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Abstract

Deep learning has led to incredible breakthroughs in areas of research, from self-driving vehicles 

to solutions, to formal mathematical proofs. In the biomedical sciences, however, the revolutionary 

results seen in other fields are only now beginning to be realized. Given its public health 

significance, vaccine research and development efforts, including protein structure prediction, 

immune repertoire analysis, and phylogenetics are three principal areas in which deep learning 

is poised to provide key advances. Here, we opine on some of the current challenges with deep 

learning and how they are being addressed. Despite the nascent stage of deep learning applications 

in immunological studies, there is ample opportunity to utilize this new technology to address the 

most challenging and burdensome infectious diseases confronting global populations.

A New Era in Deep Learning

Deep learning has garnered widespread attention in the scientific community and beyond, 

with groundbreaking results in various domains. The ability of deep learning programs 

to defeat world champions at games, drive vehicles with human-level performance, and 

discover novel mathematical proofs[1–4] has spurred intense desire to translate similar 

results in the biomedical sciences, including immunology and vaccinology. Recent deep 

learning applications have shown encouraging results in biology for predictive and 

descriptive tasks[5, 6]. For example, models have been developed to detect cancer from 

histology images or from genetic information at a higher accuracy than the standard of 

care[7–9]. To date, the greatest breakthrough of a deep learning model in biology is 

arguably AlphaFold’s solution to the “protein folding problem”, considered one of the 

most fundamental and longstanding challenges in biology[10, 11]. As deep learning slowly 

starts to find its place in biology, it raises the question of what type of impact this area of 

research may have in contributing to the development of efficacious vaccines (Figure 1), 

particularly those against viral pathogens, which burden society in the form of continuously 

evolving circulating strains, and new zoonoses that jump from animal hosts into humans. 

While antiviral therapies can contribute to disease treatments (e.g. HIV-1), the most effective 

countermeasure for preventing infectious diseases is the development of highly effective 

vaccines. To this end, while smallpox and polio eradication campaigns serve as examples 

of what is possible, developing safe and effective viral vaccines is a difficult and complex 
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process with many more failures than successes. The new era of deep learning and big data 

suggests that similar potential breakthroughs might be realized in vaccine development for 

the benefit of public health. To this end, we foresee protein structure prediction, immune 

repertoire analysis, and phylogenetics as three complementary areas in which deep learning 

methods will contribute to efforts to advance vaccine research and development.

Surface level introduction to deep learning

Deep learning is a subset of machine learning that utilizes more complex learning algorithms 

on large datasets. Although deep learning and classical machine learning (ML) techniques 

are similar, there are a few key distinctions (Figure 2). At a high level, classical ML and 

deep learning are computational modeling approaches to take a training data set, learn 

trends about how data input features relate to outcomes of interest, and create rules to make 

a prediction (Figure 3). These approaches are validated using a test data set, leading to the 

determination of the prediction accuracy on “unseen” examples. The overall task of learning 

how to make correct predictions is the same for both modeling approaches; however, the 

methods the models use to accomplish this task are different. Deep learning models are 

modeled after neural networks in which information flows between nodes connected in 

layers. While the relationships between individual features and prediction outcomes become 

more abstract at each layer, prediction accuracy can be dramatically better than observed 

from classical ML approaches. As a result, although deep learning may pose challenges 

to supporting mechanistic biological insights, these models may more accurately represent 

true biological complexity, and their improved performance has the potential to lead to new 

insights in vaccine and therapeutic antibody[12] development, ideally helping to address the 

most challenging infectious diseases.

Protein structure prediction and immunogen design

In theory, the total surface area of the entire proteome of a pathogen can elicit an adaptive 

immune response, but in practice, different parts and conformational states of these target 

antigen surfaces offer differing degrees of protection, as was recently reported for SARS-

CoV-2 (responsible for the current COVID-19 pandemic)[13] and has long been appreciated 

for other viruses, such as HIV-1, and has been referred to as the “neutralizing antibody 
problem”[14]. Whereas reverse vaccinology sought to employ bioinformatics for antigen 

selection and has driven great inroads against bacterial pathogens[15], next generation 
vaccinology approaches for viruses clearly heavily rely on insights from structural biology 

(Table 1). Knowledge of the three-dimensional structure of relevant immunogens can aid 

in vaccine development by providing a physical representation above the raw amino acid 

sequence that can guide studies into directing responses towards certain epitopes or pre-

fusion conformational states, and away from others. While for decades the only method of 

accurately obtaining the structure of a protein was experimentally, deep learning methods 

have recently predicted structures from amino acid sequences with accuracy equivalent to 

experimental methods[10, 11, 16–18]. These deep learning models have been evaluated 

using data from the Critical Assessment of Structure Prediction (CASP)[19], in which 

models are evaluated by predicting structure from sequence on solved structures that 

have not been released publicly providing an accuracy benchmark. These new models are 
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able to achieve accuracies on the CASP test structures that are within the same level of 

variation from true structure as x-ray crystallography and cryo-electron microscopy. Given 

the importance of structure-based vaccine design against the metastable fusion proteins of 

viruses, the ability to accurately and rapidly predict structure from sequence alone has the 

potential to usher in a new era of vaccine discovery.

The clearest example of the value that structural information can have for vaccines arguably 

comes from Respiratory Syncytial Virus (RSV)[20, 21]. Specifically, whereas the native F 

protein of the virus is most frequently presented in its post-fusion conformation, antibody 

responses with superior neutralizing capacity are associated with recognition of the pre-

fusion conformation[22]. These advances in structural knowledge for RSV led to the 

development of pre-fusion F-based vaccines which have recently shown highly encouraging 

results in advanced clinical trials (e.g. NCT04785612, NCT03982199, NCT04032093, 

NCT03334695). These and other studies have demonstrated that the RSV pre-fusion F 

protein conformation was highly immunogenic and vaccination reduced RSV infection 

risk compared to placebo [23–25]. Similar observations have been made regarding distinct 

conformations of HIV-1 and SARS-CoV-2 fusion proteins in structural studies[26, 27] 

that have informed clinical studies. Indeed, SARS-CoV-2 fusion proteins with structural 

modifications are the basis of the highly efficacious mRNA vaccines mRNA-1273 and 

BNT162b2 (NCT04470427, NCT04368728)[28, 29]. Prior efforts to capture metastable 

proteins in their most vulnerable conformations have sometimes required extensive 

and iterative exploration of rational modifications or directed evolution[30]. Reliable 

predictions of structural states from sequence lends naturally to computational alternatives to 

experimental protein design, which have recently gained traction in diverse design tasks such 

as designing immunoglobulin scaffolds, protein biosensors, and specific binding proteins 

using deep learning and sequence alone (Table 2)[31–33].

Beyond viral antigens themselves, new approaches to present immunogens in defined 

spatial densities and orientations[34–37] further leverage advances in computation protein 

design[38]; indeed, approaches to predict attributes of immune responses that may be 

elicited by these immunogens are advancing. With respect to this latter goal, deep 

learning approaches appear to be gaining traction. For instance, progress has been 

made predicting linear B cell epitopes[39–42], in some cases substantially improving 

sensistivity and specificity, facilitated by growing databases such as the Immune Epitope 

DataBase (https://www.iedb.org/)[43]. Conformational B cell epitope prediction has been 

more challenging; however, Graph-based neural networks have recently become more 

successful at modeling structural space of conformation epitopes by essentially representing 

interactions in which graph nodes represent atoms and edges represent connections between 

them[44, 45]. Although substantial room for improvement certainly remains, B cell epitope 

prediction is expected to continue improving with the combination of larger experimental 

data sets and novel neural network architectures that might best model the epitope-paratope 
interactions.

Collectively, each of these aspects of protein structure modeling and prediction advanced by 

deep learning are in the process of being productively deployed toward vaccine design. At 

the most advanced end of this spectrum, engineered versions of natural viral proteins are 
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presented, sometimes on designed particles, with the intent of driving recognition of specific 

epitopes whose recognition might be predicted and result in pathogen neutralization.

Immune repertoire analysis to understand vaccine-induced responses

Whereas the human genome project’s sequencing efforts were widely thought to have 

provided more information than insight, at least initially, large scale sequencing efforts 

directed at B and T cell receptors appear to be primed to be effectively coupled to 

advances in ML in ways that could meaningfully inform vaccine research and development. 

Given their central positions in building long term immunity after vaccination, B and 

T cell receptor sequencing has been an intense area of study in the last decade, being 

revolutionized by next generation sequencing (NGS) technology, resulting, for example, 

in over 1.5 billion unique human B cell receptor (BCR) sequences available[46]. Coupled 

to deeper phenotypic characterization, we expect that this rapid expansion in input data 

can provide rich resources to ML models. To date, deep learning models trained on 

immune repertoire sequence data have successfully predicted treatment outcomes from 

immunotherapy[47], as well as infection status or history[48], and infectious disease 

severity[49].

For example, basic studies of how antibody sequences vary among individuals[50, 51], 

and with disease[52], have started to be paired with immunogen engineering[53] and 

in vitro assays[54, 55] to build vaccine strategies that aim to generalize the induction 

of specific antibody responses[56]. With early “natural history” studies[57, 58] maturing 

toward cohort-sized undertakings[59–61], progress has been made in making inferences 

of antigen specificity[62–64], positioning deep learning to support more explicit links 

between antigenic stimuli and resultant responses. Coupled to insights from elegant animal 

model experiments[65], iterative cycles of vaccination and repertoire sequencing may 

provide the raw data needed to gain fundamental and quantitative insights into phenomena 

such as “original antigenic sin”[66](or antigenic imprinting), and might provide a better 

understanding of how immune history impacts future immune responses at molecular-level 

resolution.

In the context of the T cell receptor (TCR), previous studies started to uncover features of 

TCR sequencing datasets that support prediction of epitope specificity[67, 68]. Relative 

to antibody-antigen complexes, the structural conservation in TCR-peptide-MHC has 

supported more facile learning of quantifiable descriptive features[47, 69] that can contribute 

to prediction of specificity or relationships to other biological attributes. Comparisons of 

TCR repertoires in individuals with progressive and controlled disease have been used in 

the context of experimental antigen screens to define TCR specificities that are associated 

with pathogen control, therefore representing promising vaccine targets. For example, in 

studies of Mycobacterium Tuberculosis, comparison of TCR sequences defined common T 

cell specificities for peptide-MHC, that represent novel targets for vaccine design[70, 71].

Deep learning has also been used to model antibody-antigen interactions based on data 

from directed evolution studies of libraries of antibody sequences with changes in antigen 

binding over rounds of diversification using methods such as error prone PCR to introduce 

Hederman and Ackerman Page 4

Trends Immunol. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequence mutations and selection of mutants of interest that have mutations that impact 

binding affinity or kinetics. Initial applications of deep learning to enrich for antigen binding 

molecules focused on phage display experiments[72, 73]. Models were used to predict 

binders, thereby speeding up the experimental process of affinity maturation. Models have 

also been applied to yeast surface display libraries focused on identifying immunoglobulin 

CDR3 regions of antibody heavy and light chains with the goal of understanding the 

impact of sequence mutations[74]. Results from library studies have demonstrated that deep 

learning models can identify useful patterns in relationships between antibody sequence and 

structural space, showing that geometric similarity and structural commonalities in CDRs 

can reflect attributes of antigen recognition[75], particularly over accumulated mutations. 

Abstracting these efforts toward the analysis of sequence repertoires from the study of 

immunized and vaccinated individuals, we expect that rapid gains in insights into the 

specificity and affinity maturation of antibody responses may ensue.

Phylogenetic analysis to understand viral evolution and population 

susceptibility

Continuous evolution that leads to escape from an immune response within individuals 

and across populations poses a persistent challenge to the development of vaccines for 

viral infections. Historically, predicting which viral strains will become dominant relies on 

modeling that can approximate educated guess work. A leading example is the influenza 

virus vaccine, which is designed each year based on predictions of which strains will be 

dominant. Incorrect predictions result in compromised vaccine efficacy and higher burdens 

of seasonal flu. Modeling whether or when strains may shift host species is even more 

difficult, but such changes in tropism can be highly consequential, given the vulnerability 

of naïve populations. Yet, the rapid expansion and exceptional penetrance of SARS-CoV-2 

variants of concern demonstrate that viruses can exhibit substantial evolution and point 
estimates of population susceptibility can vary dramatically, even within a seasonal time 

scale in populations with a high degree of prior exposure[76–78]. To this end, the 

insufficiency of the immune system to outpace antigenically variant viruses ranging from 

common colds to HIV-1 infection, may highlight the value of new approaches to combine 

advances in repertoire sequencing with insights into viral phylogenies.

Fortunately, advances in technology and global infrastructure have made it easier to 

sequence viral variants observed in many individuals, raising the prospect of moving 

well beyond technical enhancements that define sequence phylogenies[79] and toward 

more functionally informed inferences into the future directions of viral evolution. For 

example, mutation-resistant amino acid residues and CD8 T cell responses prevalent among 

individuals able to suppress HIV-1 replication were studied using analysis combining 

structural data and network theory in order to quantify the structural importance of amino 

acid mutations on viral evasion from T cell responses. These studies have opened the door to 

deploying network theory approaches to design novel T cell epitope-based vaccine concepts 

that are resistant to viral mutation[80].

Hederman and Ackerman Page 5

Trends Immunol. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similarly, the rapid and thorough study of SARS-CoV-2 and its continued evolution 

exemplify the push toward data-driven approaches that rely on more comprehensive 

sequencing and novel functional data streams, combined with ML models. Viral sequence 

information is now captured globally through robust sampling and sequencing networks[81] 

and can then be viewed through the lens of deep mutational scanning data[82–84] 

allowing for investigation of the impact specific amino acid mutations have on antibody 

and vaccine responses from emerging sequence variants. In these approaches, libraries 

comprised of thousands to billions of virus or viral antigen sequence variants are screened 

for phenotypes such as loss of binding to monoclonal or polyclonal antibody pools[85], 

enhanced infectivity[86] or binding to entry receptors[87], revealing advantageous amino 

acid mutations in viral sequences.

Integrating data that link attributes of host and pathogen biology from both in vivo 
and in vitro sources enables estimation of the tendency of different viral sequence 

variants to escape from contemporaneous antibody responses in the population as well 

as monoclonal therapies. Thus, these approaches offer opportunities to predict population-

level susceptibility and to anticipate the identity of future viral variants of concern[88]. 

While there is clearly significant utility afforded by classical ML approaches, deep learning 

models are beginning to be employed on these tasks[89–91]. Given the ambitious plans for 

serosurveillance[92] across viruses[93], as well as antibody[94] and T cell epitopes[95] by 

collecting and profiling samples across global populations, and the creation of scientific 

networks with the capacity for rapid mechanistic and efficacy experiments[96], we envision 

that the development of models informed by protein structure and predicted interactions, in 

particular, have the potential to be greatly enhanced by deep learning.

Challenges and considerations

While deep learning can successfully tackle complex biological problems, its application is 

likely to stretch current immunology datasets and leave gaps in interpretation. Biological 

datasets are often considerably smaller than those commonly used in deep learning tasks. 

Immunological datasets often suffer from being “wide”, with a greater number of features 

than outcomes, are comprised of experimental input data that are inherently noisy due 

to both technical and biological variability, and are likely to confront the challenges of 

representing diverse populations that have been popularized by settings such as facial 

recognition[97]. Understanding how to address experimental and human variability while 

creating models that are still robust in making predictions is a challenge that is independent 

of the specific learning task. Moreover, while “interpretable” deep learning models are under 

development[98–100], the numerous parameters and layered construction inherent to current 

approaches drive greater and greater abstraction at each level, ultimately resulting in a 

scenario in which accurate and reliable predictions are made, but insights into mechanisms 

are obscured. Moreover, computational constraints must be considered; unlike classical 

ML and other types of statistical analysis, usually, deep learning models cannot run on a 

personal computer in a reasonable amount of time, and instead require high performance 

computing clusters with graphics processing units. Indeed, specialized hardware for deep 

learning is an area of development for several companies and research laboratories, while 

other groups work on algorithms and data structures that may yield more efficient run times 
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for processing data[101–104]. Fortunately, the excellent predictive performance of deep 

learning models in various tasks suggests that progress will continue toward these current 

and future challenges from which vaccine research and development can benefit.

Concluding Remarks

Cutting-edge technological advancements in immunology and data science provide an 

opportunity for applying new analytical approaches to the development of vaccines, but 

leave a number of outstanding questions. Specialized domains of structure prediction, 

immune repertoire analysis, and phylogenetics are current areas of vaccine research on 

which deep learning is poised to have impact. We anticipate that insights from the 

application of deep learning on these tasks will offer opportunities to refine the enormous 

space of molecular possibilities in basic, translational, and clinical trials testing promising 

vaccine candidates; this can reduce research time and contribute to the development of 

highly efficacious vaccines for some of the most challenging viruses confronting human 

populations.
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Glossary

Affinity maturation
the process by which antibodies are selected over iterative rounds within germinal centers to 

select for clones with the greatest binding, which has served as a model for in vitro strategies 

of protein engineering.

AlphaFold
protein structure prediction model developed by DeepMind that has solved the protein 

folding problem by Critical Assessment of protein Structure Prediction (CASP) metrics.

BCR
B cell receptor, a transmembrane receptor on the surface of B cells that binds antigens

CASP
Critical Assessment of Structural Predictions, a biannual benchmarking study of novel 

approaches to predict protein structures that have been solved by experimental methods but 

not yet deposited in the Protein Data Bank

Deep learning
a subset of machine learning in which models are built from extracting simpler components 

into more complicated ones forming many layers that allowing the model to make accurate 

predictions

Deep mutational scanning
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a set of experimental methods in which a protein or pathogen of interest is diversified 

in amino acid sequence and then screened in high-throughput fashion to define sequence-

function relationships

Directed evolution
an experimental method in protein engineering that uses sequence variation and selective 

pressure to iteratively screen and identify variants of a desired phenotype

Epitope
surface area on an antigen that is recognized by another protein

Graph-based neural networks
a class of deep learning models that are used when data can be represented by nodes and 

edges within a graph structure

Immunogen
an antigen capable of generating an immunological response

Immune repertoire
the antibodies, BCRs, and TCRs that compose the adaptive immune response observed in an 

individual

Layer
a unit of a deep learning model composed of nodes that takes input data, transforms the data 

with model weights, and applies an activation function to the data

Neural network
a deep learning model representation that aims to mimic the biological learning process in 

the brain

Next generation sequencing
extremely high throughput methods of sequencing that rely on highly parallel processing to 

determine expression levels and genetic variation in RNA or DNA

Node
a unit in a deep learning model that is comprised of input connections, weights, and an 

activation function. Multiple nodes at the same depth comprise a layer

Machine learning
a set of methods that enable the detection of patterns in data.

Neutralizing antibody problem
the distinction between antibodies that bind to a given pathogen and those that provide broad 

anti-pathogen activity

Next-generation vaccinology
new approaches to vaccine design and research that move beyond empirical approaches

Original antigenic sin
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described more often now as antigenic imprinting, the experimentally supported theory 

that initial adaptive immune responses to antigen influence characteristics of subsequent 

exposures to antigenic variants

Paratope
the part of an antibody that recognizes the respective antigen

Point estimates
a statistical method that infers information about a population by using a sample statistic

Predictive model
a model that uses previous data to make a forecast related to unseen data

Protein folding problem
as initially described, the lack of clarity as to fundamental forces at play in supporting rapid 

protein folding; as later described, considered the greatest challenge in bioinformatics, the 

task of computationally predicting the structure of a protein from amino acid sequence alone 

with the same accuracy as experimental methods

Reverse vaccinology
a vaccine development approach that uses bioinformatics to systematically identify, 

prioritize, and then experimentally evaluate the suitability of proteins in the genome of a 

pathogen as vaccine immunogens.

Structure-based vaccine design
a vaccine development approach that leverages structural biology in the selection or 

engineering of candidate immunogens

TCR
T cell receptor, a T cell surface receptor that recognizes peptides presented by MHC 

molecules

Test data
the portion of the data set not previously seen by the model that is used to measure 

performance after training

Training data
the portion of the data set a model uses to learn to make predictions for a given task
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Figure 1: Deep learning areas of focus in vaccine design.
Prediction of protein structures, analysis of antibody and T cell receptor repertoires, and 

viral phylogenetics are three areas in which deep learning is supporting rapid advances. 

Deep learning has made the greatest progress so far in structure prediction “solving” the 

protein folding problem and is now commonly being used to generate antibodies bypassing 

experimentation steps. Immune repertoire data growth has coincided with deep learning 

development allowing for prediction of the specificity or disease outcomes of immune 

responses from sequencing data alone. Phylogenetic analysis of global viral variants can 

leverage deep learning to better understand mutational patterns and the effect mutations 

may have on subsequent immune responses as well as pathogen fitness and population 

susceptibility. This figure was created using BioRender (https://biorender.com/)
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Figure 2. Comparison of common machine learning and deep learning models.
A. Examples of common classical machine learning algorithms. Algorithms are a mix of 

supervised approaches, such as linear regression, logistic regression, random forest, and 

support vector machines, in which the models are trained and tested on labelled data, and 

unsupervised algorithms, such as principal component analysis and K-means, in which the 

algorithm uses unlabeled data. B. Examples of common deep learning model architectures 

and associated tasks. Deep learning architectures pass information among nodes within 

layers to create more abstract data representations that can result in more accurate 

model predictions. Deep learning models generally have greater performance than machine 

learning algorithms however are generally more complex to create and are computationally 

more expensive. This figure was created using BioRender (https://biorender.com/)
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Figure 3. Deep Learning Model Workflow.
Deep learning models are made using the training data set. Model parameters are refined 

and tuned until the error is minimized when making predictions in the training set. The 

model is then tested by making predictions on the test data set, which the model has not 

seen previously. Standard metrics for classification model evaluation include generation of a 

confusion matrix which breaks down where the misclassifications happened and a receiver 

operating characteristic (ROC) curve providing information on how model performance 

compares to random. This figure was created using BioRender (https://biorender.com/)
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Figure 4. Immune repertoire and deep learning model analysis.
A. Overview of experimental workflow for B and T cell sequencing experiments. After 

cells are sorted and analyzed on a sequencer, deep learning models can make predictions 

on various aspects of the immune repertoire. B. Simplified schematic of technology 

development for sequencing B cells and T cells. C. Over time, sequencing data has 

continued to accrue with a corresponding growth in deep learning models with improved 

performance. This figure was created using BioRender (https://biorender.com/)
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Table 1:

Structure-based vaccinology for human viruses

Virus Structural Modification Outcome Ref

RSV Identification of pre-fusion F protein 
structure

Allows vaccination with pre-fusion F-containing 
neutralizing epitopes

[105]

Pre-fusion F stabilization Highly immunogenic responses in vaccines [106–108]

Epitope focused vaccine design Proof-of-concept study developing an RSV vaccine for 
neutralizing epitopes of interest

[109]

SARS-CoV-2 SARS-CoV-2 spike stabilization Highly immunogenic vaccines with the S2P and HexaPro 
stabilizations

[26]

SARS-CoV Identification of SARS-CoV prefusion 
spike structure

Revealed new epitopes for vaccine design [34, 110, 111]

MERS-CoV Identification of MERS-CoV prefusion 
spike structure

Highly immunogenic epitopes for vaccine development [112, 113]

HIV-1 Stabilization of HIV-1 envelope protein Generation of BG-SOSIP trimer immunogens capable of 
eliciting neutralizing antibodies

[27, 114–116]

Structure of pre-fusion envelope Atomic resolution of pre-fusion spike immunogens [117, 118]

Engineered HIV-1 immunogens Structural design of germline targeting immunogens [53, 54, 119, 120]

Structural guided nanoparticle design Structure based nanoparticle formulations are highly 
immunogenic for multiple viruses

[38, 121–123]
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Table 2:

Recent advances in structure prediction and computational protein design

Category Method Result Ref

Structure Prediction

AlphaFold Highly accurate results predicting protein structure from amino acid sequence [124]

AlphaFold-2 Updated version of AlphaFold that has solved the protein folding problem [125]

RosettaFold Similar protein structure prediction as AlphaFold [126]

ProteinMPNN Protein backbone sequence design using deep learning [127]

trRosetta De novo protein structure prediction using deep neural networks [128]

RaptorX Web based server for protein structure prediction from amino acid sequence [129]

ProGen Language models can predict protein function from sequence families [130]

AminoBERT Structure prediction using a language model [131]

Pfam Annotating protein function from amino acid sequence with a deep learning model [17]

Prediction of protein fitness from evolutionary data [132]

Protein Design

Deep learning-based design of zinc finger nucleases for specific DNA binding regions [133]

Design of IL-2 mimetic protein with reduced toxicity [134]

Development of a capsid protein using deep learning [135]

De novo design of a chimeric antigen receptor, small molecule regulated, kill switch [136]

Computational design of membrane permeable proteins [137]

Protein design of axel-rotator-like components [138]

Design of proteins binding to specific targets from aa sequence alone [31]

Development of nanocage structural proteins [139]

Computational design of large multicomponent proteins [140]

Rational design of donut-shaped proteins [141]

Design of IgG antibodies using multi-state design simulations [142]

Design of helical membrane proteins [143]

De novo design of a β barrel protein [144]
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