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Abstract
Marine-derived fungi have attracted much attention due to their ability to present a new biosynthetic diversity. About 50 
fungal isolates were obtained from Tunisian Mediterranean seawater and then screened for the presence of lignin-peroxidase 
(LiP), manganese-dependent peroxidase (MnP), and laccase (Lac) activities. The results obtained from both qualitative and 
quantitative assays showed that four of marine fungi isolates had a high potential to produce lignin-degrading enzymes. 
They were characterized taxonomically by a molecular method, based on international spacer (ITS) rDNA sequence analy-
sis, as Chaetomium jodhpurense (MH667651.1), Chaetomium maderasense (MH665977.1), Paraconiothyrium variabile 
(MH667653.1), and Phoma betae (MH667655.1) which have been reported as producers of ligninolytic enzyme in the 
literature. The enzymatic activities and culture conditions were optimized using a Fractional Factorial design (2 7− 4). Then, 
fungal strains were incubated with the addition of 1% of crude oil in 50% of seawater for 25 days to evaluate their abilities to 
simultaneously degrade hydrocarbon compounds and to produce ligninolytic enzymes. The strain P. variabile exhibited the 
highest crude oil degradation rate (48.3%). Significant production of ligninolytic enzymes was recorded during the degrada-
tion process, which reached 2730 U/L for the MnP, 410 U/L for LiP, and 168.5 U/L for Lac. The FTIR and GC–MS analysis 
confirmed that the isolates rapidly biodegrade crude oil under ecological and economic conditions.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are widely dis-
tributed as environmental contaminants. In addition to 
being ubiquitous, recalcitrant, bioaccumulative, and toxic, 
they have carcinogenic, teratogenic, mutagenic, and other 
toxic properties [1]. PAHs were investigated on the sur-
face of Mediterranean seawater with a total concentration 
resulted of 43 ng/L [2]. However, The PAHs distribution 
in the Mediterranean sediment samples varied from 26.9 to 
364.4 ng/g in Sicily Channel and 14.7 to 618.1 ng/g in the 
Gulf of Tunis. The proportion of PAH 2–3 and PAH 4–5 

rings concentration showed that the main origins are char-
acteristic of petroleum sources [3]. Hydrocarbon contamina-
tion is a serious threat to ecosystems and bioremediation has 
proved to be the most promising method, which is known to 
be practical and eco-friendly. Thereby, micro-organisms can 
produce several metabolites involved in the degradation of 
hydrocarbons and may generate less toxic products [4]. As 
a syntrophic bacterial association, biofilm is crucial to the 
breakdown of PAHs. It has been highlighted that the biofilm 
matrix’s three-dimensional structure promotes the quick and 
effective degradation of PAH, the effectiveness depends on 
several physicochemical biofilm characteristics [5].

The marine ecosystem represents a largely unexplored 
niche. Marine microflora found to be effective to address 
some current environmental contamination. Hence, bacteria 
isolated from marine sources bear great attention in biore-
mediation of a wide spectrum of hydrocarbon contaminants 
such as synthetic plastics [6].

Marine-derived fungi capable of degrading pollutants 
such as PAHs are largely uncharacterized and still poorly 
studied [7]. The use of these fungi for the bioremediation 
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of polluted saline environments is facilitated by their toler-
ance to saline and oligotrophic conditions [8]. Therefore, 
the introduction of this type of microorganisms adapted to 
the marine environment to improve the biodegradation rate 
of PAHs may be an important approach to decrease these 
compound concentrations in a contaminated site.

Microbial enzymes have attracted a considerable attention 
due to their significant biotechnological and environmental 
applications. In recent years, besides lignin degradation, 
ligninolytic enzymes have been implicated in the degrada-
tion of recalcitrant environmental pollutants such as xenobi-
otic compounds and various industrial dyes or effluents that 
can cause both serious environmental and health hazards 
because of their harmful effects [9].

The extracellular ligninolytic enzyme system, consist-
ing essentially of manganese-dependent peroxidase (MnP) 
(E.C:1.11.1.13), lignin peroxidase (LiP) (E.C:1.11.1.14), and 
laccase (Lac) (E.C:1.10.3.2), is sufficiently non-specific and 
non-stereoselective to promote degradation abilities of several 
persistent aromatic pollutants. Their catalytic action gener-
ates more polar and soluble metabolites such as quinones, 
phthalate, or diphenic acid, increasing their bioavailability 
and enhancing their further degradation and mineralization 
by indigenous microorganisms in contaminated sites [10].

White-rot fungi, belonging to the basidiomycetes, are con-
sidered as the most efficient producers of ligninolytic enzymes 
in nature namely Phanerochaete chrysosporium, and Trametes 
versicolor [11]. However, there has been a growing interest in 
screening research for new and alternative fungal strains for 
producing efficient ligninolytic enzymes. Marine fungi have 
been proposed as an alternative organism that can produce 

biologically active secondary metabolites such as lignino-
lytic enzymes because of their broad capacities to adapt to 
the marine harsh environment [8].

Considering that petroleum compounds are pollutants 
commonly found in the marine environment and that little 
is known about their degradation by marine microorgan-
isms, this study aims to isolate local marine fungi producing 
lignin-degrading enzymes and assess their ability to degrade 
crude oil in saline conditions. The isolated strains were 
screened and identified based on molecular methods. Crude 
oil was used to evaluate strains’ degradation abilities and 
metabolic products were investigated by GC–MS analysis.

Material and methods

Chemicals and substrates

2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 
Guaiacol, were purchased from Sigma–Aldrich Pvt Ltd. (USA). 
All the chemicals used were procured of analytical grade.

Sample collection and isolation

Water and sediment were collected from different saline 
point from the north of Tunisia (Fig. 1). The salinity in site 
(A) ranged from 20 g/L in summer to 38.5 g g/L in winter 
[12]. In site B the salinity is more than 40 g/L [13] and 
site (C) is characterized by extreme salinity which varies 
between 32 and 43 g/L [14]. The collected samples were 
brought to the laboratory in clean plastic bags in a cooler.

Fig. 1  Satellite imagery of water and sediment samples location: A the Lake of Bizerte, B Sebkha Sijoumi, and C Lake of Tunis
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Fungi were isolated in modified Malt Extract Agar 
(MEA) containing an antibiotic (Chloramphenicol) to inhibit 
bacterial growth. A standard dilution method was adopted 
to isolate fungi from water and sediment suspension. 100 µl 
of each dilution was plated on MEA medium. Plates were 
incubated at 28 °C for 7 days. For purification, a minimal 
amount of mycelia was picked up from young colonies and 
subcultured on MEA plates. These assays led to collect 50 
pure and morphologically different fungal isolates.

The modified MEA was prepared with artificial seawater 
which is composed of 30 g/L NaCl, 0.73 g/L KCl, 10.7 g/L 
 MgCl2·6H2O, 5.4 g/L  MgSO4·7H2O, g/L  CaCl2·2H2O.

Screening of fungi for ligninolytic enzyme activity

Preliminary screening of the fungal isolates for the presence 
of lignin-degrading enzymes (Laccase and Peroxidases) was 
qualitatively performed by growing them on modified MEA 
supplemented with 4 mM of guaiacol as an aromatic model 
compound [15].

Guaiacol-supplemented MEA plates were inoculated with 
a 7 mm plug of each fungus and then, were incubated at 28 °C 
for 7 days. A strain was described as a producer of extracellular 
ligninolytic enzymes if a reddish-brown halo appeared under 
and around the fungal colonies in the first week of incubation.

Identification of fungal isolates

The selected pure fungal strains were identified based on 
internal transcribed spacer (ITS) rDNA sequence analy-
sis. The total genomic DNA of the isolates was extracted 
as described by [16]. DNA extracts were assessed using a 
Nano drop ND-1000 Spectrophotometer.

The ITS1-5.8S-ITS4 regions were amplified using two uni-
versal fungal primers: internal transcribed spacer 1 (ITS1:5' 
TCC GTA GGT GAA CCT GCC G-3') and internal transcribed 
spacer (ITS4 5' TCC TCC GCT TAT TGA TAT GC-3').

PCRs were performed in final reaction mixtures (25 
µL) containing 2 µl genomic DNA, 2 µl of each primer 
(20µmoles/µl), 1 µl dNTPs (20 mM), 1.5 µL  MgCl2 (25 mM), 
0.25 µl Taq polymerase (5U/L) (Promega) and 5 µl of reac-
tion buffer (Promega). Thermocycling conditions consisted 
of an initial denaturation for 2 min at 95 °C followed by 30 
cycles of 1 min at 95 °C, 1 min at 53 °C and 1 min at 72 °C, 
and a final extension for 10 min at 72 °C and cooling to 4 °C. 
The amplicons obtained were sequenced and analyzed. The 
DNA sequences were compared with those available on the 
database using the BLAST program at the National Center 
for Biotechnology Information (NCBI). The phylogenetic 
tree was constructed using neighbour-joining method [17]. 
Distances were estimated by the Tamura-Nei method [18]. 
The sequences of 18S rRNA gene identified were deposited 
in GenBank under accession number.

Optimization of culture conditions

Fractional Factorial design (2 7− 4) was adopted to deter-
mine the optimum conditions that affect significantly the 
production of ligninolytic enzymes. Seven variables were 
applied (inoculum size, glucose,  (NH4)2SO4, Veratryl alco-
hol, and sodium chloride concentration, agitation speed, 
and the initial pH) and three responses (Lac, LiP, and MnP 
activities) were considered for the design analysis. The fac-
tor values and their range were chosen based on the results 
of a preliminary analysis of the isolated strains (data not 
shown) and on previous studies. Veratryl alcohol, an aro-
matic compound, was used in this study to induce lignino-
lytic enzyme activities [19]. pH is an important factor for 
microbial growth and secondary metabolite secretion. It 
can alter enzyme stability by changing its surface proper-
ties [20]. The rate of agitation is a crucial factor because 
it facilitates nutrient access and impacts oxygenation [21]. 
The carbon and Nitrogen sources are essential nutrients 
for fungal growth [22]. The salinity was investigated in 
this work because fungal strains were obtained from saline 
biotopes.

To obtain the parameters that affect the ligninolytic 
activity of the four selected strains, each independent vari-
able was investigated at two levels, high and low, which 
were respectively denoted by ( +) and ( −). The coded val-
ues in Fractional Factorial design matrix were transformed 
into real values; therefore, eight runs were applied for each 
strain (Table 1).

After seven days of incubation, the content of each flask 
was centrifuged at 5000 × g for 20 min, the supernatant was 
used for enzymatic analyses (Lac, LiP, and MnP).

The experimental design was analyzed using the statisti-
cal software "Statistica". These parameters were screened 
according to previous studies that were shown to be critical 
in enhancing enzyme production [23, 24].

Fungal degradation of crude oil

Preparation of degradation medium

To determine the ability of selected fungi to degrade hydro-
carbon, a specially prepared media with 1% of crude oil 
was used (according to the best condition found for each 
fungus after optimization). Fungal spores were inoculated 
in the broth. The media was incubated at 28 °C for 25 days 
in a shaker incubator rotating at 120  rpm. The control 
flasks were inoculated without fungi.

Quantitative Analysis for ligninolytic enzymes

The enzymatic quantification was performed in 250-mL 
Erlenmeyer flasks containing 50  mL Kirk’s modified 
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medium [25]. This medium contained per liter: glucose, 
10 g; peptone, 5 g; yeast extract, 1 g; ammonium tar-
trate, 2 g;  KH2PO4, 1 g;  MgSO4·7H2O, 0.5 g; KCl, 0.5 g; 
trace elements solution, 1 ml. The composition of trace 
elements solution per liter was:  B4O7Na2·10H2O, 0.1 g; 
 CuSO4·5H2O, 0.01 g; FeSO4·7H2O, 0.05 g; MnSO4·7H2O; 
0.01;  ZnSO4·7H2O, 0.07 g;  (NH4)6Mo7O24·4H2O, 0.01 g. 
The pH of the solution was adjusted to 5. Cultures were 
incubated at 28 °C under agitation at 150 rpm. All enzyme 
activities were followed on a UV–visible spectrophotom-
eter. Cultures were harvested by filtration and centrifuged 
at 10,000 × g for 20 min, and the supernatants were used 
as an enzyme sources.

Laccase activity was estimated by oxidation of 
2.2-azino-bisethylbenthiazolina (ABTS) according to [26]. 
A 50 µl of culture supernatant was added to a reaction 
buffer of 0.1 M sodium acetate (pH 4.5). The reaction was 
initiated after the addition of 5 mM ABTS to the reaction 
mixture and the oxidation was determined spectrophoto-
metrically at 420 nm.

Lignin peroxidase (LiP) activity was determined by 
measuring the rate of oxidation of veratryl alcohol to vera-
traldehyde as described by [27]. The mixture reaction con-
tained 2 mM veratryl alcohol and 0.4  mMH2O2 in 50 mM 
sodium tartrate buffer, pH 3, and 500µL enzyme extract. 
The reaction was started by adding hydrogen peroxide 
and the appearance of veratraldehyde was determined at 
310 nm.

MnP activity was determined spectrophotometrically at 
270 nm through the oxidation of 0.5 mM MnSO4 in 50 mM 
sodium malonate buffer (pH 4.5) in the presence of 0.5 mM 
 H2O2. The absorbance was measured in 1 min intervals after 
the addition of hydrogen peroxide [28]. One enzyme unit 
was defined as a 1 µmol product formed per minute under 
the assay conditions.

Biomass accumulation by fungal strains under crude oil 
degradation

Biomass was investigated during the process of crude oil 
degradation by gravimetric method. The culture broth was 
filtered through Whatman No. 1 filter paper. The harvested 
biomass samples were washed twice with distilled water 
and dried in an oven at 85 °C for 72 h.

Analytic methods

Crude oil extraction and gravimetric analysis

The liquid culture was transferred into a 100-ml separatory 
funnel and the metabolites of crude oil degradation were 
extracted using ethyl acetate (1:1 v/v) by shaking vigorously 
for 2 min with periodic venting. The organic layer was recu-
perated and the aqueous layer was re-extracted twice. The 
combined extract was dried with anhydrous sodium sulfate 
columns (3 g). The dried extracts were concentrated with a 
rotary evaporator using ethyl acetate as an organic solvent 
[29]. The residual crude oil was accurately weighed and 
quantified gravimetrically. The percentage of degradation 
was then calculated using the followed formula:

where a is the weight of crude oil in the control, b is the 
weight of residual crude oil after fungal treatment.

FTIR analysis

FTIR spectroscopy was used in the present study to detect 
structural changes in the functional group of crude oil 

% of degradation =
(a − b)

a
× 100

Table 1  Matrix for the  2(7−4) fractional factorial experimental design

Factors runs Inoculum concentration 
(spore/mL)

Inducer veratryl 
alcohol (mM)

Salinity  
(g/L)

Agitation (rpm) Glucose  
concentration
(g/L)

(NH4)2SO4  
Concentration 
(g/L)

PH

Low level 103 0 15 0 5 1 4
High level 106 1.5 30 150 10 3 6
1  − 1  + 1  + 1  − 1  − 1  + 1  − 1
2  − 1  − 1  − 1  + 1  + 1  + 1  − 1
3  + 1  − 1  − 1  − 1  − 1  + 1  + 1
4  − 1  − 1  + 1  + 1  − 1  − 1  + 1
5  + 1  + 1  − 1  + 1  − 1  − 1  − 1
6  − 1  + 1  − 1  − 1  + 1  − 1  + 1
7  + 1  + 1  + 1  + 1  + 1  + 1  + 1
8  + 1  − 1  + 1  − 1  + 1  − 1  − -1
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degradation metabolites. Perkin Elmer, Thermo Scientific IR 
200 FT-IR, was used for the analysis of crude oil extracts 
before and after fungal treatment. The spectrum was recorded 
in the mid-IR region of 400 − 4000 cm − 1 at a rate of 16 nm/s.

GC–MS analysis

To detect and identify crude oil metabolites after fungal degra-
dation, extract samples were analyzed by gas chromatography 
coupled with mass spectrometry according to Luan et al. [30] 
with minor modifications. The column was held at 100 °C for 
3 min and raised to 300 at a rate of 5 °C/min, and finally kept 
for 10 min. The injector temperature was held isothermally at 
280 °C with a split-less mode for 3 min. The solvent cut time 
was set to 4 min. Helium was used as the carrier gas with a flow 
rate of 1 ml/min. The MS was operated under electron impact 
(EI) with electron energy of 70 eV, and scanned ranging from 
50 to 500 amu (atom to mass unit) to collect appropriate masses 
for selected ion monitoring. The identification of metabolites 
was based on matching their retention times of standards.

Statistical analysis

An analysis of variance (a one-way ANOVA) was conducted 
by employing performed (SPSS) version 20.0 software. SAS 
9.0 software was used for all statistical analysis with mul-
tiple comparison tests effects were considered significant 
when the P value was < 0.05.

Results and discussion

Isolation and screening of ligninolytic enzyme 
producers

In this study, a collection of 50 fungal isolates was obtained 
from contaminated marine biotopes in North of Tunisia. Out 
of 50 fungal strains, 29 were isolated from Sebkha Sijoumi 

(site A), 19 from Bizerte lagoon (site B), and 2 fungal strains 
were isolated from Lake of Tunis (site C) (Fig. 1).

Based on the qualitative screening on the MEA supple-
mented with guaiacol, four fungal isolates (G1, SO2, M4, 
and E12) were considered as the most promising for lignin-
degrading enzymes (Fig. 2). The ability of the fungus to oxi-
dize and decolorize guaiacol confirms that they are capable 
of producing phenol oxidases, peroxidases, and hydrogen 
peroxide–producing oxidases [31].

Similar results were found by Chen et al. [32], who 
isolated about 20 fungi from sea mud, seagrass, and man-
grove samples. Among these fungi, one isolate showed 
a positive reaction when cultured in a guaiacol medium. 
In another screening from the Çakalburnu Lagoon, Izmir 
Bay, Aegean Sea in Turkey, marine origin fungi were 
obtained from the sea and lagoon environment [33]. In a 
study conducted in Tunisia, among 20 fungi isolated from 
marine environments and screened [34], 5 fungi showed 
positive oxidative activity on both 2,6-dimethoxyphenol 
and ABTS added as substrates. The isolation of fungi pro-
ducing ligninolytic activity from marine environments is 
less explored than their terrestrial homologs. However, 
due to their great ability to adapt to extreme conditions 
(high pressure, low temperature, oligotrophic nutrients, 
salinity), fungi of marine origin can provide a new bio-
synthetic diversity [35, 36].

Taxonomic identification of selected fungi

The four fungal isolates were characterized taxonomically 
based on morphology and molecular analyses using inter-
nal transcribed spacer (ITS) regions. The phylogenetic tree 
is shown in Fig. 3. Results indicated that all isolates were 
representative of the Ascomycota phylum SO2 and G4 was 
100% identical to that of Chaetomium maderasense and 
Paraconiothyrium variabile (Accession No. MH665977.1 
and MH667653.1 respectively), while the partial 18S 
rDNA sequence of isolates M1 and E12 were 99% identical 

Fig. 2  Ligninolytic enzyme 
production in solid media by 
positive guaiacol oxidation after 
7 days of incubation of four 
marine fungal isolates: a front 
view, b back view
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to Chaetomium jodhpurense and Phoma betae respectively 
(Accession No MH667651 and MH667655).

Prasannarai and Sridhar [37] and Dhanasekaran et al. [38] 
discussed the prevalence of ascomycetes in aquatic habitats, 
which can be explained by the adaptation of their spores to 
the aquatic ecosystem. Nevertheless, basidiomycetes fungi 
are rarely isolated from marine samples [39].

The genus Chaetomium is ubiquitous occurring at the 
ground, air, and marine environments [40]. Studies have 
shown significant production of a wide range of secondary 
metabolites by different species belonging to this genus 
[41–43]. In 2022, Tian and Li [44] reviewed the struc-
tural diversities and biological activities and properties of 
122 secondary metabolites isolated from marine-derived 
Chaetomium species between 2001 and 2021 with a very 
broad spectrum of biological activity including cytotoxic-
ity, enzyme inhibitory activity, radical-scavenging activity, 
antiparasitic, antibacterial, and antifungal activity. Indeed, 
the genus Chaetomium has a large range of applications in 
bioremediation [45, 46].

Paraconiothyrium variabile is the homotypic synonym 
of Didymosphaeria variabile. In 2004, [47] proposed Para-
coniothyrium as a new genus, and then it was found to be a 
commonly occurring fungal genus ranging from marine to 
soil. Species belonging to this genus have shown great inter-
est in producing antimicrobials [48, 49], anti-inflammatory 
[50], and cytotoxic metabolites against human cancer cell 
lines [51, 52]. The production of extracellular enzymes and 
their application in bioremediation have been reported in 
numerous investigations. An extracellular laccase purified 
and characterized from P. variabile [53] has been shown 
highly efficient for decolorization of synthetic dyes [54], 

as well as removing effectively chlorophenolic derivatives 
[55]. The isolation of P. variabile and some other Paraconi-
othyrium species from the Mediterranean Sea was reported 
for the first time by Garzoli et al. [56]. In 2020, Gonçalves 
et al. [57] isolated a new species named “Paraconiothyrium 
salinum” from saline water in the estuary of the Ria de 
Aveiro (Portugal).

The genus Phoma is very important because it is known 
for its excellent production of bioactive secondary metabo-
lites. There are two major groups of Phoma species: ter-
restrial and marine. Marine Phoma represents an important 
source of many secondary, which have demonstrated antivi-
ral, antifungal, antibacterial, antiprotozoal, and weedicide 
activities [58]. Isolation of strains from the aquatic envi-
ronment belonging to Phoma genus has been previously 
reported by [33, 59 and 60]. Species belonging to Phoma 
genus were highlighted as good producers of laccase. Isola-
tion of Phoma sp. with great efficiencies for synthetic azo 
and anthraquinone dyes decolorization had been studied 
by Junghanns et al. [59]. Debnath et al. [61] reported the 
production of thermophilic and alkali-stable laccase by 
Phoma herbarum with a promising result for industrial dye-
decolorization. Immobilized and free purified laccase from 
Phoma beate also showed great efficiencies for synthetic 
dyes degradation [62].

The exploration of fungi living in saline water has 
increased considerably in recent years due to their great abil-
ity to produce secondary metabolites [63]. In this work, we 
isolated four fungal strains from saline environments belong-
ing to Ascomycota, which have been documented as good 
producers of ligninolytic enzymes and efficient candidates 
for bioremediation process.

Fig. 3  Phylogenetic tree of fun-
gal strains based on ITS rDNA 
sequence. Numbers following 
the names of the strains are 
accession numbers of pub-
lished sequences. The tree was 
constructed by neighbor-joining 
algorithm using maximum 
composite likelihood model. 
Bootstrap percentages from 
1000 replicates are shown
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Optimization of culture conditions for enzyme 
production

The study of nutritional and environmental conditions of 
fungal cultures is very crucial to increase enzymatic activi-
ties. The maximum MnP activities were achieved in culture 
without veratrylic alcohol and containing 15 g/L of NaCl, 
10 g/L of glucose, 3 g/L of  (NH4)2SO4, and  106 spores/mL 
with 150 rpm speed agitation at initial pH 4 (Table 2).

The high LiP production was found in a static medium 
added by 15 g of NaCl, 5 g/L glucose,  106 spore/mL, 1 g/L 
 (NH4)2SO4 at initial pH 6, and with the addition of 1.5 mM 
of veratryl alcohol as an inducer. The most suitable medium 
for Lac production contained 30 g/L NaCl, 5 g/L glucose, 
 106 spore/mL, and 3 g/L of  (NH4)2SO4 at initial pH 4 and 
without agitation and veratryl alcohol (Table 2).

Pareto charts represented the factor’s effect on enzyme 
production (Fig. 4). The vertical line chart represents a refer-
ence line, any factor that extends past this line is of signifi-
cant effect at p = 0.05 (significance level). In this matrix, 
a screening step was performed when very low coefficient 
effects have been discarded.

Pareto charts show clearly the significance of glucose con-
centration on LiP production only with the strain C. madera-
sense requesting a high concentration of glucose. The other 
tested fungi can produce maximum LiP activity in a low 
glucose concentration. Nitrogen-rich condition is suitable for 
LiP production with strains P. betae and P. variabile. Veratryl 
alcohol, known as an inducer of LiP enzyme production [64, 
65], enhanced LiP activity only in C. judhpurense culture. 
However, it negatively affects MnP activity with all tested 
fungi. Schneider et al. [19] reported also that veratryl alcohol 
induced LiP activity and decreased MnP activity in the strain 
Marasmiellus palmivorus VE111. In this context, Arora and 
Gill [66] highlighted that some white rot fungi can produce 
veratryl alcohol and the exogenous addition could make it 
toxic against enzyme production.

Production of laccase in this experimental design was 
limited compared to LiP and MnP production. Static condi-
tions and high nitrogen concentration have the most sig-
nificant effect on Lac activity. This result suggests that the 
production of significant levels of Lac may require different 
conditions than those tested in this work.

This study demonstrated that the selected marine-
derived fungi could economically produce extracellular 
enzymes. High activities were found in a static condi-
tion, without inducer, with a low concentration of NaCl, 
and glucose, and in limited Nitrogen conditions. These 
are promising results in further application for industrial 
technologies. Tested fungi can be considered as slightly 
halophilic because they can grow and produce extracellular 
enzymes in the presence of low (1.5%) or high levels (3%) 
of NaCl. This was supported by Gonçalves et al. [57], who 
highlighted the ability of two marine-derived fungi “Para-
coniothyrium salinum and Neoascochyta fuci” to survive 
similarly in the presence or not of 3% of sea salt.

Crude oil evolution in optimal synthetic media

Enzyme activity

The fungal crude oil degradation was carried out in opti-
mum conditions found with the experimental design after 
the addition of 1% of crude oil. The production of laccase, 
MnP, and LiP enzymes was recorded in most of the cultures 
of the four tested fungi in treatment and control cultures 
(Fig. 5). The results showed that the enzymatic activities had 
increased considerably as compared to the controls.

In the presence of crude oil, the enzymatic activity 
recorded by the strains shows a dominance of peroxidase 
enzymes. The strain C.ascotrichoides showed 2500 U/L 
of MnP, 410.8 U/L of LiP, and 13.29 U/L of lac. For C. 
judhuprensis, MnP, LiP, and laccase activities were 2232.2 
U/L, 278.864, and 49.27 respectively. The strain P. variabile 

Table 2  Optimization of enzymatic activities (U/L) of laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP) using a 2 
7−4fractional factorial design 

* The highest value of enzymatic activity

C. jodhpurenses C. madrasense D. variabile P. beate

Run Lac LiP MnP Lac LiP MnP Lac LiP MnP Lac LiP MnP

1 2.224 94.39* 112.3 4.449* 81.54 6.048 4.635* 75.82 93.6 0 81.97 31.14
2 3.152 79.272 334.4* 3.337 75.92 95.76 0.743 80.03* 347.4* 2.874 81.11 31.14
3 4.450* 80.14 319.7 2.039 84.89* 127.2 0.556 78.95 249.7 120.5* 84.56* 314.5
4 0.927 91.15 268.2 2.781 80.14 107.5 2.039 72.58 290.7 0 80.78 286.9
5 0.556 91.15 88.56 1.298 80.35 3.672 3.152 72.36 57.42 2.132 81 49.14
6 0.742 82.30 209.3 3.708 78.62 3.744 4.264 73.33 58.32 3.708 76.36 88.2
7 1.298 71.82 108 2.781 81.43 4.464 2.781 77.76 86.76 1.205 79.38 130.9
8 2.225 76.57 273.1 1.483 83.81 174.7* 3.893 75.82 311.8 2.966 78.41 318.8*
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produced 2730.24 U/L of MnP, 369.36U/L of LiP, and 
168.52U/L of Lac. P. betae presented 1318 U/L of MnP, 
223.2 U/L of LiP, and 128 U/L of Lac.

In control cultures, the highest level of MnP production is 
recorded with Chaetomium genus at more than 700 U/L fol-
lowed by P. betae and P. variabile with 636 U/L and 617 U/L 

respectively. P. betae produced the highest LiP activity with 
175U/I and the lowest level showed in P. variabile culture 
(163U/L). However, the laccase activity was ineffective and 
unstable.

Our results showed that the marine isolated ascomy-
cete could produce extracellular lignin peroxidase (LiP) 

Fig. 4  Pareto charts of standardized effects of Lac, LiP, and MnP 
production by a C. jodhpurense; b C. madrasense; c P. variable; d 
P. betae (The red vertical line chart  represents  significance level 

p = 0.05). (1): Inoculum concentration, (2): Inducer, (3): salinity, (4): 
agitation, (5): glucose concentration, (6):  (NH4)2SO4, and (7): pH
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and manganese peroxidase (MnP), Furthermore; the 
enzyme activity was largely stimulated by the presence 
of hydrocarbon compounds. In this study, Lac production 
was enhanced by the presence of crude oil particularly 
with two strains P. variabile and P.betae that can produce 
noticeable levels, which rushed 168 U/L and 128 U/L 
respectively. Similarly, the induction of Lac activity of 
P. ostreatus by the PAHs (i.e., naphthalene, anthracene, 
phenanthrene, pyrene, and benzo[a]pyrene) was noticed 

by Pozdnyakova et al. [67]. The higher level of the three 
sought enzymes in crude oil-supplemented media than 
in control cultures can be explained by the great demand 
for enzymes for hydrocarbon breakdown reactions [68]. 
The improved activity of these enzymes was recorded by 
Agrawal and Shahi [69] in Coriolopsis byrsina in presence 
of pyrene. Ameen et al. [68] demonstrated that the culture 
of marine-derived fungi in the presence of diesel is also 
associated with the production of ligninolytic enzymes.

Fig. 5  Ligninolytic enzyme activities by fungal isolates a C. jodhuprense, b C. maderasense, c P. variabile, and d P. betae in free crude oil 
media (controls) and in treatments. + indicated the treatment culture
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It was suggested that the rate of PAH bioremediation 
directly correlates with the rate of ligninolytic enzyme 
production [69].

Dry weight accumulation by fungal isolates

The culture of the various strains was carried out on an 
optimal synthetic medium containing 1% of the crude oil 
for 25 days. The growth of fungi was determined by the 
measuring of the mycelium weight at the end of the culture 
(Fig. 6). Biomass accumulation is more important in pres-
ence of crude oil than in control culture. The C. maderasense 
strain had the highest weight gain with five times more, fol-
lowed by both the C. jodhpurense and P. betae strains (more 
than two times) and the P. variabile was only one and a 
half times heavier. The means were significatively differ-
ent for the biomass accumulation in crude oil-supplemented 
media and control (p < 0.01) but were not significatively dif-
ferent among different species (p < 0.05) except between P. 
variabile and P. beta, which exhibited the lowest biomass 
accumulation.

The accumulation of biomass associated with this type 
of treatment has been extensively studied. The biomass gain 
recorded by the strains in the presence of crude oil in this 

work has reached more than 5 times the control medium. 
This biomass gain can be considered to be due to the fungus 
biodegradation. Several other studies, which demonstrated 
the biodegradation potential of different fungi, also reported 
the accumulation of biomass under similar conditions. 
Hasan [70] recorded a significant biomass gain of Aspergil-
lus niger and Rhizopus stolonifer strains in 10% kerosene 
broth, accumulating 0.530 g and 0.522 g dry weight respec-
tively. Ameen et al. [68] reported a maximum weight gain 
of 43.4% in the presence of diesel fuel. All fungal strains 
studied were able to grow optimally in environments pol-
luted with 1% crude oil.

Crude oil removal

After 25 days of incubation, the percentage of crude oil 
degradation was determined by the gravimetric method 
(Fig. 7). The P. variabile strain showed the highest rate of 
48%, followed by P. betae (32%), C. jodhpurense (27%), and 
C. maderasense (20%). A significant difference (p < 0.05) 
was observed between the fungal strains except between C. 
jodhupense and P. betae. In term of crude oil removal, the 
highest rate was observed with strains producing high lac-
case activity.

Fig. 6  Dry weight accumulation 
by fungi under treatment with 
crude oil. Error bars represent 
standard deviations of means 
(n = 3). Different uppercase 
letters designate significant 
differences (p ≤ 0.01) among 
crude oil treatments and con-
trols within the same isolate. 
Different lowercase letters show 
significant differences (p ≤ 0.05) 
between isolates within the 
same culture medium

Fig. 7  Crude oil degradation 
rates by fungal strains after 
25 days of incubation. Error 
bars represent standard devia-
tions of means (n = 3). Different 
letters designate significant 
differences (p ≤ 0.05) between 
isolates
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Fig. 8  FTIR spectra of untreated crude oil (a) and after fungal treatment with (b) C. jodhuprense, c C. maderasense, d P.variabile, and e P. betae 
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FTIR analysis

The FTIR spectrum of untreated crude oil revealed the pres-
ence of linear, chained, and cycloaliphatic hydrocarbons, 
and aromatic compounds (Fig. 8a). The band observed at 
3020  cm−1 corresponds to aromatic C-H, and the bands 
ranging from 2960 and 2860  cm−1 represent stretching ali-
phatic bands (asymmetric and symmetric stretching). The 
absorption band at 1720   cm−1 indicates the presence of 
carbonyl groups. The presence of aromatic carbon (C = C) 
was assigned by the presence of distinct bonds ranging 
from 1520 to 1400   cm−1. The absorbing bands around 
1300–1100  cm−1 correspond to N- and S-related stretch-
ing and bending vibration. While C–C compounds ranged 
in 1025–1075   cm−1 and in 928   cm−1. The same typical 

vibrational bands were detected in FTIR spectra of crude 
oil characterization [71, 72].

The FTIR spectrum of crude oil after fungal degrada-
tion showed an important increase in the transmittabce 
of the major peaks with the disappearance of some bands 
(Fig. 8b–e). In the IR spectrum of the strain P. variabile, 
the peaks at the range of 2950–2860  cm−1, representing 
C-H aliphatic stretch, have totally disappeared and the trans-
mittance at 3020  cm−1 (aromatic C-H) was lower than the 
control (Fig. 8d). The observed bands at 1720  cm−1 (C = O 
bond), 1520, and 1465  cm−1 (C = C) have disappeared. The 
transmittance of the peaks representing the C-O bond was 
about half as high as the control. The intensity of the band 
at 1025–1075  cm−1 has been decreased; while the peak at 
928  cm−1 has disappeared.

Fig. 8  (continued)
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Fig. 9  Biodegradation of crude oil analyzed by GC–MS. Control culture at time 0 (a) and after 25-day incubation (a’) and treated cultures with 
b C. jodhuprense, c C. maderasense, d P. variabile, and e P. betae 
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Fig. 9  (continued)
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The spectrum for strain the Phoma betae showed also 
the disappearance of the bands at the range of (2930 and 
2860  cm−1) (Fig. 8e). The transmittance of the peaks at 1720 
and 1075–1025  cm−1 was significantly increased.

After treatment with the strains C. jodhpurense and C. mad-
erasense, it did not seem to be big change in band detected in 
the control, but a slight increase in the transmittance of some 
characteristic bands was observed. This result suggests a pos-
sible reduction of hydrocarbon compounds (Fig. 8b, c).

The post-treatment FTIR confirmed the efficiency of fungal 
crude oil degradation with the disappearance of some charac-
teristic bands observed in the control, plus a noticeable reduc-
tion in the intensity of the preserving peaks.

GC–MS analysis of crude oil degradation 
metabolites

There are no significant changes in GC–MS spectrum in 
the control sample before and after 225 days incubation 
without fungi (Fig. 9a, a’). Only two peaks of undecane and 
dodecane were disappeared. This suggested that light chain 
alkenes could be lost by volatilization during the 25 days of 
incubation and that crude oil could resist abiotic degradation 
and physical interaction. This result is in concordance with 
those found by Olukunle and Oyegoke [73] after 16 days of 
incubation of crude-oil fungal degradation.

It was observed that all four fungal strains were able 
to degrade crude oil efficiently after 25 days of incuba-
tion (Fig. 9b–e). The disappearance of initial peaks and 
the appearance of new peaks confirmed the breakdown 
of crude oil products. P. variabile was the most efficient 
in crude oil degradation, as confirmed by the chromato-
gram with the disappearance of the major peaks (Fig. 9d). 
However, the main remaining aromatic peaks were ben-
zaldehyde and benzenamine. The other peaks represented 
alkene and cycloalkene chains. P. betae is an efficient 
crude oil degrader. The persisting peaks in GC profile were 
essentially for Naphtalene and its derivatives as well as 
alkenes (Fig. 9e). The chromatographic patterns of crude 
oil degraded by C. maderasense showed a decrease in the 
area of some peaks (heptadecane, octadecane, nanodecane, 
Eicosane) (Fig. 9c). Aromatic compounds found in con-
trol such as Naphthalene, Fluorene, Anthracene, and Phen-
anthrene, and their derivatives were dissapeared. While 
a new peak of tetraphtalic acid at 20:907 min appeared 
which could be the result of the cleavage of the aromatic 
compound.

The strain C. judheprens GC–MS analysis of treated 
crude oil demonstrates the missing of some peaks of naph-
thalene and derivatives and the decrease in the area of the 
other peaks, which were present in the control (Fig. 9b).

These observations demonstrated the capacity of the 
tested strains to degrade the main hydrocarbon compounds 

present in crude oil. There were no toxic metabolites that 
were identified after fungal crude oil degradation.

Gnanasekaran et al. [74] also used GC data to analyze the 
biodegradation of crude oil by filamentous fungi and found 
that Aspergillus species strongly degrade hydrocarbons and 
convert toxic compounds into non-toxic after 35–40 days of 
incubation. The degradation of diesel fuel by fungi was stud-
ied by Ameen et al. [68] and the GC–MS analysis showed 
an effective degradation of this product. This degradation 
may be due to the high amounts of ligninolytic enzymes 
produced by the different strains. In addition, further studies 
have shown the critical role of these enzymes in the degrada-
tion of PAHs. Batista-García et al. [75] reported the involve-
ment of ligninolytic enzymes (Laccase and peroxidase) in 
the degradation of PAHs and Phenols. Experiments have 
proved that high degradation of pyrene in a new fungal strain 
Coriolopsis byrsina is more efficient due to their ligninolytic 
enzyme activity [69]. Further studies have demonstrated the 
important role of these enzymes in hydrocarbon compound 
degradation [76, 77].

Overall, the highest crude oil removal was observed 
with P. variabile (48%) followed by P. beta (32%) and this 
result was confirmed with FTIR and GCMS spectra of these 
strains. This could be associated with the fact that only these 
two strains showed significant laccase activity in presence of 
crude oil which rushed 168 U/L and 127 U/L for P. variabile 
and P. beta respectively. Therefore, Li et al. [78] showed that 
laccase plays the main role in PAHs transformation.

Conclusion

Four fungal strains were isolated from marine Tunisian hab-
its and identified as Chaetomium maderasense, Chaetomium 
jodhpurense, Paraconiothyrium variabile, and Phoma betae, 
which have also been reported in the literature as produc-
ers of ligninolytic enzyme. In the presence of crude oil, the 
selected fungi increased the ligninolytic enzyme produc-
tion with a high prevalence of peroxidase. The results of 
FTIR and GCMS analyses demonstrated a great ability of 
the tested fungi to degrade crude oil efficiently in 25 days 
in the presence of 50% seawater. The selected strains can be 
used for further biotechnological processes, and even for the 
purpose of environmental bioremediation.
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