Skip to main content
. 2023 Aug 25;14:1213711. doi: 10.3389/fendo.2023.1213711

Table 2.

Comparison of results among different machine learning algorithms.

DataSet Algorithms AUC (%) Specificity(%) Sensitivity(%)
Training set Logistic regression 96.94 93.76 80.35
Random Forest 99.99 99.99 99.99
GBDT 99.46 98.83 90.32
Adaboost 98.35 96.18 88.86
XGBoost 99.99 99.99 99.99
CatBoost 99.81 98.12 94.51
Test set Logistic regression 95.14 90.92 77.27
Random Forest 93.24 91.27 78.58
GBDT 93.17 90.23 72.73
Adaboost 93.15 91.15 72.73
XGBoost 94.28 91.19 77.27
CatBoost 95.34 93.17 77.27

The bold values means the highest value.