 3 were identified in strains with low MICs, showing 
that these variants also have no role in TGC resistance. 
Consequently, selective pressure by TGC can promote the 
formation of Tet(A) mutants, leading to TGC resistance [28].

Despite the excellent performance of genomic analyzes 
to predict susceptibility to fluoroquinolones, β-lactams, and 
aminoglycosides in E. coli and K. pneumoniae, this does 
not seem to happen for TGC, especially for E. coli [29]. It 
is important to emphasize that the genomic results to infer 
susceptibility depend on the local epidemiology and can be 
affected by the phylogenetic distance to the reference strains 
[30, 31]. In clinical settings, this discrepancy can affect the 
development of clinical metagenomics and, consequently, 
the use of pathogen-specific antimicrobials coupled with 
rapid diagnostics [32].

In summary, our findings corroborate that rates of TGC-
resistant E. coli strains are still low when compared to 
Klebsiella species and demonstrate that resistance to TGC 
is not widespread in environmental MDR strains. However, 
some strains presented reduced susceptibility to TGC and may 
evolve resistance through multifactorial mechanisms, including 
multisubstrate efflux pumps. Furthermore, it is possible to infer 
that the selective pressure of environmental contaminants 

does not strongly interfere with the selection of TGC-resistant 
strains. Finally, our results have limitations, such as the limited 
number of strains used and lack of experimental evidence, 
but provide genomic insights about resistance and decreased 
susceptibility to TGC. Therefore, constant monitoring of 
TGC susceptibility should be carried out within a One Health 
perspective, improving the genotype–phenotype relationship 
and genetic basis.
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