Table 2.
Average accuracy of algorithms’ performance.
| Sensor ID | Decision | Naïve | Multilayer | |||
|---|---|---|---|---|---|---|
| Trees | k-NN | Bayes | Perceptron | One-Shot | SVM | |
| S1 | 0.2160 | 0.3678 | 0.3700 | 0.4408 | 0.4687 | 0.4853 |
| S2 | 0.3565 | 0.6192 | 0.6055 | 0.7143 | 0.7575 | 0.7492 |
| S3 | 0.4985 | 0.8692 | 0.8165 | 0.9142 | 0.9465 | 0.9438 |
| S4 | 0.3565 | 0.6192 | 0.6055 | 0.7143 | 0.7575 | 0.7492 |
| S5 | 0.2825 | 0.4892 | 0.4845 | 0.5700 | 0.6080 | 0.6120 |
| S6 | 0.6388 | 0.9877 | 0.9495 | 0.9887 | 0.9970 | 0.9973 |
| S7 | 0.6102 | 0.9788 | 0.9257 | 0.9795 | 0.9932 | 0.9928 |
| S8 | 0.2825 | 0.4892 | 0.4845 | 0.5700 | 0.6080 | 0.6120 |
| S9 | 0.2808 | 0.4895 | 0.4855 | 0.5703 | 0.6077 | 0.6122 |
| Average | 0.3914 | 0.6566 | 0.6364 | 0.7180 | 0.7493 | 0.7504 |
The highest accuracy for each sensor with the considered algorithms is in bold.