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Abstract

Deep learning (DL) has been successfully applied to different fields for a range of

tasks. In medicine, DL methods have been also used to improve the efficiency of dis-

ease diagnosis. In this review, we first summarize the history of the development of

artificial intelligence models, demonstrate the features of the subtypes of machine

learning and different DL networks, and then explore their application in the different

fields of precision medicine, such as cardiology, gastroenterology, ophthalmology,

dermatology, and oncology. By digging more information and extracting multilevel

features from medical data, we found that DL helps doctors assess diseases automat-

ically and monitor patients' physical health. In gliomas, research regarding application

prospect of DL was mainly shown through magnetic resonance imaging and then by

pathological slides. However, multi-omics data, such as whole exome sequence, RNA

sequence, proteomics, and epigenomics, have not been covered thus far. In general,

the quality and quantity of DL datasets still need further improvements, and more

fruitful multi-omics characteristics will bring more comprehensive and accurate diag-

nosis in precision medicine and glioma.
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1 | INTRODUCTION

Medicine and clinical work generate a massive amount of data from

various sources, such as multiple biosensors, high-resolution medical

imaging, electronic medical records, and genome sequencing. The

sheer size of these medical data makes it impossible for doctors to

manually process patient data and assess detailed biological informa-

tion for patients, making it an obstacle to precision and personalized

medicine. Thus, the assistance of computers and digital tools has

become increasingly vital. Deep learning (DL), for example, has been

found to be an efficient tool for handling such conditions.

Precision medicine is the tailoring of healthcare and clinical deci-

sions to patients based on their intrinsic biological information and

clinical signs and symptoms. In 2011, the National Academy of

Sciences proposed that genomic achievements promote the integration
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of biomedical informatics and clinical informatics, thus kickstarting the

era of precision medicine.1 Precision medicine and personalized medi-

cine aim to better diagnose and treat specific patients. Precision medi-

cine serves the need for new classifications of diseases at the

molecular level by integrating biomedical research and clinical medical

information. These new disease subtypes provide a more accurate

diagnosis and treatment plan. Precision medicine and personalized

medicine complement each other and have become the development

trend of modern medicine.

Artificial intelligence (AI), formally established at the 1956 Dart-

mouth Conference as a branch of computer science, aims to simulate

the process of human learning and memory and make machines intelli-

gent.2 The improved computing power makes the training of AI algo-

rithms highly feasible and efficient, and an increasing amount of

clinical big data can be used for training. Machine learning (ML), a

branch of AI, is a method to train a model through past experience

(input training data) and then use it for prediction.3 The limitation of

traditional ML is that researchers need to process raw data as

structured data with artificially selected features, which limits its

application in complicated environments such as medical diagnosis.

Thus, feature engineering is an imperative step in ML, which

directly affects the accuracy of the predictions. DL is an ML

method that can automatically learn and extract multilayer fea-

tures, rather than handmade shallow features, from a large amount

of raw data. As DL has been sufficiently shown to be able to accu-

rately find very deep and abstract features, this has made it a

widely researched topic in the field of medical image analysis. With

advances in computational power, DL-based AI has revolutionized

various fields. The historical development of AI models is illus-

trated in Figure 1.

In this review, DL and its applications in precision medicine and

glioma are explored. We focused on DL developments in glioma,

F IGURE 1 Developments history of AI models. Model structures improved from simple to integrated and complex (from decision tree to
boosting series algorithm, from MLP to transformer), feature extraction/engineering improved from manual to automated (from traditional
machine learning to deep learning), and application fields from limited to wide. Various applications emerged with the improvements of AI and a
brief list of their corresponding networks are showed in the right side of figure. Full names of the abbreviations: Adaline: Adaptive Linear

Element; KNN: K-Nearest Neighbor; BP: Back Propagation; CART: Classification and Regression Tree; SVM: Support Vector Machine; LASSO:
Least Absolute Shrinkage and Selection Operator; KPCA: Kernel Principal Component Analysis; GBM: Gradient Boosting Machine; LLE: Locally
Linear Embedding; ISOMAP: Isometric Feature Mapping; t-SNE: t-distributed Stochastic Neighbor Embedding; XGBoost: eXtreme Gradient
Boosting; MLP: Multi-Layer Perceptron; LSTM: Long Short-Term Memory; DBN: Deep Belief Net; VAE: Variational Autoencoder; GAN:
Generative Adversarial Network; ResNet: Residual Neural Network; DenseNet: Dense Convolutional Network; FCN: Fully Convolutional
Network; ViT: Vision Transformer; SENet: Squeeze-and-Excitation Network; Faster RCNN: Faster Region-based Convolutional Network. AI,
artificial intelligence.

2 of 21 LIU and WU



discussed their insufficiency and solutions, and proposed directions

for future research.

2 | SUBTYPES OF ML AND DL

DL has been successfully applied in various fields such as speech rec-

ognition, text translation, automatic driving, and object detection. In

medical diagnosis, DL helps doctors solve many tasks. Its vast applica-

tion fields are unprecedented compared to other technologies.

This can mostly be attributed to the different subtypes and architec-

tures of ML and DL that render DL various features and make DL fit

for multiple tasks.

There are several subcategories of ML,4–7 including supervised,

unsupervised, reinforcement, self-supervised, weakly supervised, and

active learning. Figure 2 presents a detailed illustration of these six

subcategories.

Supervised learning: This method is a machine-learning task for

inferring functions from a labeled training dataset.8 As the most com-

mon ML method, the supervised learning algorithm analyzes the

F IGURE 2 Different types of ML. Supervised learning: training process is shown above and prediction process is shown below. Unsupervised

learning: the main two applications—embedding and clustering. Reinforcement learning: learn from environment and update from feedback. Self-
supervised learning: a pretext task in self-supervised learning is a task designed to train a neural network to learn useful representations of input
data without explicit supervision. The network is trained to solve the pretext task using the input data as the only source of supervision, and the
learned representations can be transferred to downstream tasks where explicit supervision is available. Weakly supervised learning: the main
three weak supervision types are incomplete supervision (some examples lack label), inaccurate supervision (some labels are wrong), and inexact
supervision (label strength is weak, such as classification labels compared to segmentation labels). Active learning: the main four processes—
selecting examples, annotation, appending data, and model training—are iteratively implemented and form a loop.
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training data, and then the trained network and optimized parameters

can be used to map new samples based on the training data and gen-

erate prediction outputs that can determine the class labels of the

new inputs. The main tasks that use supervised learning include solv-

ing classification and regression problems. The training, validation, and

test process in supervised learning involves splitting the labeled data-

set into a training set, a validation set, and a test set. The training set

is used to train the algorithm by iteratively adjusting the model's

parameters to minimize the error between the predicted output and

the actual output. The validation set is used to evaluate the model's

performance during the training process. And the test set is used to

evaluate the model's performance on new, unseen data. This helps

prevent overfitting and provides an unbiased estimate of the model's

performance. Li Y et al.9 assessed several supervised ML methods

such as support vector machine (SVM), random survival forest (RSF),

tree gradient boosting (GB), and component GB's performances for

glioma patient survival prediction after tumor resection. The models

were trained by clinical characteristics and biomarker information of

776 glioma cases; results showed that the GB model with concor-

dance index of 0.84 performed better than others.

Unsupervised learning: This method can be applied when there is

insufficient prior knowledge, such as when it is difficult to label cate-

gories manually or when the cost of manual category labeling is too

high. The unsupervised learning network does not provide standard

data samples with correct class labels initially. Unlike supervised learn-

ing, the original unlabeled dataset is directly integrated into the net-

work so that the network learns by itself according to the data

characteristics. The main tasks that use unsupervised learning include

clustering and dimensionality reduction. Leelatian et al.10 proposed an

unsupervised and automated unsupervised and automated ML algo-

rithm for Risk Assessment Population IDentification called RAPID,

which uses mass cytometry dataset of 2 million cells from 28 glioblas-

tomas as input and clustering the data into 43 cell clusters, and RAPID

identifies specific cell clusters that link to clinical outcomes and strat-

ify patient survival.

Reinforcement learning: Reinforcement learning (RL)11 theory dif-

fers from supervised and unsupervised learning in that RL does not

require any data to be given in advance but obtains learning informa-

tion and updates model parameters by receiving feedback from the

environment on actions. RL involves an agent that interacts with an

environment by taking actions and receiving rewards, with the goal of

learning a policy that maps states to actions that maximizes the

expected cumulative reward over time. The agent learns by trial-

and-error through exploration of the environment, and its policy is

updated based on the rewards received from the environment. RL has

found applications in a wide range of domains, including robotics, rec-

ommendation systems, and control systems. Yazdjerdi et al.12 pro-

posed a novel model-free method based on RL—Q-learning algorithm,

which is developed to design a closed-loop controller for anti-

angiogenic drug dosing by using different values of the maximum drug

dosage as input and receiving feedback of tumor.

Self-supervised learning: Self-supervised learning (SSL) is a ML

approach where an algorithm uses the inherent structure of the data

to generate pseudo-labels, allowing the algorithm to train itself. The

algorithm learns from the data by breaking it down into smaller parts

and predicting certain aspects of those parts. There is a subtle differ-

ence between unsupervised learning and SSL. In unsupervised learn-

ing, an algorithm learns to find patterns and relationships in data

without any labels or guidance, whereas in SSL, the algorithm creates

its own labels using the structure of the data. Multi-omics data gained

by Next Generation Sequencing significantly enrich patients' informa-

tion, but inter-omics relationships on unlabeled multi-omics data still

lack methods to exploit. Hashim et al.13 proposed a novel pretraining

paradigm that consists of various SSL components which are capable

of learning inter-omics relationships to achieve contrastive alignment,

data recovery from corrupted samples, and recovery of one type of

omics data using other omic types. The pretraining paradigm based on

SSL greatly improves performance on downstream tasks with limited

labeled data.

Weakly supervised learning: Weak supervised learning is a ML

technique that involves training models using partially labeled data, as

opposed to fully labeled data. In weak supervision, instead of provid-

ing precise labels for every data point, only partial, incomplete, or

noisy labels are used to train the model. This approach is useful when

obtaining fully labeled data is costly, time-consuming, or simply not

possible. There are three common weak label types including incom-

plete labels, inaccurate labels, and inexact labels as Figure 2 shows.

Decision support systems for pathology had been hindered by the

large need of manually annotated datasets. Campanella et al.14 pre-

sented a multiple instance learning-based DL workflow, which belongs

to the inexact labels situation in weakly supervised learning. The sys-

tem was evaluated on a dataset of 44,732 whole slide images (WSIs)

from 15,187 patients and results showed AUC values over 0.98 for all

tested cancer types and thus proved its great potential in clinical

practice.

Active learning: Active learning is a ML technique that involves

iteratively selecting the most informative data points to label based

on uncertainty or model confidence, and requests human annotation

for these examples. The goal of active learning is to reduce the

amount of labeled data needed to train a model while maintaining or

improving its performance. Therefore, they are used in tasks with high

labeling costs, such as medical imaging. Hao et al.15 proposed a novel

transfer learning-based active learning framework, which can reduce

the annotation cost and maintain the model performance for brain

tumor classification in the meantime.

DL technology as a subcategory of AI can solve various tasks by

building deep neural networks (DNNs).16 An important distinguishing

characteristic of DL compared with other AI subcategories is its self-

learning ability. All features of the representation learning process in

DL are automatically learned from the input training data. This charac-

teristic makes DL perform better at self-optimizing models for specific

problems than artificial feature engineering approaches.17,18

A layer is a fundamental building block of a DNN. In a DNN,

layers are stacked one after the other to form a network architecture.

Each layer consists of a set of neurons, which are connected to the

neurons in the previous and next layers by different weights that can

4 of 21 LIU and WU



be trained. The input layer is the first layer of the network, which

receives the input data. The output layer is the last layer of the net-

work, which produces the final output. In between the input and out-

put layers, there can be one or more hidden layers, which are

responsible for extracting useful features from the input data and

transforming them into a form that can be used to make predic-

tions. A DNN contains multiple hidden layers. In addition, various

types of DNN models exist, such as convolutional neural networks

(CNNs), recurrent neural networks (RNNs), generative adversarial

networks (GANs), and transformers. Figure 3 shows these main DL

structures.

Among these, the CNN19 model is the most widely used, whose

process of recognizing, processing, and analyzing image features is

similar to the process of processing visual information by the human

nervous system.20 A CNN is characterized by local connection, weight

sharing, pooling operation, and multilayer structure. The convolutional

layers in the CNN automatically extract features of the input informa-

tion and reduce the complexity of the model through weight sharing.

This is followed by the pooling layer, which obtains spatially invariant

features by reducing the resolution of the feature maps.

RNN,21 through its recurrent structure, is aimed at learning tem-

poral correlations and is suitable for performing inference on temporal

F IGURE 3 Different structures of DL. CNN: the main three components from input data to output in a CNN—convolutional layer, pooling
layer, and fully connected layer. GAN: the main two components in a GAN—a generator using noise as input and a discriminator using real data as
input. RNN: connecting hidden layer with previous values. Transformer: a transformer can be divided into two parts—encoders and decoders,
compared with other structures, a transformer is completely based on the attention mechanisms. CNN, convolutional neural network; DL, deep
learning; GAN, generative adversarial network; RNN, recurrent neural network.
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sequence data. The recurrent layer is the key component that distin-

guishes RNNs from other types of neural networks. It contains a set

of recurrent connections that allow the network to store information

about the previous time-steps and use it to make predictions for the

current time-step. This makes RNNs particularly effective for model-

ing time-series data or any other type of sequential data where the

current input is dependent on the previous inputs.

The GAN22 architecture can simultaneously train a generator and

discriminator, which enables the GAN to obtain new samples from the

input training data distribution. The generator network takes random

noise as input and is trained to create samples that are as close as

possible to real data, to fool the discriminator into classifying them

as real. The discriminator network, on the other hand, takes true data

as input and outputs a probability that the sample is real. The discrimi-

nator is trained to distinguish between real data and fake data samples

generated by the generator network and provide feedback to the gen-

erator on how to improve the quality of the generated samples. The

generator and discriminator are trained in an adversarial manner, and

this process is repeated many times until the generator is capable of

generating realistic data samples. GANs have been used in various

applications, such as image and text generation, style transfer, and

data augmentation.

The Transformer23 is a DL model that was introduced in 2017

for natural language processing (NLP) tasks. At a high level, the basic

structure of a Transformer consists of an encoder and a decoder.

The encoder is made up of multiple identical layers, each of which

has two sub-layers: a self-attention layer and a feedforward layer.

The self-attention layer allows each token in the sequence to attend

to all other tokens, which helps capture long-range dependencies in

the input. The feedforward layer then applies a nonlinear transfor-

mation to each token's representation. The decoder is also com-

posed of multiple identical layers, each of which has three

sub-layers: a masked self-attention layer, an encoder-decoder atten-

tion layer, and a feedforward layer. The masked self-attention layer

allows each token in the output sequence to attend to all previous

tokens. The encoder-decoder attention layer allows the decoder to

attend to the encoder's output and thus incorporate information

from the input sequence. To summarize different types of ML and

DL structures, ML and DL subtypes' key features and major uses are

included in Table 1.

3 | DL IN PRECISION MEDICINE

In precision medicine, DL algorithms can be used to analyze large and

complex datasets, such as genomic data, electronic health records,

and medical imaging data, to identify patterns and make predictions

about disease risk, treatment response, and patient outcomes. The

basic steps and strategies for DL workflow in precision medicine are

relatively similar, as shown in Figure 4.

TABLE 1 Comparison table of different ML subtypes and DL structures.

ML subtypes Key features Major use

Supervised learning Learns from input-output pairs to predict or classify

new input data

Classification and regression

Unsupervised learning Input data without corresponding labels,

learns to discover patterns in the data on

its own

Clustering, dimensionality reduction, and anomaly

detection

Reinforcement learning Make optimal decisions by interacting with an

environment

Robotics control and autonomous driving

Self-supervised learning Uses the characteristics of the data itself for

supervision

Image, video, and speech recognition

Weakly supervised learning Incomplete/inaccurate/inexact data labels Image and speech recognition

Active learning Representative samples are selected for annotation to

better train the model

Image and speech recognition

DL structures Key features Major use

CNN Convolutional layers and pooling layers, which can

effectively extract features from images

Image and speech recognition

RNN Recurrent layer, which can process data with front and

back correlation

Natural language processing, speech recognition

GAN Two neural networks, a generator and a discriminator,

which generate realistic samples through adversarial

training

Image generation, video generation

Transformer Self-attention mechanism and multi-head

attention mechanism, which can process long

text sequences

Machine translation, text generation, question

answering

Abbreviations: CNN, convolutional neural network; DL, deep learning; GAN, generative adversarial network; ML, machine learning; RNN, recurrent neural

network.
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Data collection is the first critical component in the DL workflow

and determines the upper limit of its performance to some extent. To

ensure that DL models are trained on the high-quality dataset and

that the dataset is suitable for training, various data preprocessing,

such as zero mean, whitening, Principal Component Analysis (PCA),

and data augmentation, can be used. Zero mean: This method is useful

in cases where the data has a significant bias, as it helps to center the

data around zero. Whitening: This is a technique used to decorrelate

the data by transforming it into a new space where the covariance

matrix is the identity matrix. PCA: This is a technique used to reduce

the dimensionality of the data by identifying the principal compo-

nents, which are the directions in the data with the highest variance.

Data augmentation: This technique involves generating new training

data by applying various transformations to the original data, such as

flipping, rotating, or scaling the images. This can help to increase the

size of the training set and improve the robustness of the model to

variations in the input data.

Then, the original dataset must be split into several parts as

requirements, which often will be split into a training set and test set.

And there are several commonly used data split methods such as

hold-out, leave-one-out, bootstrapping, and K-fold cross validation.

Hold-out: This method splits data into two disjoint subsets, usually in

a 7:3 or 8:2 ratio, with one subset used for training the model and the

other for testing its performance. Leave-one-out: This method

involves using a single data subset for testing and the remaining data

subsets for training. This is repeated for all data subsets, and the

average performance across all iterations is used as the final evalua-

tion metric. Bootstrapping: This method randomly selects data subsets

from the dataset with replacement to create multiple training and

testing sets. This is useful when the dataset is small and the goal is to

get a more accurate estimate of the model's performance. K-fold cross-

validation: This method involves dividing the dataset into K equal-sized

subsets, where K � 1 subsets are used for training and the remaining

subset is used for testing. This is repeated K times, with each subset

used exactly once for testing. The average performance across all itera-

tions is used as the final evaluation metric. K is usually set to 5 or 10.

Furthermore, sometimes it needs the validation set to evaluate

the training results and select the best model to avoid underfitting or

overfitting of the training set while updating its parameters in models.

Overfitting and underfitting are common problems that can occur

when training ML models. Overfitting occurs when a model is too

complex and learns the training data too well, to the point where it

begins to memorize the training data instead of learning the underly-

ing patterns. As a result, the model may perform very well on the

training data, but poorly on new, unseen data. Overfitting can lead to

poor generalization, where the model is not able to perform well on

new data. Underfitting, on the other hand, occurs when a model is too

simple and is not able to capture the underlying patterns in the data.

This can lead to poor performance on both the training and test data.

To minimize overfitting, several techniques can be used, such as:

Regularization: Adding a regularization term to the loss function of

the model can help to penalize complex models, and prevent them

F IGURE 4 Workflow of DL in precision medicine. Left part shows an overall and basic process of deep learning model training, validation,
and test. And right part shows corresponding methods and features in the left part such as data preprocessing, data split, parameter update, and
estimation. DL, deep learning.
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from overfitting. Dropout: Dropout is a technique that randomly

drops out some neurons during training, which can help to prevent

the model from overfitting by reducing its capacity. Early stopping:

Monitoring the validation loss during training and stopping the train-

ing when the validation loss starts to increase can help to prevent

overfitting. Data augmentation: Increasing the amount of training data

by applying transformations to the existing data, such as rotating or

flipping images, can help to prevent overfitting.

To minimize underfitting, several techniques can be used, such as:

Increasing model complexity: Adding more layers or neurons to the

model can increase its capacity and help it to capture more complex

patterns in the data. Feature engineering: Careful feature selection or

extraction can help the model to capture more relevant information

from the data. Adding more training data: Increasing the amount of

training data can help the model to learn more about the underlying

patterns in the data.

And the model was better trained on multiple centers datasets

and tested on an external independent dataset to ensure that the

model generalizes well. A single dataset may have inherent biases that

can be reflected in the model; multiple centers research ensures that

the results of a study are not dependent on the specific conditions of

a single research center. This increases the reproducibility of the

results and strengthens the confidence in the model. The goal of DL is

to develop models that can generalize well to new data. To ensure

that a model is truly generalizing, it needs to be validated on an exter-

nal dataset that it has not been trained on. For example, in a study

using patients' metabolomic state to predict diseases outcomes over

110,000 people,24 researchers trained their DL models on 22 recruit-

ment centers and performed external validation in four independent

cohorts to assess their models' clinical performances. There are sev-

eral commonly used medical datasets which can benefit DL modeling.

Their dataset range and major use are listed in Table 2.

The final critical step in DL workflow is the assessment of its per-

formance. The area under the receiver operating characteristic curve

(AUROC/AUC) achieves a trade-off between sensitivity and specific-

ity, which is often used to assess the performance of DL models in

classification tasks. Typically, AUC > 0.80 is considered good for most

tasks; however, whether this threshold is suitable for clinical use still

needs comprehensive consideration. This is also an important reason

DL is not yet fully accepted by clinicians in hospitals. A good classifier

should achieve both high sensitivity and specificity. However, for

some applications, it may also be important to emphasize either of

TABLE 2 Introduction of multiple datasets.

Dataset name Dataset range Major use

Medical images datasets

TCIA Over 1.8 million multi-modal images from 35,000+

subjects, 170+ collections

Cancer detection, diagnosis, and treatment

MURA 14,000+ musculoskeletal x-rays Classification of normal and abnormal bone images

ISIC 23,000+ images of skin lesions Skin lesions detection

ChestX-ray8 100,000+ chest x-rays Classification of eight common thoracic diseases

BraTS MRI images from 393 cases of glioma Brain tumor segmentation and recognition

COVID19-CT 1000+ chest CT images of patients with confirmed

COVID-19 diagnosis

COVID19 detection and diagnosis

Electronic health record (EHR) datasets

MIMIC-III 40,000+ patients with demographic, clinical, and

outcome data

Patients' outcome prediction and diseases risks

assessment

eICU 200,000+ ICU patient records Patients' survival prediction

UK Biobank 500,000+ individuals with demographic, lifestyle, and

health data

Develop methods for disease prevention, diagnosis,

and treatment

Omics dataset

TCGA 11,000+ patients with cancer across 33 different

cancer types

Identify potential targets for new therapies,

and develop predictive models for patient

outcomes

PDB 170,000+ protein structures from organisms Prediction of protein structure, design new drugs

and therapeutic agents

KEGG 22,000+ human genes, 600+ diseases, and associated

molecular pathways

Explore functional relationships between genes,

proteins, and other molecules

HMDB 114,000+ metabolites' structures, functions, and

associated diseases

Identify potential biomarkers for diagnosis and

treatment of various conditions

Abbreviations: BraTS, Brain Tumor Segmentation Challenge; eICU, eICU Collaborative Research Database; HMDB, Human Metabolome Database; ISIC,

International Skin Imaging Collaboration; KEGG, Kyoto Encyclopedia of Genes and Genomes; MIMIC-III, Medical Information Mart for Intensive Care III;

MURA, Stanford's Musculoskeletal Radiographs; PDB, Protein Data Bank; TCGA, The Cancer Genome Atlas; TCIA, The Cancer Imaging Archive; UK

Biobank, UK Biobank Imaging Study.
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them. When the model focuses on detecting positive class samples in

the dataset, it is recommended to use the area under the precision-

recall curve (AUPRC), instead of the AUROC. There are also several

metrics for different tasks, such as PSNR (peak signal-to-noise ratio)

for super-resolution and IoU (intersection over union) for object

detection.

Many large cancer datasets have been established in recent years;

these datasets are often used to build DL models that can assist in

research and clinical decision-making. These datasets include a large

number of data types spanning genomics, epigenomics, proteomics,

histopathology, and radiology images. These complex information net-

works have driven the development of DL in diseases. Varieties of

patient data can be useful features for DNN models. Figure 5 illus-

trates the dataset and its features.

Image data, which includes 13,023 papers using strings “deep
learning” and “medical image” in Pubmed, are the largest part of body

features that can be used in DL. The second part comprise clinical

data features including a total of 8652 papers using strings “deep
learning” and “medical signals” (1709), “deep learning” and “record”
(3951), and “deep learning” and “response” (2992) in Pubmed. The

last part comprises omics data including a total of 4940 papers using

strings “deep learning” and “omics” (488), “deep learning” and

“genomics” (2948), “deep learning” and “proteomics” (461), “deep
learning” and “T-cell receptor sequence” (37), “deep learning” and

“transcriptomics” (676), “deep learning” and “epigenomics” (128),

“deep learning” and “metabolomics” (165), and “deep learning” and

“cell-free DNA” (37) in Pubmed. These researches were conducted

on various diseases and medical conditions and fewer papers

amounts may mean that more experiments and data collection are

required, thus taking longer to complete and lead to a lower number

of papers published.

3.1 | Cardiology

The main vehicle for combining DL with cardiology is electrocardio-

gram (ECG), a method commonly used by cardiologists for disease risk

assessment of a patient's cardiovascular system. The original approach

used rule-based ML algorithms for ECG processing, but this approach

exhibited high inaccuracy.25 Since the rise of DL, researchers have

used the superior performance of DL models to launch a series of

applications in the field of cardiology research, such as using ECG to

classify arrhythmia, classify 12 heart rhythm categories, diagnose atrial

septal defects, and detect long QT syndrome. Here are some notable

examples.

In problems of classifying arrhythmia, Murugesan et al.26 con-

trasted three deep-learning methods, which showed that the method

combining CNN with LSTM27 called ECGNet performed the best.

(LSTM network is one of the most commonly used RNNs. Establishing

a self-loop enables networks to maintain the gradient flow for a long

period.) Furthermore, they demonstrated that ECGNet can be adapted

to different cardiology problems by retraining only last three layers,

suggesting that transfer learning has great potential for ECG proces-

sing. In classifying 12 heart rhythm classes, the DNN model28 also

achieved an AUC of 0.97 and its average F1 score, which is the har-

monic average of precision and recall with a maximum of 1 and a mini-

mum of 0, was 0.837 surpassing that of cardiologists with an average

score of 0.780. The heart murmur caused by atrial septal defects is

faint and hard to detect. Mori et al.29 reported the use of DL model,

comprising a CNN and LSTM, to diagnose atrial septal defects using

1192 ECGs of 728 participants as model input, achieving an accuracy

of 89%, a figure significantly higher than that of cardiologists (58%).

QT interval prolongation can predispose to ventricular arrhythmias

and sudden cardiac death. A study by Giudicessi et al.30 showed that

F IGURE 5 Body features and their percentages in DL. Left part shows percentages of the researches publications amounts using image data,
omics data, and clinical data. Right part shows different detailed features in the datasets. DL, deep learning.
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using 1.6 million 12-lead ECGs from 538,200 patients as input the

DNN can detect long QT syndrome with an AUC value of 0.97, which

is far better than the common ECG machines on the market and thus

provide a cost-effective method for diseases screening. These

researches above showed that DL has become a reliable tool that can

assist diagnosis in cardiology.

ECG can also indicate the occurrence and development of other

diseases; cardiac autonomic dysfunction begins in the early stages of

idiopathic Parkinson's disease (IPD). By developing a CNN consisting

of 16 layers with Bayesian optimization and using 751 IPD patients

(2138 ECGs) and 751 non-IPD patients (2673 ECGs) as input,31 the

AUROC of the model for detection of IPD was 0.924 (95% CI, 0.913–

0.936) in the test set. As such early screening of IPD can be clinically

feasible with the help of DL and establishing reliable DL/AI models

can be an important step forward toward precision and personalized

medicine.

3.2 | Gastroenterology

With the help of AI, the intelligent technology is expected to solve the

problems that gastroenterologist is currently facing, such as the large

demand for endoscopy and uneven quality of inspections. The 5-year

survival rate of patients with advanced esophageal cancer and

advanced gastric cancer is less than 20%, and the 5-year survival rate

of patients with early-stage esophageal cancer and gastric cancer is

more than 80%.32,33 Early diagnosis and treatment are key to improv-

ing the prognosis of patients with gastrointestinal cancer.

The response of patients with gastrointestinal cancer to immuno-

therapy is greatly influenced by microsatellite instability (MSI), but not

all patients are screened for MSI in clinical practice as it involves addi-

tional genetic or immunohistochemical tests. To fill this gap, Kather

et al.34 demonstrated that DL can directly predict MSI from H&E his-

tology, which is widely accessible. Study results showed that DL with

H&E slides as input has great promise of expanding MSI screening to

a larger group of patients with gastrointestinal cancer.

Gastrointestinal endoscopy is a popular field of medical AI

research. Zhang M et al.35 used white-light endoscopy (WLE) images

as a training set and obtained three CNN-based models for the tasks

of differential diagnosis of benign esophageal protruded lesions,

which can be used to distinguish esophageal leiomyoma, esophageal

cyst, and esophageal papilloma, thus helping to improve the precision

level of endoscopists' diagnosis. Ling et al.36 built a real-time CNN

system that can accurately identify the differentiation status of early

gastric cancer and outline the margins of early gastric cancer in magni-

fying narrow-band images with an accuracy of 83.3% and 82.7%,

respectively, which can provide an aid for endoscopic treatment of

early cancer. In the early gastric cancer detection study of Tang D

et al.,37 21,785 narrow band imaging endoscopy images and 20 videos

from five centers were chosen and trained a YOLOv338 AI system, a

high-precision single stage object detection algorithm that can meet

real-time detection requirements (FPS > 30), and achieved a diagnos-

tic accuracy of 93.2%, which is better than senior endoscopists

(85.9%). Multi-center researches proved that DL models have signifi-

cant application capabilities in gastrointestinal diseases, which can

greatly promote the development of precision medicine in this field,

and provide a favorable tool for early screening and discovery of

patients with gastrointestinal disease risks.

3.3 | Ophthalmology

The first paper on the application of AI to the screening of diabetic

retinopathy was published in 2016,39,40 which opened up the path for

the application of AI in ophthalmology. Since then, AI has shown great

application prospects in various fields of ophthalmology, such as fun-

dus disease, glaucoma, cataract, myopia, corneal disease, and orbital

disease.41 AI analysis of imaging results, such as fundus tomography,

optical coherence tomography imaging (OCT), and fluorescein fundus

angiography, can assist in the screening, diagnosis, grading, and guid-

ing of treatment.42

Keenan et al. trained a DNN called DeepLensNet43 on the Age-

Related Eye Disease Study (AREDS) dataset, which includes informa-

tion on 4757 participants with their visual function testing results, to

quantitatively classify cataract type and severity and its performance

was compared with that of 14 ophthalmologists and 24 medical stu-

dents. The results showed that the accuracy of DeepLensNet was sig-

nificantly superior to that of experts and such approaches based on

DL technology can greatly enhance the accessibility of cataract

assessment. And based on data such as corneal topography, anterior

segment OCT, and 3D images of the Pentacam anterior segment, sev-

eral research teams44–47 have successively developed multiple auto-

matic grading methods for keratoconus using CNNs, with an accuracy

of 99.3%.

AI analysis based on fundus and retinal photographs can also be

used to predict48 cardiovascular and cerebrovascular diseases. Rim

et al. proposed a novel cardiovascular risk stratification system based

on DL, their model called RetiCAC used 216,152 retinal photographs

from five datasets as input and outperformed all single clinical param-

eter models in predicting coronary artery calcium, which is a marker

of cardiovascular disease risk, and is also comparable to CT

scan-measured CAC. This research also implied the great potential of

ophthalmology photographs being applied to wider realms and thus

accelerating the process of precision medicine.

3.4 | Dermatology

Skin tumors, a common skin proliferative disease, are clinically divided

into benign and malignant tumors. Malignant skin tumors are prone to

invasion of the surrounding tissues and organs and metastasis. Early

diagnosis and timely treatment can improve the cure and survival

rates.

Esteva et al.49 used 129,450 clinical skin images to train a deep

CNN to diagnose skin cancer. The neural network trained in this man-

ner can classify skin cancer comparable to the ability of
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dermatologists. In a study of remote diagnosis of skin cancers, Huang

et al.50 built a light-weight skin cancer classification model based on

DL methods and proved its ability of aiding first-line medical care.

And by comparing multiple models, their results showed that Dense-

Net performed better on benign and malignant binary classification

tasks, and EfficientNet performed better comprehensively on multiple

classification tasks. The accuracy reached 89.5% and 85.8% for the

binary classifications and seven-class classification. Mijwil51 also

tested three different DL architectures on the The International Skin

Imaging Collaboration (ISIC) 2019 dataset and ISIC2020 datasets,

which is a large collection for skin cancer detection containing over

33,000 images of skin lesions, including malignant melanoma, benign

nevi, and seborrheic keratoses, and the final experimental results

showed that Inception v3 performed better.

Khouloud et al.52 proposed a DL model for melanoma detection

that consisted of the segmentation network W-Net and the classifica-

tion network Inception ResNet. Experiments indicate that the model

has excellent segmentation and classification abilities with higher

accuracy. Khan et al.53 also proposed a DL network, including

segmentation and classification, which was tested on multiple data-

sets and obtained good scores. However, these models have high

requirements for texture, color, and background. Nersisson et al.54

fused YOLO and CNN and proposed a new classification network that

uses YOLO to extract focal areas before completing the classification

of skin diseases using CNN. The study achieved 94% accuracy on the

ISIC2016 dataset, and was largely unaffected and robust when pro-

cessing images with hair and sweat. These DL models show tremen-

dous potential to improve skin cancer research and extend skin

lesions screening beyond the clinical setting, which makes medicine

more personalized and precise in the future.

Generally, DL shows great promise in various clinical fields

according to the researches above. Its main input data and applica-

tions in different realms are summarized in Figure 6. DL models can

help clinicians tailor treatments to individual patients based on their

specific clinical characteristics. This can lead to more effective treat-

ments with fewer side effects. Furthermore, DL models can analyze

F IGURE 6 DL in clinical fields. Cardiology: applications such as predicting heart diseases and Parkinson using ECG as input. Gastroenterology:
applications such as detecting and classifying gastric cancer and esophageal lesions using endoscope images as input. Ophthalmology:
applications such as predicting ophthalmic and cardiovascular disorders using fundus and retinal images as input. Dermatology: applications such
as classifying melanoma and skin cancer using clinical skin images. DL, deep learning.
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large amounts of medical data to detect early signs of diseases, such

as cancer and Parkinson's, before symptoms appear. This can improve

patient outcomes and reduce healthcare costs. There are several chal-

lenges of DL in clinical applications, such as data quality and quantity,

privacy concerns, data heterogeneity, limited availability of annotated

data, model interpretability, and clinical validation. DL models can also

perpetuate bias and unfairness if they are trained on biased or incom-

plete data. In the medical field, this can have serious consequences,

such as misdiagnosis and unequal access to healthcare.

4 | DL IN ONCOLOGY AND DL IN
GLIOMAS

4.1 | DL in oncology

Cancer is the most important public health problem worldwide, and its

incidence is increasing every year in China.55 Accurate diagnosis of vari-

ous tumors is important for improving the survival rate of patients. The

application of precision and personalized medicine is meaningful for the

treatment of different cancer patients. DL can be used for lesion detec-

tion and tumor subtyping to obtain better and easier therapeutic plans for

patients with medical images of tumors.

Ayatollahi et al.56 applied RetinaNet to three-dimensional

(3D) breast magnetic resonance imaging (MRI) sequences. After con-

sidering 3D morphological and dynamic information, the 3D Retina-

Net they proposed achieved 90% accuracy and 95% sensitivity in

detecting malignant and benign breast lesions. Liu et al.57 proposed a

breast cancer-detection AI system called LYNA to automatically evalu-

ate lymph node biopsies; the algorithm they developed had achieved

higher tumor-level sensitivity than pathologists while attaining compa-

rable slide-level performance. Such aided diagnostic methods can

improve the speed, accuracy, and consistency of a physician's diagno-

sis and can even reduce the false-negative rate to 1/4 of that of a

human pathologist. Abdul58 proposed a CNN-based automatic lung

cancer classification and detection system with an accuracy rate of

97.2%, sensitivity of 95.6%, and specificity of 96.1%. A weakly super-

vised CNN algorithm proposed by Xu et al.59 classified lung tumors

with an AUC of 0.9978. Most studies have shown that DL performs

well in oncology tasks.

Identifying survival subgroups of patients with cancers signifi-

cantly improve patient care and clinical decision. Chaudhary et al.60

presented a DL-based model on hepatocellular carcinoma (HCC) that

discriminates survival subgroups of patients in six cohorts using RNA

sequencing, miRNA sequencing, and methylation data from TCGA as

input. This multi-omics model was validated on five external datasets of

different regions and results showed a robust mean concordance index

of 0.74, which provide useful workflow for reference at cancers progno-

sis prediction. Poirion et al.61 introduced DeepProg, a novel ensemble

framework of DL and ML methods that robustly predicts patient sur-

vival subgroups using multi-omics data. DeepProg identifies two opti-

mal survival subtypes in most cancers and yields significantly better

risk-stratification than other multi-omics integration approaches.

4.2 | DL in gliomas

Gliomas are the most common primary central nervous system

tumors, accounting for approximately 75% of all primary malignant

brain tumors in adults. For traditional classifications,62 the World

Health Organization (WHO) classifies gliomas as low-grade gliomas

(LGG, including WHO grades I–II) and high-grade gliomas (HGG,

including WHO grades III–IV). As the most common primary brain

tumor, various degrees of glioma are associated with different prog-

noses and suitable therapies. In mid-2021, the WHO released the

newest classification of gliomas.63 It first divided the diffuse glioma

into adult and child types, with the adult type divided into three types:

astrocytoma, isocitrate dehydrogenase (IDH)-mutant; oligodendro-

glioma, IDH-mutant and 1p/19q co-deleted; and glioblastoma, IDH

wild type.

Gliomas can be objectively classified into various subtypes based

on their growth patterns, behaviors, and multiple molecular markers.

There are two main methods to obtain subtype-related information:

surgery and imaging examination. Considering the cost, risk, and time

factors, imaging examination is the preferred method for disease diag-

nosis, before, during, and after treatment. However, for precision

diagnosis, pathology-slide analysis has always been considered the

gold standard for glioma classification.

As shown in Figure 5, multiple features can be used in different

diseases. In general, any type of data that can be represented numeri-

cally can be used for training DL models. However, it is important to

ensure that the data is of high quality, representative of the problems,

and labeled (if possible) to enable the model to learn effectively. So

the criterion for selecting training data includes the relevance of the

data to the problems, the quality and consistency of the data, and the

availability of the data. The formation, development, and classification

of gliomas are also related to many physiological features. So these

features can also have the potential to be integrated into DL algo-

rithms. By using DNN models, features can be automatically extracted

and then assist in computer-aided diagnosis and push the develop-

ment of precision medicine in gliomas. The features that have been

used in previous studies and those that have not been used are listed

in Figure 7.

In the left part of Figure 7, the numbers denote the number of

papers using strings “glioma,” “deep learning,” and the name of the

features. As shown in the figure, MRI (253 papers) and pathological

images (18 papers) were the most commonly used features in past

research. In glioma research, MRI and slice images are commonly used

imaging tools which contain a lot of patients' clinical information and

can be used to detect tumor location, shape, size, and assess the

malignant degree of glioma. DL can automatically recognize and clas-

sify features in images through training on a large amount of data.

Therefore, applying DL to MRI and slice image analysis can improve

the accuracy of glioma diagnosis and treatment.

Multimodal medical data fusion has the potential to improve the

accuracy and reliability of medical diagnosis and treatment through

the use of DL techniques. However, there are several challenges that

need to be addressed: Data preprocessing: DL algorithms require large
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amounts of labeled data, which can be difficult to obtain in the medi-

cal domain. Moreover, medical data can be highly heterogeneous, and

preprocessing is required to ensure that data from different sources is

compatible and can be integrated into a single model. Model complex-

ity: DL models can be highly complex and require significant computa-

tional resources to train and optimize. Moreover, combining data from

different modalities can result in highly complex models that are diffi-

cult to interpret, making it challenging to understand the underlying

factors that contribute to a diagnosis or treatment recommendation.

Data quality: The accuracy of DL models is highly dependent on the

quality of the input data. In the medical domain, data quality can be

highly variable due to differences in data collection methods, equip-

ment, and protocols. Generalizability: DL models trained on one data-

set may not generalize well to other datasets, making it challenging to

apply these models in real-world clinical settings.

4.3 | Two main vehicles between glioma and DL

4.3.1 | MRI

Medical imaging is an indispensable method and assistance tool in gli-

oma diagnosis and accounts for 90% of clinical data. Patients with

suspected brain tumors need to be assessed using medical imaging,

especially MRI. MRI is a noninvasive medical-imaging technology, and

it is the preferred imaging technique for the evaluation of gliomas

because of its good soft tissue contrast.

MRI provides rich information for doctors to classify glioma sub-

types and make appropriate treatment plans. Therefore, fully mining

medical-imaging information plays a crucial role in clinical diagnosis,

decision-making, and disease prevention. However, with the develop-

ment of medical imaging technology and gradually increasing patient

needs, the number of images poses great challenges to radiologists.

With the rise of DL and the proposal of precision medicine, traditional

subjective medical image analysis methods can no longer meet these

needs, and the use of neural networks for medical image analysis has

gradually become mainstream.

4.3.2 | Pathology

Pathological diagnosis is considered the “gold standard” for tumor

diagnosis, and the results of pathological diagnosis directly affect the

choice of treatment options and the prediction of prognosis. In the

traditional pathological diagnosis process, the pathologist directly

examines the pathological slides under a microscope and then makes

a pathological diagnosis and prognosis evaluation. Hematoxylin–eosin

(H-E) staining is the most widely used histopathological slide, which

clearly shows cell morphology and tissue structure. Recently, the pop-

ularization of WSIs65 has made the preservation and transmission of

pathological slides more convenient and safe, and can better perform

quantitative analysis of pathological images, thus promoting the

pathology into a new development period.

Digital pathology uses the WSI digital scanning technology to

obtain high-resolution images, which successfully converts pathologi-

cal tissues into high-quality digital images. Monotonous traditional

pathology diagnosis provides pathologists a heavy workload and is

subjective and error-prone when screening smears quickly. Digital

pathology not only reduces the workload of pathologists, improves

their diagnostic ability, and provides more valuable information but

can also reduce the risk of patients with identification errors and real-

ize the digital management of slides.66 Based on digital pathology, the

rich dataset constructed by WSI has created the conditions for the

application of DL in pathology, and integration with DL has become

an important direction for the development of digital pathology.

4.4 | Multiple tasks using DL

DL has been used for a range of tasks in gliomas, which can be broadly

divided into basic and advanced tasks. Basic tasks, including tumor

region segmentation, MRI image reconstruction, and glioma subtyp-

ing, mean that doctors can complete these tasks by analyzing glioma

images artificially. DL only helps doctors to perform these processes

in a quicker and more efficient manner, thus reducing doctors' work-

load and avoiding subjectivity to improve accuracy. Advanced tasks,

F IGURE 7 Different features
in glioma used in previous
studies. Collage brain image
reproduced from Ref. 64.
Creative Commons — Attribution
4.0 International — CC BY 4.0.
Left part shows different features
in glioma and their researches
publications amounts. Right part

shows other potential features
that can be exploited in future
researches.
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including gene mutation prediction and survival prediction, mean that

doctors cannot finish these tasks artificially only from glioma images;

they require the assistance of DL. The main use of DL in the glioma

field is shown in Figure 8.

It is notable that different tasks are not completely independent

of each other; there are also multi-tasks researches67–69 showing that

different tasks' features can be shared and enhance model's perfor-

mance. And the review of progresses in these tasks is as follows.

4.4.1 | Application in tumor segmentation

The purpose of medical image segmentation technology is to obtain

clear anatomical or pathological structures in medical images. This

technology significantly improves the efficiency and accuracy of diag-

nosis and thus plays a vital role in computer-aided medicine.70

Segmentation applications for brain tumors include locating abnormal

regions, automatically measuring tissue size, and computer-guided

surgery. Brain and brain tumor segmentation is a major medical image

segmentation task.71,72 Tumor segmentation generally refers to the

separation of tumor tissue, such as necrosis and edema, from normal

tissues, such as white matter and gray matter. Segmenting the target

regions in medical images and extracting features from the segmented

regions can help clinicians make more rapid and accurate diagnoses.

Image-segmentation tasks are mainly divided into semantic seg-

mentation and instance segmentation. However, in medical image

segmentation, because each organ or tissue is very different, instance

segmentation of medical images is of little significance. Thus, medical

image segmentation usually refers to semantic segmentation. The goal

of semantic segmentation is to accomplish pixel classification in

images. Because medical picture segmentation tasks demand high

accuracy, supervised learning is the most preferred approach.73

The CNN structure called U-Net, introduced by Ronneberger

et al.,74 is one of the earliest algorithms for semantic segmentation

using FCN, and its improved versions have been widely utilized for

medical picture segmentation tasks. By merging low-resolution and

high-resolution feature maps through skip connections, U-Net

successfully fuses low-level and high-level image features. There are

several meaning upgrades following U-Net. By integrating residual

connections into U-Net, Xiao et al.75 proposed Res-UNet. Zhou

et al.76 linked all U-Net layers from one to four together and proposed

U-Net++. This architecture provides a network with the advantage of

automatically learning the values of the features at different layers.

The detailed structure of U-Net++ is shown in Figure 9 and its seg-

mentation evaluation metric, IoU has reached 89.33 using the EM

dataset and 91.21 using the Cell dataset, which proved its high perfor-

mance in experiences. And by cutting the number of encoder back-

bone layers, U-Net++ has a born strength of network pruning which

means reducing the parameters and not losing the accuracy.

From Figure 9 it can be seen that by inputting MRI images, the

DL-based segmentation algorithm has realized the automatic segmen-

tation of gliomas into different subregions, including necrotic regions,

edema regions, and tumor enhancement regions, from multimodal

MRI data. Pereira et al.77 proposed a two-dimensional CNN (2D CNN)

automatic segmentation algorithm based on a 3 � 3 convolution ker-

nel that uses a small convolution kernel to prevent overfitting by

reducing the number of parameters. Prasanna et al.70 adopted CNN

segmentation technology based on imaging omics, first identified the

texture features of different subregions of the tumor, and then input

these features into the 3D CNN (3D CNN) model for different subre-

gions of glioma segmentation. The results showed that compared with

the normal 3D CNN segmentation model, this method improved the

segmentation accuracy of the tumor enhancement area and the whole

tumor. Cui et al.78 combined two subnetworks to build a cascade of

deep CNN. The segmentation results showed that the dice similarity

coefficient (DSC) of the tumor, tumor core, and tumor enhancement

region in the segmentation tasks were 0.89, 0.77, and 0.80, respec-

tively. To further improve the accuracy of glioma segmentation,

Mlynarski et al.79 used a 2D–3D CNN segmentation method to seg-

ment multimodal MRI data, which combined the advantages of 2D

and 3D CNNs to capture spatial context features. The results showed

that the DSC of the tumor, tumor core, and tumor enhancement

F IGURE 8 DL in gliomas. DL
applications using clinical images
are broadly divided into two
parts—basic tasks part including
gliomas grading, gliomas
detection, glioma image
segmentation, and glioma
subtyping, and advanced tasks
part including glioma patients'
survival prediction and patients'
genes mutation status prediction.
DL, deep learning.
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region were 0.918, 0.883, and 0.854, respectively, which outper-

formed the accuracy of the segmentation algorithm.

4.4.2 | Application in glioma classification

DL can help physicians identify whether a medical image is a type of

classification problem in the ML field. The pathological type of brain

tumors and the classification of brain gliomas largely determine the

treatment plan and overall prognosis; therefore, accurate classification

of brain tumors is of great clinical significance. In recent years, many

researchers have fully explored the deep characteristics of the MRI

dataset using CNN and achieved the classification of gliomas, which

shows the feasibility of this approach and makes a difference in the

trend of precision medicine. There are several applications for the

classification of gliomas.

DL can be used for the detection of gliomas, which is used to

classify images containing gliomas using a database of MRI images.

The output was an MRI image marked as normal or abnormal. Tumor

detection is generally the first step in clinical diagnosis and treat-

ment and can be applied to disease screening and routine physical

examinations on a large scale. Abd-Ellah et al.80 used a combination

of AlexNet and an error-correcting output code support vector

machine (ECOC-SVM) to evaluate cranial images and obtained a

99.55% detection accuracy in the Response(Rider)Neuro MRI

database.

Furthermore, DL can be used to identify different brain tumors,

including gliomas. Paul et al.81 used a contrast-enhanced T1-weighted

imaging (CE-T1WI) MRI dataset based on the CNN method to classify

gliomas, meningiomas, and pituitary tumors. The classification accu-

racy was 90.26%. Subsequently, Swati et al.82 used a pretrained CNN

model and proposed a transfer learning-based strategy for classifica-

tion with an accuracy of up to 94.82%. Deepak and Ameer83 further

combined a CNN with a SVM, and the accuracy was improved

to 97.8%.

In addition to the qualitative diagnosis of brain tumors, DL has

also achieved a degree of glioma prediction. Yang et al.84 used Goo-

gLeNet and AlexNet models for LGG and HGG classification, and the

classification accuracies were 94.5% and 93.8%, respectively, indicat-

ing that GoogLeNet had better classification performance. Ge et al.85

incorporated multimodal MRI into a multi-stream 2D CNN model to

achieve the classification of LGG and HGG, of which CE-T1WI had

the highest performance, with an accuracy rate of 83.87%. By the

fusion of multimodal features, the accuracy improved by approxi-

mately 7%. Mzoughi et al.86 proposed a multiscale 3D CNN architec-

ture to classify LGG and HGG based on multimodal MRI datasets, and

used data augmentation technology to preprocess the images, and its

classification accuracy increased from 82.5% to 96.4%, outperforming

the 2D CNN model. Diffusion tensor imaging (DTI) is a new method

for describing brain structure and is a special form of MRI. Based on

the CNN model, Zhang Z et al.87 extracted deep features from a DTI

dataset for glioma classification. The results showed that the accuracy

of distinguishing LGG from HGG was 94%, and the accuracy of distin-

guishing WHO III from WHO IV gliomas was 98%, indicating that the

deep features extracted from brain DTI images helped to distinguish

different levels of gliomas.

F IGURE 9 U-Net++ structure and its application in MRI images. Up-sampling and down-sampling are used to adjust the size and resolution
of images or feature maps. Skip connections are used to mitigate the vanishing gradient problem in deep neural networks by connecting the
output of one layer directly to the input of another layer several layers away. Deep supervision is a technique that adds additional supervision
signals at intermediate layers to improve the training of deep neural networks. The specific implementation of deep supervision in U-Net++ is to
add a 1 � 1 convolution kernel after X0,1, X0,2, X0,3, X0,4, which is equivalent to supervising the output of U-Net at each level or each branch. MRI,
magnetic resonance imaging.
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DL also has important applications in identifying postoperative

glioma recurrence and treatment-related effects (TRE). For example,

Bacchi et al.88 used CNNs based on a combination of DWI + FLAIR

sequences and achieved a model accuracy of 82%. Tang F et al.89

developed a fully automatic DL method based on multisequence

MRI guidance. The deep feature fusion model is a multi-sequence

MRI-guided CNN model that iteratively learns CT images and multiple

sequences simultaneously. These two features were then combined

to generate the classification results.

The results of all this research show that DL is helpful for the clas-

sification of gliomas. However, single-center research is still a main

problem and limitation in these experiments, and the problem of small

sample size also requires further multicenter research and large sam-

ples to verify their feasibility.

4.4.3 | Application in mutation prediction

In the trend of precision medicine, gene mutation status has been

added to glioma subtypes to create more personalized treatment

plans for patients. Knowing that tumor gene status, such as IDH,

O6-methylguanine-DNA methyltransferase (MGMT), and 1p/19q, are

beneficial for treatment planning and prognosis prediction,90,91 more

studies have explored the value of DL in predicting glioma gene types

in recent years. Different molecular subtypes of gliomas differ in

tumor susceptibility location and therapeutic sensitivity, leading to dif-

ferent extrinsic phenotypes, such as tissue and cellular features,

including shape, edge, location, and texture. These features or other

abstract features may be learned and acquired by DL models for clas-

sification and prediction. Because genotyping by pathological tissue

detection after surgery takes a long time, which delays the treatment

of glioma patients, there is an urgent need to predict glioma geno-

types based on MRI features before surgery to meet the needs of clin-

ical treatment.

DL networks can be used to predict gene mutations. One of the

commonly used types of DL networks for this task is CNNs. The input

data type for CNNs is usually the gene expression data, which is a col-

lection of measurements of the activity of genes in a cell, tissue, or

organism, often obtained through RNA sequencing experiments. To

train a CNN for gene mutation prediction, the data is first prepro-

cessed, normalized, and cleaned to ensure data quality. The data is

then split into training and testing datasets. The training data is used

to train the CNN model to learn the patterns and relationships

between gene expression data and the presence or absence of a par-

ticular mutation. During training, the CNN model adjusts its weights

and biases based on the input data and the known output (mutation

status). The model continues to train until the loss function reaches a

minimum, indicating that the model has learned to predict the muta-

tion status accurately.

IDH1 mutations are closely associated with glioma patients' sur-

vival. Li Z et al.92 modified a CNN model to have six convolutional

layers and a fully connected layer with 4096 neurons, which was used

to segment tumors and predict the IDH1 mutation status in LGG

patients, by validating models on a dataset of 151 patients with LGG

and comparing performances with normal radiomics approaches,

results showed that the AUC of the normal radiomics methods and

DL methods was 0.86 and 0.92, respectively, for IDH1 estimation.

Furthermore, paired t-tests and F-scores were used to select CNN

features that identify IDH1 and proved DL's ability of extracting deep

information from medical images.

MGMT contributes to DNA repair, and methylated MGMT

inhibits DNA repair, resulting in resistance to chemotherapeutic drugs.

Korfiatis et al.93 used three ResNet models to predict the methylation

status of the MGMT promoter, and showed that the ResNet50 model

outperformed the ResNet34 and ResNet18 models, with accuracies

of 94.90%, 80.72%, and 75.75%, respectively. Yogananda et al.94 used

247 subjects' brain MR imaging and corresponding genomic informa-

tion obtained from TCIA and TCGA where 163 subjects had a methyl-

ated MGMT promoter as input, a T2WI-only network (MGMT-net)

was developed and trained using 3D-dense-UNets to determine

MGMT promoter methylation status and simultaneous single-label

tumor segmentation. Results showed that the DL based method sur-

passes traditional histologic and molecular methods.

The detection of the 1p/19q co-deletion is of great significance

in diagnosing oligodendroglioma and determining the prognosis of

patients. Compared with patients with 1p/19q non-deletion, patients

with IDH mutation combined with 1p/19q co-deletion had a better

prognosis. The imaging manifestations of gliomas with combined dele-

tion of chromosome 1p/19q have certain characteristics that enable

DL to predict its status through MRI images. Akkus et al.95 used

159 LGG with three image slices each who had biopsy-proven

1p/19q status and preoperative postcontrast-T1 (T1C) and T2 images

as input, successfully predicted the 1p/19q co-deletion status in LGG

patients based on a multiscale CNN model, with an accuracy of

87.70% and sensitivity of 93.3%. The CNN model trained by Chang

et al.96 achieved multigene prediction of glioma, including IDH1 muta-

tion, MGMT methylation, and 1p/19q co-deletion status, with an

accuracy of 94%, 83%, and 92%, respectively, suggesting that the sta-

tus of multiple genes can be simultaneously predicted using CNN.

High accuracy has been reported in these studies, but several limita-

tions still exist including generally small datasets, a lack of studies with

multiple centers training datasets and independent testing datasets,

and a lack of studies predicting IDH and 1p/19q together. While DL

combining with gliomas MRI shows great potential as a noninvasive

approach for glioma genotyping, these limitations need to be

addressed before it truly makes clinical translation.97

4.4.4 | Application in survival prediction

With the development of medical technology, the treatment of brain

glioma has made great progress, but the survival rate of patients with

high-grade glioma is still very low; in particular, the median overall sur-

vival of glioblastoma patients is only about 12–15 months. Therefore,

there is an urgent need to fairly predict glioma progression-free sur-

vival and overall survival. Previous studies on survival prediction have
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included patient age, sex, physical status, extent of resection, tumor

type, tumor site, and tumor size as prognostic factors; however, these

indicators have limitations that cannot reflect intratumoral heteroge-

neity, which can also influence patients' conditions. MRI-based radio-

mics has been proven to be useful for predicting the survival of

gliomas without considering glioma grade.98 However, manually

selected radiomic features are subjective and sensitive to changes in

the observation environment. DL has the ability to identify the deep

and abstract features in tumors that the naked eye cannot capture,

and its automated workflow can avoid subjectivity influences, which

makes it more helpful to predict patient survival. DL can also be inte-

grated with MRI radiomics to predict survival and tumor-infiltrating

macrophages in gliomas.99

Nie et al.100 employed DL to automatically extract deep features

from multimodal and multichannel MRI datasets to predict overall sur-

vival in patients with HGG. These deep features, along with manually

selected clinical features such as age, sex, and health condition, were

then fed into the SVM to predict overall survival. This DL-SVM

approach achieved an accuracy of 90.66%. Considering the close rela-

tionship between genotypes such as IDH, MGMT, and 1p19q and

patient survival, Tang Z et al.101 proposed a multitask CNN model to

jointly complete tumor genotype and overall survival prediction tasks.

The results of this method showed that features associated with

tumor genotype significantly improved the accuracy of predicting

overall survival, and features associated with overall survival also

improved the accuracy of predicting genotype, which in turn proved

the correlation between genotype and survival. These studies also

contribute significantly to progress in precision medicine.

5 | LIMITATIONS AND PROSPECTS

We are living in an era of digital information explosion. Medical infor-

mation, too, has gradually become predominately digital and easy to

preserve. DL, however, often has higher requirements for training

data, not only in terms of quantity but also quality. Marking medical

images require professional doctors, and thus good marked medical

images are difficult to obtain. Additionally, there will be noise in the

data, even for professional doctors, and the results may also vary per

doctor. Owing to the particularity of medical information and privacy-

protection policies, well-processed datasets that doctors can obtain

are limited. Unwell-trained models are easy to overfit and have poor

generalization, which cannot be applied to medicine. Incomplete

sample coverage may lead to model performance dropping due to

the center effect; for example, AlBadawy et al.102 investigated the

segmentation performance of CNN on glioblastoma MRI data from

two institutions. The results indicate that the segmentation accuracy

(DSC was 0.68 ± 0.19) using data from different institutions was sig-

nificantly lower than that using data from the same institution Preci-

sion (DSC 0.72 ± 0.17). Thus, data from different institutions vary in

imaging equipment, image acquisition parameters, and contrast

agent use, which may affect the image quality and segmentation

accuracy.

Owing to a lack of training samples, learning approaches using

small samples can alleviate this problem to a certain extent. The first

proposal is using transfer learning; this is performed by moving the

trained model on a task (source domain) to another task (target

domain),103–105 because the source domain has a large number of

training samples. After large-scale pretraining on the source domain,

the DL model only needs to be fine-tuned in the target domain

with few samples. For example, Med3D can be pretrained on a

large number of heterogeneous public datasets, which is a shared

encoder segmentation network, and then transferred to other

tasks such as lung segmentation.106 This method can significantly

improve segmentation and classification accuracy in the absence of

training data.

For the gap (domain shift) problem between the target domain

and the source domain, Chen J et al. also proposed a novel unsuper-

vised domain adaptation method107 to alleviate the performance deg-

radation caused by domain shift.108,109 The method only requires the

data and annotations of the source domain and some images of the

target domain and can realize the adaptation of the two domains

without the annotation of the target domain. Additionally, such a

domain-adaptive boosting algorithm can improve generalization

across centers.110 Furthermore, to address the lack of large datasets,

GANs have been used to produce large datasets of high-resolution

images using image reconstruction technology,111–114 which could

help increase the number of DL applications in the medical field and

drive precision medicine in the future.

DL has already made significant strides in the clinical stage of

glioma, particularly in the areas of diagnosis, prognosis, and treatment

planning. However, there is still much work to be done before it can

be considered fully integrated into clinical practice.

One of the main challenges is the need for large, diverse datasets

to train and validate DL models. Glioma is a complex and heteroge-

neous disease, and obtaining high-quality data that accurately reflects

this complexity can be difficult. Additionally, there are ethical and reg-

ulatory considerations that must be addressed when using patient

data for research. Another challenge is the need for interpretability

and transparency in DL models. Clinicians need to be able to under-

stand how the models are making predictions and be confident in

their accuracy before incorporating them into clinical decision-making.

Despite these challenges, there have been promising developments in

the field of DL and glioma. Researchers have developed DL models

that can accurately predict patient outcomes and guide treatment

planning based on imaging data. The potential benefits of DL in the

clinical stage of glioma make it an exciting area of research and

development.

The field of DL in clinical and glioblastoma research is poised to

undergo significant growth and advancement in the near future. This

growth will be largely driven by the increasing availability of medical

data, which is making it possible to analyze and understand complex

disease processes in ways that were previously not possible. In addi-

tion, the development of more sophisticated algorithms is providing

researchers with powerful new tools for analyzing and interpreting

this data.
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Furthermore, the integration of multiple types of data and infor-

mation is also contributing to the future development of DL in these

areas. By combining data from sources such as imaging studies, geno-

mics, and clinical records, researchers can gain a more complete

understanding of disease processes and develop more effective treat-

ments. As medical data continues to become more widely available,

and as algorithms and data integration techniques continue to

improve, it can be expected to see significant progress in ability

to diagnose and treat diseases like glioblastoma, ultimately leading to

better outcomes for patients.
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