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Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be 
the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to 
eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebel-
lum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.
Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, 
circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. 
Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate 
an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-
forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the 
cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
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Introduction

The cerebellum is the largest sensorimotor structure in 
the brain and has traditionally been associated with motor 
control and the coordination of voluntary movements, bal-
ance, and posture [1, 2, 3]. The cerebellum is now known to 
contribute to a wide range of behaviours extending beyond 
motor control including higher-order functions such as cog-
nitive processing [4, 5, 6], reward signalling [4, 7, 8], and 
affective processing [9, 10], as well as fundamental func-
tions including visceral control [4, 7, 8] and survival behav-
iours [11, 12, 13, 14]. Contributions to such an array of func-
tions mean the cerebellum is well placed to act as a hub for 
processing multi-modal information involved in mediating 
complex behaviours.

One such complex behaviour is eating—an essential func-
tion to provide the energy and nutrition required to live [15, 
16, 17]. But we do not just eat to survive, we also eat for 
pleasure [18, 19, 20]. Hunger and hedonic desire provide 

motivation to seek food, movement is required to locate and 
consume food, and then digestive processes break down 
food in the gut and provide feedback to the brain to regulate 
the amount eaten [21, 22]. Eating can also be influenced 
by emotional and pathological states, such as overeating 
in obesity and undereating in anorexia nervosa [23, 24], 
emphasising that food consumption has both homeostatic 
and higher-order elements.

This review will provide a brief introduction to the cer-
ebellar organisation to inform the following discussion 
of its role in (1) motor aspects of eating, (2) homeostatic 
and hedonic elements of appetite, (3) reward processing in 
relation to healthy and disordered eating, and (4) affective 
processing related to appetite and reward. The cerebellum 
is implicated in many of the processes involved in food 
consumption, and its activity and network connectivity are 
altered in both overeating (obesity) and undereating (ano-
rexia nervosa) disorders which also span the above domains. 
We therefore propose that the cerebellum serves as a central 
regulator of information processing across the homeostatic, 
motor, cognitive and affective domains. More specifically, 
given that the cerebellum is known to create predictive rep-
resentations of the environment and that eating behaviours 
are underpinned by expectation, we will present evidence 
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that the universal role of the cerebellum in eating is to gen-
erate behaviourally relevant responses to prediction errors.

Overview of Cerebellar Structure

To understand cerebellar function, it is necessary to appre-
ciate its basic anatomical organisation. At a macroscale 
the cerebellar cortex has three rostro-caudally oriented 

longitudinal divisions: from medial to lateral on each side 
of the cerebellar midline these are the vermis, paravermis 
and hemisphere (Fig. 1a). The cerebellar cortex is intricately 
folded and has a tri-laminar structure comprised of the gran-
ule cell layer, Purkinje cell layer, and molecular layer, the 
circuitry of which is summarised in Fig. 1b. The cells within 
these cortical layers process cerebellar inputs and Purkinje 
cells form the sole output of the cerebellar cortex, project-
ing to neurons of the cerebellar nuclei (Fig. 1b), which, in 

Fig. 1  Cerebellar anatomical 
organisation. a Dorsal view of 
the rat (left) and human (right) 
cerebellum. There are three 
main longitudinal compartments 
of the cerebellar cortex, from 
medial to lateral the vermis, 
paravermis and hemisphere. 
AL, anterior lobe; PL, posterior 
lobe. b Simplified cerebellar cir-
cuitry. Inputs to the cerebellum 
are from mossy fibres of various 
pre-cerebellar nuclei and climb-
ing fibres of the inferior olive 
(IO), both of which are gluta-
matergic. Mossy fibres synapse 
onto granule cells (GCs) which 
form bifurcating axons, known 
as parallel fibres, targeting 
Purkinje cell (PC) dendrites, 
and climbing fibres synapse 
onto PC dendrites directly. Both 
mossy fibres and climbing fibres 
also form collaterals targeting 
neurons of the cerebellar nuclei 
(CN). PCs are the sole output 
neuron of the cerebellar cortex, 
and these GABAergic neurons 
target neurons of the CN which 
form cerebellar output. Several 
types of interneurons also act 
within the cerebellar cortex, 
including molecular layer 
interneurons (MLIs), not all of 
which are shown. c Outlines of 
the rat (left) and human (right) 
cerebellar nuclei. The vermis, 
paravermis and hemispheres 
of the cerebellar cortex project 
to the fastigial nuclei (FN, 
also known as medial nuclei), 
interpositus nuclei (IN) and 
dentate nuclei (DN, also known 
as lateral nuclei), respectively. 
Scaled so that FN is a similar 
size in both species.  Adapted 
from Altman and Bayer [26]
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turn, provide the final cerebellar output signal. Purkinje cells 
located within the vermis, paravermis, and hemispheres pro-
ject mainly to the fastigial (medial), interpositus and dentate 
(lateral) nuclei respectively (Fig. 1c) [25].

The medial parts of the cerebellum are the oldest in evo-
lutionary terms, with roles in motor control, proprioception 
and autonomic functions [27]. In contrast, the hemispheres 
are more highly developed in higher-order species in line 
with the expansion of the cerebral cortex [28]. These lateral 
cerebellar regions are related to goal-directed behaviour, 
including cognition, due to extensive cerebro-cerebellar con-
nections [29, 30]. The cerebellar nuclei have also expanded 
disproportionately with evolutionary development; by com-
parison to fastigial and interpositus, the dentate nucleus is 
larger and more convoluted in higher species in accordance 
with an increase in the size of the cerebellar hemispheres 
from which it receives input (Fig. 1c) [26].

At a finer level of anatomical organisation, the cerebellum 
contains a series of “modules” consisting of rostrocaudally 
oriented “zones” of Purkinje cells in the cortex together with 
the cerebellar nuclear territory that they target, and the infe-
rior olive neurons from which they receive climbing fibre 
input (for further detail on modules and zones see [31, 32, 
33, 34, 35]). These olivo-cerebellar loops are thought to be 
the basic functional units of the cerebellum. The function of 
each is thought to be dictated by its input and output connec-
tivity with other regions of the brain [32, 33, 36, 37, 38, 39]. 
The modular organisation of the cerebellum should therefore 
be taken into account when considering the contributions of 
individual cerebellar regions to behaviour, including eating.

An additional important consideration is that the cerebel-
lum has been proposed to act as a ‘prediction machine’ [40, 
41], participating in the formation and updating of inter-
nal models which allow ongoing behaviours to be modified 
based on prior experience (Wolpert et al. [42]). As such, 
the cerebellum is likely to control behaviour by generating 
predictions about future behavioural outcomes which are 
updated based on the comparison of actual and expected 
outcomes [40]. Similar predictive mechanisms may apply 
across multiple domains via cerebellar connections with a 
multitude of brain regions, allowing the cerebellum to opti-
mise many types of behaviour, including those involved in 
eating.

Cerebellar Contributions to Motor Control 
of Eating

Perhaps the most obvious role of the cerebellum in eat-
ing is its contribution to motor behaviour. Aside from its 
involvement in the movement required to locate food and 
bring it to the mouth, the cerebellum contributes to the two 
main motor components of consuming food: mastication 

(chewing) and swallowing [43]. Cerebellar injuries, stroke, 
and ataxia are associated with difficulties swallowing (dys-
phagia) and chewing [44, 45, 46, 47, 48], demonstrating the 
importance of an intact cerebellum in the physical ability to 
eat. This section will discuss the role of the cerebellum in 
both the voluntary (mastication and initiation of swallow-
ing) and involuntary (passive swallowing) motor aspects of 
food ingestion.

Cerebellum in Mastication

Mastication is voluntary and recruits different groups of 
facial and neck muscles depending on the difficulty encoun-
tered at food breakdown [22]. The cerebellum indirectly 
innervates facial muscles via the red nucleus [49], a key 
component of the lateral descending motor system (for 
review see [50]).

Functional magnetic resonance imaging (fMRI) is com-
monly used to non-invasively assess brain activity, particu-
larly in humans. Increased regional blood flow is linked to 
neuronal activation, and the changes in levels of oxygenated 
and deoxygenated blood can be detected as a blood oxygen 
level-dependent (BOLD) contrast signal which indicates 
whether a brain region is showing relatively increased or 
decreased activity [51]. Such imaging studies in humans 
have shown that most regions of the posterior cerebellum 
change their activity in relation to chewing, with activation 
of the anterior cerebellum and of lobules V, VI, VIII, and 
IX of the posterior cerebellum during chewing and associ-
ated facial movements [52, 53, 54, 55, 56, 57]. Co-activation 
of the cerebellum (lobule VI), thalamus and supplemen-
tary motor areas in the cerebral cortex during chewing and 
clenching of the jaw indicate that the cerebellum may modu-
late masticatory activity via cerebello-thalamo-cerebral con-
nections [54, 56, 58, 59].

Internal and external cerebellar functional connectivity is 
also increased during chewing; fMRI has shown enhance-
ments in both inter-hemispheric connectivity within the cer-
ebellum and with other brain regions including sensorimotor 
cortices, left temporal gyrus and left cingulate cortex [60]. 
The pattern of cerebral connections suggests the cerebellum 
is involved in the motor planning element of mastication, 
in line with theories of cerebellar prediction and anticipa-
tory activity [60, 61]. Furthermore, patients who adjust their 
chewing movements after structural changes in the dental 
arch show in fMRI studies an increased involvement of the 
cerebellum [57], supporting the potential involvement of 
the cerebellum in chewing pattern generation [52]. This is 
consistent with the cerebellum containing an internal model 
related to chewing, which is updated when oral modifica-
tions change the most efficient form of chewing. Taken 
together, imaging studies in humans therefore suggest a role 
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for the cerebellum in the motor activity, planning and updat-
ing of internal models related to mastication.

Cerebellum in Swallowing

Swallowing can be divided into three phases: (i) the oral 
preparatory phase, comprising of the formation of the bolus 
and voluntary guidance towards the larynx; (ii) the pharyn-
geal transfer phase, where a series of reflexes induce invol-
untary closure of the epiglottis and guidance of the bolus 
towards the oesophagus; and (iii) the oesophageal transport 
phase, when the bolus is transported towards the stomach 
by synchronised contraction and relaxation of the circular 
muscles [21]. Based on anatomical, physiological, imaging, 
and clinical evidence, the cerebellum has an established role 
in all phases of swallowing (for a more extensive review, see 
[48]). For example, fMRI studies in humans have shown cer-
ebellar activation during swallowing, particularly within the 
left-hand side of the cerebellum (around lobule VI, vermal 
culmen and pyramis) [62, 63, 64].

The cerebellum has reciprocal connections with cra-
nial nerves involved in mediating pharyngeal and oesopha-
geal phases of swallowing; typically, these nerves have a 

sensory component with projections to the cerebellum, 
and a motor component which controls and coordinates 
pharyngeal and oesophageal muscle activity according to 
feedback [65]. Somatotopic representations of the facial 
area are found across the cerebellar cortex [66]. In par-
ticular, the tongue is a critical component of the volun-
tary phase of swallowing [67], and there is a somatotopic 
representation of the tongue across lobules VII and VIII 
of the cerebellar cortex in humans [62]. A perioral repre-
sentation with fractured somatotopic organisation has also 
been demonstrated in the cerebellar hemisphere granule 
cell layer in other species, including rodents [68, 69], sug-
gesting conservation of function across species.

The cerebellum also has reciprocal connections with 
the nucleus of the solitary tract (NTS, Fig.  2), which 
integrates visceral information from cranial nerves, and 
amongst other functions, initiates the voluntary phase of 
swallowing [70]. The NTS has direct projections to the 
cerebellar cortex, particularly the vermis, and receives 
inputs from the medial nucleus of the cerebellum [70, 71], 
which relays output from the vermis, thereby forming a 
reciprocal NTS-cerebellar circuit. Transcranial magnetic 
stimulation of the cerebellum in humans interferes with 

Fig. 2  Simplified diagram 
showing cerebellar connections 
with feeding circuits in the 
brain. The hypothalamic nuclei 
are central to a network of brain 
regions which regulate appetite. 
Distinct subtypes of neurons in 
the arcuate (ARC) nucleus of 
the hypothalamus are involved 
in the initiation (AgRP neurons) 
or cessation of food consump-
tion (POMC neurons) via their 
inputs to the other hypothalamic 
nuclei including the paraven-
tricular hypothalamic nucleus 
(PVN), ventromedial hypotha-
lamic nucleus (VMH), lateral 
hypothalamic nucleus (LH), 
and dorsomedial hypothalamic 
nucleus (DMH). Short-term 
appetite regulation involves the 
parabrachial nucleus (PBN) 
and the solitary tract nucleus 
(NTS) of the brainstem, which 
respond to feedback from the 
gut and form connections with 
the hypothalamus to initiate 
satiation. The cerebellum has 
reciprocal connections with the 
VMH, LH, PBN and NTS, and 
sends inhibitory projections to 
the DMH
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swallowing, indicating that the cerebellum, like the NTS, 
plays a pivotal role in coordinating voluntary swallowing 
[72].

Physiological studies have also provided direct evidence 
for a role of the cerebellum in swallowing. In the awake cat 
and rat, electrical stimulation of the cerebellar vermis and 
medial nucleus elicits swallowing, gnawing and grooming 
behaviours [73, 74]. In addition, cerebellectomy in anaes-
thetised cats reduces motor recruitment in the pharyngeal-
oesophageal area [75].

Together, the available evidence from human and animal 
studies demonstrates that the cerebellum is involved in all of 
the key stages of food ingestion, from voluntary preparatory 
and transfer phases of swallowing [63, 64], to the involun-
tary transport phase [73, 76]. Chewing and swallowing are 
stereotypical, repetitive behaviours and therefore predictable, 
making them well suited to being represented by cerebellar 
internal models. In the future, the advance of cell-specific 
genetic methods to manipulate cerebellar circuitry in animal 
models will help reveal the mechanisms and precise networks 
by which the cerebellum mediates these motor behaviours.

Cerebellar Contributions to Appetite Control

Appetite control is a complex process balancing feedback 
information from energy stores and reward centres relating 
to hunger and desire to eat, and feed-forward information 
from the body’s internal clock in anticipation of mealtimes. 
Although not widely recognised, the cerebellum contributes 
to these processes through its connections with well-estab-
lished brain circuits involved in feeding behaviour.

Cerebellum in Hunger and Satiation

Homeostatic mechanisms associated with eating maintain 
energy stores by either increasing or decreasing food intake 
to match energy requirements [15]. Food can also be reward-
ing, so hedonic mechanisms can initiate or limit food intake 
and can sometimes overrule homeostatic mechanisms [19]. 
For example, hunger produces an unpleasant sensation in 
response to low energy stores that drives appetitive behav-
iours to replenish the energy stores [15, 17, 77], but the sen-
sation of hunger can also be induced by exposure to food 
cues and cravings [19]. The hypothalamus is the central 
regulator of appetite and has reciprocal connections with the 
cerebellum [15, 16, 19, 78, 79, 80]. Both the cerebellum and 
hypothalamus interact with other brain structures regulating 
homeostatic and hedonic appetite (Fig. 2, section The Cer-
ebellum in the Homeostatic and Hedonic Appetite Regulation 
Circuitry).

Cerebellar Activation in Hunger and Satiation

Cerebellar activity changes with hunger state, reflecting its 
contributions to the feeding circuitry described above. For 
example, imaging studies in humans using positron emis-
sion tomography (PET) in combination with injection of 
radioactive water found increased regional blood flow in the 
cerebellum following a 36-h fast in healthy-weight partici-
pants, particularly within the anterior and midline vermis 
[81]. Cerebellar activation during hunger was significantly 
decreased when satiation was induced via liquid meal inges-
tion [81, 82] suggesting that the cerebellum may be respon-
sive to nutrient intake, perhaps by responding to one of the 
circulating factors released during food consumption (e.g. 
glucose or cholecystokinin) which provide fast-acting sig-
nals regulating appetite [83, 84, 85, 86].

A comparison between healthy-weight and overweight 
participants, using the same PET technique as above, found 
that a larger area of the anterior-midline cerebellar ver-
mis had decreased regional blood flow when satiation was 
induced following a 36-h fast in overweight participants [87, 
88]. This suggests that the cerebellum functions differently 
in healthy-weight and overweight participants and raises the 
possibility that modified cerebellar processing plays a role 
in the pathophysiology of overeating disorders.

During food consumption, stomach stretch is communi-
cated to the brain via the vagus nerve, providing feedback 
from the gut that food ingestion has begun and serving as 
a satiation signal [89]. Imaging studies in humans have 
reported increased activation in the cerebellar uvula (vermal 
lobule IX) in response to stomach stretch [90]. The strength 
of the BOLD signal in response to stomach stretch increased 
linearly with body mass index [90] indicating that the respon-
siveness of the cerebellum to mechanical, and possibly chem-
ical, feedback from the gut increases with body weight.

Whilst the anterior midline cerebellar vermis is activated 
during hunger, posterior areas of the vermis are respon-
sive to feedback generated by food ingestion [81, 82, 87, 
88, 90]. As outlined in the introduction, this may be related 
to differential connectivity of cerebellar regions, and food 
anticipatory processes may vary depending on the size of 
the metabolic store.

The Cerebellum in the Homeostatic and Hedonic Appetite 
Regulation Circuitry

The hypothalamic nuclei involved in appetite regulation 
form an intricate network [15, 19, 91]. In brief, the lateral 
hypothalamic nucleus (LH) is widely considered to be a hub 
for regulating homeostatic and hedonic feeding [19]. The 
LH integrates information from the arcuate nucleus of the 
hypothalamus (ARC, Fig. 2), which contains both hunger-
related neurons (expressing Agouti-related protein, AgRP) 
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and satiation-related neurons (expressing pro-opiomelano-
cortin, POMC). AgRP neurons project to the paraventricu-
lar nucleus of the hypothalamus (PVN), LH and brainstem 
parabrachial nucleus (PBN) in response to lowering levels 
of the carbohydrate energy store, and POMC neurons mainly 
project to the PVN, but also to the dorsal medial hypotha-
lamic nucleus (DMH), LH, ventromedial hypothalamic 
nucleus (VMH), and NTS, in response to nutrient ingestion 
(Fig. 2) [15, 17, 92, 93, 94]. 

Whilst the cerebellum has generally been overlooked as 
a component of this homeostatic feeding circuit, anatomi-
cal evidence from a range of animal species (including rat, 
cat, and monkey) has demonstrated a direct reciprocal con-
nection between the cerebellum and hypothalamic nuclei 
including the DMH, VMH and LH (Fig. 2) [83, 95, 96]. 
Activation of lateral cerebellar nuclei neurons in mice 
reduced AgRP neuron-mediated food consumption, indicat-
ing that the cerebellum can influence homeostatic control of 
hunger [97]. The cerebellum also forms reciprocal connec-
tions with satiety centres in the brainstem; the NTS (see sec-
tion Cerebellum in Swallowing for roles of this connection 
in swallowing) [71, 98] and the PBN [99, 100].

Upon food ingestion, feedback from the gut is commu-
nicated to the NTS and the brainstem satiation centre in the 
PBN, which is passed on to hypothalamic nuclei respon-
sible for inducing satiation and meal termination (Fig. 2) 
[17, 70, 86, 101]. Circulating factors are also released from 
the gut and accessory organs and are transported across the 
blood–brain barrier to reach receptors in a number of areas 
including the brainstem, hypothalamus, amygdala and cer-
ebellum [15, 101, 102, 103, 104].

LH neurons also integrate information from the ven-
tral tegmental area (VTA) and nucleus accumbens (NAc), 
which are involved in processing food and reward-related 
cues [105, 106, 107, 108]. More specifically, the dopamin-
ergic systems in the VTA, NAc and the striatum are involved 
in driving rewarding behaviours and attributing a reward-
value to food to prolong feeding [15, 19, 109]. Recently the 
cerebellum has also been found to signal various elements 
of reward as further described in  the section Cerebellar 
Reward Processing and Contributions to Over-Eating. In 
addition, a subclass of glutamatergic neurons in the mouse 
lateral cerebellar nuclei have been shown to reduce food 
intake by increasing the release of dopamine from the VTA 
[97]. When dopamine is released during consumption, the 
ingested food is given a reward value indicating that the 
hedonic need for consumption has been met [19, 97]. There-
fore, various lines of evidence point to the cerebellum being 
involved in the modulation of central mechanisms linked to 
hedonic satiation as well as homeostatic regulation of feed-
ing behaviour.

Cerebellum and Leptin‑Mediated Appetite Regulation

Short-term feeding regulation limits food intake per meal, 
whilst long-term regulation dictates daily food intake [84, 
86]. One circulating hormone that limits food intake in the 
short-term is cholecystokinin, which is secreted in the duo-
denum and induces satiety [83, 85, 110]. Circulating hor-
mones regulating long-term appetite are insulin, which is 
secreted by the pancreas and governs glucose metabolism 
[111], and ghrelin, an appetitive stimulant secreted by the 
stomach [109, 112]. An additional hormone, leptin, is con-
tinuously secreted by adipose tissue [113, 114] and is an 
important regulator of appetite [113, 115, 116, 117], con-
tributing to the process of meal termination [118, 119, 120].

Leptin is of particular interest to the role of the cerebel-
lum in appetite regulation. High levels of leptin and leptin 
receptor expression have been reported in the rodent and 
human cerebellum [113], particularly in the cerebellar cor-
tical granule cell layer but also in Purkinje cells and the 
lateral nucleus [121, 122]. High levels of cerebellar leptin 
have been associated with various physiological processes, 
for example during embryological development, the effect of 
leptin in the cerebellum is to promote survival, growth, and 
development of Purkinje cells [123]. Leptin has also been 
shown to facilitate NMDA receptor-mediated calcium influx 
in cultured cerebellar granule cells [124].

Low circulating levels of leptin are a hallmark of obesity 
[119, 125, 126] and deficiencies in leptin production, trans-
port and signalling are known causes of increased weight 
[127, 128, 129, 130]. Leptin replacement therapies are there-
fore often used as a treatment for obesity [131]. Individuals 
with hereditary leptin deficiency have cerebellar activation 
within lobule VI and Crus I in response to food cues which 
decrease as patients undergo leptin-replacement therapy 
[132]. This suggests that leptin replacement counteracts 
abnormal levels of cerebellar activation in response to food 
cues associated with obesity [133]. Cerebellar activation pat-
terns in relation to varying weights and volumes of adipose 
tissue might therefore contribute to changes in leptin signal-
ling in overweight patients [87, 88].

It is well established that fluctuations in circulating 
leptin are detected by neurons in the hypothalamus which 
can increase or decrease appetitive behaviours accordingly 
[86, 134]. Given that the cerebellum is responsive to leptin 
replacement therapies used in obesity, this raises the interest-
ing possibility that leptin also regulates appetite through its 
effects on the cerebellum. Further studies investigating the 
effects of leptin receptor activation on cerebellar neuronal 
activity would shed light on the mechanisms by which this 
may occur.
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Cerebellum in Mealtime Anticipation

The suprachiasmatic nucleus of the hypothalamus (SCN) is 
the circadian master clock [135] and has the primary respon-
sibility for controlling and synchronising neural activity in 
relation to daylight cycles [136]. The basis of SCN function 
is differential expression of a number of genes that peak in 
expression at different times of the day, collectively termed 
Clock genes [137]. Clock gene expression can peak around 
anticipated mealtimes, thereby inducing hunger in a predic-
tive, feed-forward manner [138, 139]. Secondary clocks also 
exist around the body; these are areas that express a number 
of Clock genes, and gene expression in these areas peaks 
with an approximate 6-h phase delay to the master SCN 
clock [138, 139].

Clock genes of particular interest for this review are period 
genes, Per1 and Per2 [137]. These are expressed in the granule 
cell layer and Purkinje cell layer of the cerebellar cortex and 
are involved in mediating food anticipatory activity around 
expected mealtimes [140, 141]. In food-restricted animals, 
expression of Per 1 and Per 2 in the cerebellum is phase-
shifted to peak around expected mealtime, several hours earlier 
than the peak Per 1 and Per 2 expression when animals have 
free access to food and therefore no set mealtime [142, 143]. 
Accordingly, depletion of Purkinje cells or disruption of the 
cerebellar circuitry can reduce food anticipatory activity [140, 
141, 142]. Peaks in the cerebellar expression of Clock genes 
are delayed by several hours relative to the SCN, and it is likely 
this is controlled (perhaps indirectly) by the SCN [144].

In summary, the cerebellum has been shown to be 
involved in various mechanisms of appetite regulation, 
including key hormones and circadian rhythm genes, and 
cerebellar processing may differ between healthy and dis-
ordered eating. One outstanding question concerns how 
Clock genes, and their regulation, differ in those with disor-
dered eating, as this could provide evidence for underlying 
genetic causes in such disorders. Similarly, there may also 
be genetic causes of differences in leptin receptor expression 
and responsivity in obesity.

Cerebellar Reward Processing 
and Contributions to Over‑Eating

Appetitive behaviours are governed by pleasurable sensa-
tions and desire of food, so it is important to consider the 
rewarding nature of eating [145]. The cerebellum is con-
nected with reward centres in the brain including the VTA, 
striatum and neocortex [105, 146, 147, 148, 149] and outputs 
from the cerebellar lateral nucleus have been found to medi-
ate hedonic aspects of satiation by increasing dopaminergic 
release in the VTA [97]. The cerebellum is likely therefore 
to be involved in assigning food with a reward value. This 

section will outline recent animal studies providing evidence 
that reward information is indeed processed by the cerebel-
lum and the implications of abnormal cerebellar responses 
to food cues in over-eating disorders.

Reward‑Related Signalling in the Cerebellum

An increasing body of evidence suggests that different ele-
ments of reward-related information are encoded within the 
cerebellum. For example, in mice trained to perform a volun-
tary movement for reward, a population of cerebellar granule 
cells in lobules VIa, VIb and lobulus simplex were shown 
to respond to reward delivery or reward omission, whilst 
others encoded reward anticipation [150]. These response 
profiles developed over the learning period, suggesting that 
the cerebellum learns to predict reward delivery and adapt 
its responses based on experience. Granule cells receive syn-
aptic input from mossy fibres (Fig. 1b), which are therefore 
likely to carry this information.

The other main input to the cerebellum is from climbing 
fibres (Fig. 1b), which also carry multiple types of informa-
tion related to reward. Climbing fibre inputs to the cerebellar 
flocculus have been shown to encode reward size; in mon-
keys cued to the size of a reward in an eye movement task, 
climbing fibre activity increased in response to a large but 
not a small reward cue [151]. In the lateral cerebellum of 
mice, climbing fibres have also been shown to signal reward 
prediction (lobule simplex, Crus I and II) during learning, 
and can also signal reward delivery and omission [152].

In agreement with classical theories of cerebellar-depend-
ent motor learning [153], reward omission information con-
veyed by climbing fibres may serve as an error signal which 
occurs when the outcome is unexpected. In support of this 
idea, climbing fibre responses to predictable rewards were 
suppressed during learning of a visuomotor integration task 
[154], and the phenomenon can also be generalised to the 
cerebellar mossy fibre-granule cell-parallel fibre system 
because reward-related error signals in PC simple spike 
responses diminish as monkeys learn a reward-association 
task [155]. Reward-based learning in the cerebellum would 
seem therefore to be driven by similar mechanisms as error-
based motor learning, where the cerebellum learns to predict 
the expectation of a reward and an error signal occurs when 
an expected reward does not materialise.

Cerebellum in Pathophysiological Cue Processing

In addition to evidence from animal models that the cerebel-
lum processes rewarded-related cue information, imaging 
studies in humans suggest that this function is conserved 
across species. The cerebellum can learn to selectively 
respond to rewarding cues, including highly palatable food 
[156], and altered cue processing may underlie several 
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pathophysiological states including over- and under-eating 
disorders (the latter are explored further in the section Cer-
ebellar Contributions to Affective Aspects of Eating).

Activation of the anterior cerebellum (hemispheric lob-
ule VI) and VTA is enhanced in overweight participants 
compared to healthy weight participants when exposed to 
cues for highly palatable foods [157]. Overweight individu-
als also find palatable foods more appealing when full com-
pared to full healthy-weight individuals [133]. This is cor-
related with over-responsiveness in the cerebellum, as obese 
children show increased cerebellar activation in response to 
exposure to highly palatable foods once satiated, as com-
pared to healthy weight children [158]. Participants with 
Prader-Willi syndrome have obesity characterised by dys-
functional reward processing circuits, including potential 
overactivation of subcortical reward circuitry and under 
activation of cortical inhibitory regions after eating [159]. 
Prader-Willi participants also show increased activation in 
regions of the cerebellum, likely corresponding to the cer-
ebellar nuclei, in response to food cues post-meal compared 
to controls [97].

Changes in perception of hunger and satiety may be reg-
ulated by cerebellar connections with other reward centres 
in the brain. For example, neuromodulation of prefronto-
cerebellar connections using transcranial direct current 
stimulation (tDCS) increased the desire to eat upon expo-
sure to visual food cues [160], suggesting that disrupting 
this circuit could impair normal regulation of food intake. 
Decreased functional connectivity between the LH and the 
cerebellar cortex has also been reported in overweight com-
pared to healthy-weight participants [161]. As the LH is 
involved in processing both physiological and pleasurable 
eating, this decreased connectivity could indicate that the 
cerebellar-LH connection contributes to food being per-
ceived as less rewarding in obese participants, which may 
lead to overeating to obtain a similar reward value. Altered 
cerebellar-VTA connections are also associated with over-
eating in mice [97].

In summary, animal studies have demonstrated that 
reward information is processed in the cerebellum and that 
the cerebellum interacts with other reward centres [152, 154, 
162]. Imaging studies have suggested that altered reward 
processing within the cerebellum could be a key contributor 
to the pathophysiological events of compulsive eating expe-
rienced by obese and overweight individuals. Understand-
ing how the cerebellum learns pathological reward-related 
responses and how it could ‘re-learn’ healthier associations 
could provide insight to approaches aimed at preventing or 
treating overeating and obesity.

Cerebellar Contributions to Affective 
Aspects of Eating

Appetite is influenced by affective state, and the cerebellum 
is a key node for affective processing through its connections 
with brain regions including the limbic system and prefron-
tal cortex [8, 9, 10, 12, 163, 164, 165, 166, 167, 168]. This 
section will discuss how cerebellar involvement in affec-
tive processing may be linked to appetite in both negative 
emotional states (stress and anxiety) and survival (fear and 
innate survival).

The influence of Negative Emotions on Eating

Stress and anxiety strongly influence appetite; whilst anxiety 
is predominantly an appetite suppressant, stress can either 
suppress or stimulate appetite depending on the palatabil-
ity of available food and whether the stressor is acute or 
chronic [23]. Stress has been linked with changes in weight 
and corresponding neural activity. Alterations in functional 
connectivity between the cerebellum and regions such as the 
LH and the hippocampus have been linked with a higher risk 
of weight gain and overeating in stressed participants [169, 
170, 171, 172]. Stress can also interfere with dopaminergic 
signalling in the VTA [169, 172], which may change the way 
in which the cerebellum controls VTA dopamine release in 
relation to hedonic satiation [97].

The cerebellum has been linked to emotional processing 
disorders in which anxiety is commonly reported, including 
schizophrenia, autism and depression [173, 174, 175, 176, 
177]. As well as affecting appetite in healthy weight indi-
viduals, anxiety is also strongly related to eating disorders 
including anorexia nervosa. Imaging studies have shown an 
altered cerebellar network connectivity in anorexia nervosa 
patients compared to healthy controls, in particular increased 
activity within the vermis [178, 179, 180]. The disorder is 
associated with altered food-cue processing and decreased 
appetite upon presentation of food cues [172, 181, 182]. This 
contrasts with the cerebellar over-responsiveness to food 
cues described in obese participants [97, 157].

The cerebellum is therefore involved in processing negative 
emotions as well as the regulation of appetite (see Cerebellar 
Contributions to Appetite Control) which has been shown to 
vary in several affective disorders [23, 172, 183]. The cerebel-
lum may have an impaired predictive ability in affective con-
ditions which could alter the perceived reward value of foods 
and impact the anticipation of appropriate times to eat. This 
could lead to fluctuations in the volume of food consumed at 
individual meals and increase or decrease number of meals 
over a longer term, leading to changes in weight.
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Cerebellum and Survival

Cerebellar activation has been associated with survival func-
tions [171, 184, 185], for example cerebellar activation, 
particularly within the vermis and anterior paravermis, has 
been shown in response to hypercapnia (hunger for air) and 
thirst [186, 187, 188, 189, 190, 191]. It may therefore be 
hypothesised that the cerebellum drives appetitive functions 
in response to an innate need to replenish energy stores. The 
cerebellar vermis is a common link between affective disor-
ders, survival networks, homeostatic functions, and hunger 
[81, 192, 193, 194], indicating that it could be a key node 
which regulates affective influences on appetite. It remains 
to be determined if separate vermal regions are related to 
each of these functions, or whether there are overlapping 
roles of individual regions.

Associative fear learning, like reward-based learning and 
classical cerebellar motor learning (e.g., eyeblink condition-
ing), can be driven by prediction errors, and negative predic-
tion errors drive the extinction of conditioned fear responses 
[40, 195, 196, 197]. A universal mechanism of cerebellar 
learning, based on prediction, may therefore apply across 
multiple types of behaviour, including eating. In this case, 
the cerebellum may regulate appetite by integrating meta-
bolic (leptin and other circulating factors), sensory (food 
cues), and proprioceptive (hedonic satiation) factors in a 
predictive error-correction manner.

Cerebellum and Prediction

The traditional error-based model of cerebellar learning uses 
feed forward predictions (internal models) about the sensory 
outcomes of movement and compares these against move-
ment-related sensory feedback to supervise error correction, 
thereby improving performance accuracy (for more details 
see [198]. An extension of this theory is to consider the cer-
ebellum as a ‘prediction machine’ [1, 2, 40, 41]. This extends 
cerebellar involvement in specific forms of motor learning, 
for example eyeblink conditioning, to more complex neo-
cortical prediction paradigms involving interactions between 
multiple brain regions [199, 200, 201, 202]. For example, 
preparatory changes in firing rate have been reported in both 
the medial [203] and lateral cerebellar nuclei in mice [204], 
and inhibiting these regions has been shown to disrupt pre-
paratory activity in the anterolateral motor cortex thereby 
impairing motor planning [203]. This suggests that the pre-
dictive capabilities of the cerebellum influence neocortical 
processing and could underpin its involvement in cognitive 
processing.

Prediction and feedback underlie many elements of 
eating described in this review, as food consumption is 

influenced by expectation. As well as short- and long-term 
regulation of appetite which works in a feedback fashion, 
appetite can also be regulated in a feed forward manner by 
circadian clocks, for example becoming hungry in anticipa-
tion of a meal [15]. The sight and smell of food will gener-
ate an internal expectation of what that food will taste like, 
and sensory information upon eating that food will provide 
feedback to match or contradict that expectation. As out-
lined in the section Cerebellar Reward Processing and Con-
tributions to Over-Eating, evidence is accumulating that the 
cerebellum encodes information about reward prediction 
and is likely to do so for other properties of reward, such 
as preferred taste. This internal prediction may be relayed 
to the hypothalamus to influence satiety-inducing neural 
circuits depending upon expectation and outcome.

This predictive model may explain disordered eating 
(both under- and over-eating), where often the feedback 
signals are maladaptive. For example, overweight indi-
viduals are more responsive to food cues and have altered 
satiation signalling. This lack of accurate feedback could 
prevent the learning of healthy eating behaviours, and 
affective or rewarding elements may override basic home-
ostatic regulation, in line with evidence that prediction 
errors are also present in the emotional domain [195]. 
We therefore propose that the overarching role of the cer-
ebellum in eating is to generate a behaviourally relevant 
response to prediction errors which arise from a variety of 
domains including homeostatic, motor, reward, and affec-
tive signals.

The ability of the cerebellum to contribute to such a vari-
ety of functions related to eating stems from its extensive 
interconnectivity with other brain regions, as explored in 
this review. Altered connectivity within this brain-wide net-
work may contribute to disordered eating. It follows that 
manipulating this network to restore altered connectivity 
may provide a therapeutic approach for disorders associated 
with eating. The feasibility of such an approach is now pos-
sible with the development of non-invasive neuromodulatory 
techniques including tDCS, transcranial alternating current 
stimulation and transcranial magnetic stimulation [205, 
206]. Applying these techniques to the cerebellum has been 
shown to alter cerebellar connectivity with cognitive regions 
of the cerebral cortex [207], improve performance in motor 
tasks likely via altering excitability in motor cortical regions 
[208], and improve cognitive performance in patients with 
bipolar disorder [209]. As outlined in the section Cerebellum 
in Pathophysiological Cue Processing, increasing prefron-
tal cortical activity and decreasing cerebellar activity using 
tDCS can increase the propensity to eat [160], showing that 
such approaches can directly influence eating behaviour. 
Therefore, non-invasive stimulation of the cerebellum would 
seem to be a promising approach to explore in future efforts 
to treat pathological eating processes.
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Summary

This review has outlined cerebellar contributions to the 
motor, homeostatic, rewarding, and affective aspects of eat-
ing. The regions of the cerebellar cortex involved in each of 
these domains are summarised in Fig. 3a (and correspond-
ing Table 1). The distribution of cerebellar contributions 
suggests that the medial parts of the cerebellum, which are 
phylogenetically the oldest, largely contribute to the home-
ostatic, motor and survival aspects of eating. In contrast, 
the phylogenetically newer regions of the cerebellum, the 
hemispheres, are related to higher-order aspects of eating, 
including reward processing and associative learning (both 
appetitive and affective). Cerebellar contributions to such a 
wide range of functions can be achieved through its wide-
spread connections with other brain regions involved in each 
function, as summarised in Fig. 3b.

Evidence for a role of the cerebellum in feeding behaviour 
exists at a molecular (e.g., via leptin signalling), anatomical 

(neuronal connections with regions including the hypothala-
mus, PBN and NTS), and functional level (imaging studies 
showing activation during hunger and in the presence of pleas-
ant taste sensations). The cerebellum is involved in processing 
reward and associated cues which may induce cravings and 
the false sensations of hunger. In obesity, this could contrib-
ute to overeating by both inhibiting the sensation of satiety 
and being hyperreactive to food cue processing. On the other 
hand, underactive food cue processing impacts appetite and, 
together with the involvement of the cerebellum in affective 
processing, could contribute to the symptomatology of eating 
disorders. We propose that the cerebellum may control each 
of these elements in its role as a prediction machine. Future 
experiments could investigate this by examining predictive 
behaviours, such as mealtime or reward anticipation, and 
abnormal eating patterns (under- or over-eating) following 
targeted cerebellar inactivation in animal models and observ-
ing changes in eating habits of cerebellar patients.

A number of outstanding questions remain, including:

Fig. 3  Cerebellar and brain-wide networks involved in eating behav-
iours. a Cerebellar regions shown to be involved in homeostatic 
(grey), motor (blue), reward (yellow) and affective (purple) aspects 
of eating. Animal studies are depicted on an outline of the rat cer-
ebellum on the left, and human studies are shown on the right. The 
numbers correspond to the studies detailed in Table 1. b The cerebel-
lum has connections with brain regions contributing to homeostatic 
(grey), motor (blue), reward (yellow) and affective (purple) domains 
of eating behaviours, depicted in a (i) rat and (ii) human brain out-

line. Connections may be direct or indirect; the latter is the case for 
cerebello-thalamo-cortical pathways. We propose that the cerebellum 
has a unifying role via prediction signals which contributes to each 
of these components. Note that this diagram is not comprehensive, 
but represents key structures discussed in this review. PFC, prefrontal 
cortex; VTA, ventral tegmental area; RN, red nucleus; PAG, periaq-
ueductal grey; PBN, parabrachial nucleus; NTS. nucleus tractus soli-
taries
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• Is the same cerebellar computation carried out when 
predicting the different types of behaviour involved in 
eating (motor, homeostatic, reward, affective), or is it 
region-specific? Could it depend on the time course of 
individual predictions, given that these behaviours hap-

pen over different time scales? For example, motor con-
trol of swallowing versus circadian control of appetite.

• Could genetic predispositions to eating-related disorders 
directly affect gene expression patterns in the cerebel-
lum?

Table 1  Summary of cerebellar regions involved in different aspects of eating behaviours. Colours correspond to homeostatic (grey), motor 
(blue), reward (yellow) and affective (purple) functions. These areas are depicted on a cerebellar outline in Fig. 3a

Hunger Vermis (anterior midline) Tataranni et al. (1999) Human 1

Stomach stretch
Vermal lobule IX, declive, tonsil, 
uvula

Tomasi et al. (2009)
Human 2

Air hunger 
Midline regions of central 
lobule

Parsons et al. (2001)
Human 3

Thirst Vermis; Quadrangulate, Lingula Parsons et al. (2000) Human 4

Blood pressure and heart rate Posterior Vermis – Lobule IX Bradley et al. (1987) Rabbit 5

Chewing, clenching Vermal Lobule VI
Onozuka et al. (2002), Lin 
(2018b)

Human 6

Sensory inputs from the tongue Lobules VI, VIIb/VIIIa Boillat et al. (2020) Human 7

Swallowing Le� posterior lobe Suzuki et al. (2003) Human 8

Oral behaviours (ea�ng, grooming, 
gnawing)

Rostro-ventral anterior lobe 
vermis, fas�gial nucleus, 
superior cerebellar peduncle

Ball et al. (1974), 
Berntson et al. (1973)

Rat, cat 9

Reward size encoding Flocculus Larry et al. (2019) Monkey 10

Reward expectancy and omission Lobules VI and Simplex Wagner et al. (2017) Mouse 11

Reward predic�on learning Lobule Simplex, Crus I and II Heffley and Hull (2019) Mouse 12

Predic�on of reward Lobules V, VI and Simplex Kostadinov et al. (2019) Mouse 13

Food and drug cue Crus I, II and Lobules V, VI Tomasi et al. (2015) Human 14

Food cue reac�vity + 
responsiveness to lep�n 
replacement therapies 

Lobule VI and Crus I Berman et al. (2013)

Human 15

Food cue reac�vity + overac�vity in 
obesity

Lobule VI Carnell et al. (2014)
Human 16

Decreased grey ma�er volume in 
obesity

Pyramis, Tonsil and Semilunar 
Lobule 

Weise et al. (2017)
Human 17

Dietary disinhibi�on Lobules V, VI English et al. (2019) Human 18

Stress Vermis; Culmen, Declive Yang et al. (2019) Human 19

Altered connec�vity in ea�ng 
disorders

Lobule IX, X Amianto et al. (2013)
Human 20

Fear condi�oning; predic�on error Crus I and Lobule VI
Utz et al. (2015), Ernst et 
al. (2019)

Human 21

Fear ex�nc�on Anterior Vermis (Lobules III-V) Utz et al. (2015) Human 22
Innate freezing to predatory odour Lateral vermal lobule VIII Koutsikou et al. (2014) Rat 23
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• Can we truly separate the motor, homeostatic, cognitive, 
and affective aspects of feeding behaviours? Are all feed-
ing networks likely to be involved in multiple domains to 
some extent?

• Could non-invasive stimulation techniques be useful ther-
apeutic approaches for treatment of disordered eating?
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