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Abstract: The intramuscular fat (IMF) content is considered an important factor for assessing meat
quality, and is highly related to meat flavor. However, in donkey meat, the influences of IMF
content on lipid and volatile profiles remain unclear. Thus, we conducted lipidomic and volatilomic
investigations on high- and low-IMF samples from donkey longissimus dorsi muscle. When the IMF
level increased, the monounsaturated fatty acid (especially oleic acid) content significantly increased
but the saturated fatty acid content decreased (p < 0.05). Twenty-nine of 876 lipids showed significant
differences between the two groups. Volatile profiles from differential IMF content samples were also
distinct. Five differential volatile odorants were identified in the two groups: 2-acetyl-2-thiazoline,
octanal, 2-pentylfuran, pentanal, and 1-(2-pyridinyl) ethanone. Additionally, strong correlations were
found between differential fatty acids and lipids with differential odorants. Thus, the difference in
volatile odorants may result from the change in the fatty acid composition and lipid profiles induced
by different IMF contents, highlighting the urgent need to increase IMF levels in donkey meat.

Keywords: comparison; donkey; intramuscular fat; lipids; volatile compounds

1. Introduction

As living standards have improved in recent years, consumers’ interest in meat prod-
ucts that are healthy and nutritious has increased. In particular, donkey meat is a healthy
food choice, as the meat is very nutritious, contains high levels of protein, is low in fat
and cholesterol, and contains a high ratio of polyunsaturated fatty acids [1]. However,
consumers generally believe donkey meat is tough [2], which may affect its reputation
and acceptance. It is well established that intramuscular fat (IMF) content is positively
related to the tenderness and flavor [3,4]. Therefore, it is very important to improve the
level of IMF in donkey meat to meet the growing demands of consumers and promote the
consumption of donkey meat.

When choosing meat products, consumers also strongly consider their flavor. The
identification of volatile compounds in meat has recently received much attention, as
these compounds greatly determine the flavor and/or odor of meat products [5]. Studies
have shown that the IMF level exhibited an effect on the volatile flavor substances in
meat, which included lipid oxidation/degradation products (such as aldehydes, alcohols,
and ketones) and Maillard reaction products [6,7]. Fatty acid profiles of IMF also have
significant influence on the formation of flavor [8]. Furthermore, the fatty acid composition
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in meat must be considered as it is an important factor for human health. Additionally,
lipid species in IMF not only act as solvents for volatile compounds in meat but also
produce special flavors, which are important flavor precursors [9]. Regarding this topic,
Liu et al. [10] noted that 61 differential lipid subclasses (particularly phosphatidylcholine
(PC) and phosphatidylethanolamine (PE)) may be responsible for the production of volatile
aroma compounds (such as hexanal, heptanal, and 1-octen-3-ol) in roasted lamb after
various cooking times. Moreover, lipids also contribute to food texture (such as the texture
of food during mastication) and thus lead to greater acceptance by the consumer. Thus, the
lipid profiles of donkey meat with varying IMF levels should be analyzed and identified to
better discover the flavor precursors and enhance the meat flavor and quality.

China is the world’s greatest producer of donkey meat (183,755 tons/year), followed by
Niger (9946 tons/year) [11]. The Dezhou donkey is a well-known breed in China, mainly
owing to its remarkable characteristics, including huge size, muscular body, and best
skin quality. In our previous studies, we observed differences in the volatile compounds
(VOCs) of meat from two donkey strains (SanFen and WuTou) [12]. However, the impact
of IMF level on the flavor compounds and precursors of Dezhou donkey meat remains
unclear. Therefore, we utilized a lipidomic approach combined with volatilomic analyses
to characterize the lipid and volatile profiles and their variations sampled with high- and
low-IMF levels, and to further evaluate the relationship between lipid profiles and volatile
compounds in donkey meat. The present study could provide a better understanding of
IMF deposition affecting the flavor of donkey meat.

2. Materials and Methods
2.1. Sample Collection

Eighty healthy male Dezhou donkeys (carcass weight: 136.94 ± 2.08 kg) approximately
2.5 years of age were obtained from the same farm and slaughtered at a donkey slaugh-
terhouse (Dong’a Tianlong Food Company, Liaocheng, China) according to international
standards (CAC/RCP 41-1993 and ISO/TS 34700: 2016). Soybean straw diets were fed ad
libitum in addition to a commercial concentrate diet (Hekangyuan Group Co., Ltd., Jinan,
China), and donkeys were fed twice daily at 07:00 and 19:00. A total of approximately
20 g of longissimus dorsi (LD) muscle samples (between ribs 17 and 18) were collected
and divided from two parts after sacrifice, washed with sterile saline, frozen in liquid
nitrogen, and subjected to measurement of the chemical composition, lipids, and volatile
compounds. All frozen samples were then stored at −80 ◦C. All procedures performed in
the present work were approved by the Liaocheng University Animal Care Committee (No.
2022121601).

2.2. Measurement of the Chemical Composition

The IMF contents in the donkey LD muscle samples were measured by the Soxhlet
extraction method following the Chinese National Standard (GB/T 6433.2006), and ex-
pressed as a percentage of wet meat weight. Then, samples were divided into two groups
according to IMF content: low 10% IMF (L-IMF, n = 8) and high 10% IMF (H-IMF, n = 8)
groups (Table S1).

Additionally, the fatty acid profile of donkey meat was detected through gas chro-
matography (GC; 6890N, Agilent) with a DB-23 column at the Ministry of Agriculture Feed
Industry Centre of China. Briefly, samples were put into a hydrolysis tube, and the internal
standard of 4 mL of chloroacetyl methanol solution (1:10) and 1 mL of C11:0 methyl ester
were added. Then, the samples were mixed with 1 mL of n-hexane in a water bath at 80 ◦C
for 2.0 h. After cooling, 5 mL of potassium carbonate solution (7%) was added and vortexed
for 1 min, and then centrifuged at 1000 r/min for 5 min. Finally, the samples were filtered
into a sample vial for GC analysis, and injected with a volume of 1 µL. Fatty acids were
identified by comparisons of their retention time with those of fatty acid standards and
expressed as percentages of total fatty acids.
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2.3. Lipidomic Analysis

Lipids were extracted and collected from donkey meat according to a prior method
with a slight modification [13]. In brief, the LD muscles were suspended in the mixture
of chloroform and methanol with the volumetric ratio of two to one and the obtained
suspension was then mixed with deionized water. After vortex mixing, the solid phase
was separated from the suspension via centrifugation at 4 ◦C and the liquid phase was
collected and dried under nitrogen to form pellet, which was resuspended in the chloro-
form/methanol (1:1, v/v) before LC-MS analysis. To monitor the quality and stability of
data assayed, quality control samples were obtained by mixing the equal volume of each
sample, followed by the injection at every seven samples.

Lipid sample was separated and analyzed on a modular 1290 infinity HPLC system
(Agilent, Waldbronn, Germany) equipped on a Waters Acquity UPLC HSS T3 (Waters, Mil-
ford, USA). The mobile phase was composed of mobile phase A (acetonitrile/water, 60:40,
v/v) and mobile phase B (isopropanol/acetonitrile, 90:10, v/v), both of which contained
10 mM ammonium formate. The gradient program was set as follows: 0–1.0 min, 40% B;
1.0–9.0 min, 100% B; and then 10.20–13 min, 60% B. The total run time was 13 min with
the flow rate of 300 µL/min. The column temperature was 50 ◦C and the injection volume
of the sample was 2 µL. Mass spectrometry (MS) was performed in both positive- and
negative-ion modes. The MS parameters for extracting lipids were performed as follows:
ion spray voltage of the positive and negative modes, 5.0 kV and 4.5 kV, respectively;
temperature of turbo source gun, 500 ◦C; and curtain gas (CUR), 35 psi.

The lipids were identified and screened using MExplorer (version 1.0.158(158)). Mass
tolerance was 10 ppm and 5 ppm for fragments and precursors, respectively. The relative
quantifications of the lipids identified in this work were performed using their relative
peak areas.

2.4. Volatile Compounds Analysis

The pretreatment, extraction, and analysis of volatile compounds from LD muscle sam-
ples were performed using headspace solid-phase micro extraction and gas chromatography-
mass spectrometry (HS-SPME-GCMS) [6,14]. Following incubation for 20 min in water at
55 ◦C, the samples were extracted for 40 min at 55 ◦C using 50/30 µm DVB/CAR/PDMS
(Supelco, Inc., Bellefonte, PA, USA), and then desorbed at 250 ◦C for 3 min into the GC
inlet.

Volatile components were separated and analyzed via a GC-MS system (Thermo Fisher
Scientific, Austin, TX, USA) equipped with a VF WAX capillary column (Agilent, Santa
Clara, CA, USA). Helium (99.9999%) was the carrier gas under a constant flow rate of
1.0 mL/min. The column oven temperature program was first set to 40 ◦C for 2 min, then
raised to 230 ◦C at a rate of 4 ◦C/min and maintained for 5 min. The MS Electron ionization
was carried out at 70 eV electron energy. The MS ion source was 280 ◦C, whereas the MS
transfer line was 250 ◦C. An Orbitrap MS at 60,000 resolution was used for full scan MS.
Moreover, the scanning range was from 30 m/z to 400 m/z.

Volatile compounds were identified and confirmed by comparisons of their retention
indices and mass spectra with the corresponding database of NIST v2.3 and Wiley libraries
built with authentic reference standards. These compounds were then semiquantified by
utilizing an internal standard (2-methyl-3-heptanone). To further analyze the contribution
of aroma compounds, the odor-active values (OAVs) of aroma compounds were calculated
using their semi-quantification concentration divided by the corresponding threshold
value [15]. Finally, the volatile components with OAV > 1 were generally defined as key
flavor substances.

2.5. Data Analysis

Student’s t-test (normal distribution data) or Wilcoxon rank sum test (non-normal dis-
tribution data) were carried out to run the statistical analyses with SPSS software (version
22). Data were expressed as the mean ± standard error (SE), and p < 0.05 was regarded as



Foods 2023, 12, 3269 4 of 15

statistical significance. Significantly differential lipids were screened by following these
criteria: false discovery rate (FDR) < 0.05, fold-change (FC) > 2 or < 0.5, and variable impor-
tance in projection (VIP) > 1. Partial least-squares discriminant analysis (PLS-DA), volcano
plot, heatmaps, and VIP scores were performed and visualized using MetaboAnalyst 5.0.
Spearman correlation method analyses among the discriminative key volatile compounds
and differential fatty acids and lipids were conducted using OriginPro 2021. Additionally,
the GraphPad Prism 8.0 was carried out to build the bar charts.

3. Results and Discussion
3.1. Comparison of Lipid Profiles

Based on the IMF content, extreme samples were screened and divided into two
groups: the L-IMF and H-IMF groups. As expected, significantly higher accumulation of
IMF was observed in the H-IMF group compared with the L-IMF group (4.71% versus
1.77%; p < 0.01; Figure 1A). Compared to lamb or beef, donkey meat has a low percentage
of IMF [16,17]. Additionally, previous studies have shown that palatability is noticeably
diminished when the fat content drops to as low as 3% [18]. This indicates that higher levels
of intramuscular fat (IMF) in this study could enhance consumer acceptance of donkey
meat.
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Figure 1. Intramuscular fat content and fatty acid profile in H_IMF and L_IMF. (A) Intramuscular
fat content. (B) SFAs. (C) MUFAs. (D) PUFAs. (E) Total SFAs, MUFAs and PUFAs. (F) PUFA/SFA,
MUFA/PUFA and n-6/n-3 PUFA. L_IMF, low intramuscular fat; H_IMF, high intramuscular fat;
SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
* p < 0.05.

To better explore the changes in lipid profiles in donkey LD muscle with different
IMF contents, lipid profiles were assessed and analyzed by the following approaches:
targeted free fatty acid assay and untargeted lipidomic analysis. Three major fatty acids
identified in these meat samples were C18:2n-6, C18:1n-9, and C16:0. Furthermore, the
most abundant saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) as well
as polyunsaturated fatty acid (PUFA) in donkey meat were C16:0, C18:1n-9, and C18:2n-6,
respectively (Figure 1B–D). The overall fatty acid proportion of the donkey LD muscle was
similar to that found in donkey meat in prior studies [19,20]. Specifically, for the SFAs, we
found that the proportions of C15:0, C17:0, C18:0, C21:0, C22:0, C23:0 and C24:0 as well
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as the total SFA were significantly lower in H-IMF than in L-IMF (p < 0.05; Figure 1B,E).
Compared with the SFAs, the IMF level displayed its particular roles in the MUFA content
of the donkey LD muscle. Oleic acid (C18:1n-9) was the most abundant MUFA among
all samples, followed by palmitoleic acid (C16:1), and the contents of these MUFAs were
significantly higher in H-IMF samples than L-IMF samples (p < 0.05; Figure 1C). Regarding
the PUFAs, almost all PUFAs (except linolenic acid (C18:3n-3)) and the total PUFA content
were reduced significantly in H-IMF (p < 0.05; Figure 1D,E). These data suggested that
MUFAs (particularly oleic acid) might contribute to IMF deposition. The results also
suggested that increases in the IMF level in the donkey LD muscle were accompanied by
increases in the total MUFA proportion and decreases in the total SFA proportion, which
concurred with the findings obtained by Joo et al. [21] and Gotoh et al. [22] with cattle.
However, both SFAs and MUFAs increased with increasing IMF level in lamb meat [23] and
pork [24]. The discriminatory results obtained with meats from various animals may result
from the differences in energy metabolism and mitochondrial function in muscle fibers. The
PUFA/SFA ratio was observably lower in H-IMF samples than in L-IMF samples (p < 0.05),
but the values found for these two groups were close to or slightly higher than the upper
limit (≥0.45–0.7) according to health authorities’ guidelines (Figure 1F) [25]. In addition
to the concentration related to the n-6 PUFA and n-3 PUFA series, the ratio of n-6 to n-3
PUFA also has a significant effect on human health [26], but the value of this ratio did not
differ between the two groups in the present study (Figure 1F). Considering the MUFA
effect, its main fatty acid is oleic acid, which is strongly associated with improvements in
human health including decreased blood pressure, controlled glycaemia, and improved
lipid metabolism [27,28]. Furthermore, a high level of oleic acid and a high MUFA/PUFA
ratio could promote the production of pleasant flavor in cooked ham [29] and improve pork
quality [30]. Additionally, atherogenic and hypocholesterolemic/hypercholesterolemic
indices did not differ noticeably between two groups, whereas the H-IMF group had a
lower thrombogenic index than the L-IMF group (Figure S1). These results obtained in this
study suggest that an improvement in IMF content does not exert adverse effects on human
health or lower the nutritional values of donkey meat based on the fatty acid profiles. This
observation was also supported by the results of a study of pork [31]. Additionally, these
data also showed that the change in fatty acid composition may further affect the meat
flavor and quality [8,29,30].

Lipidomic profiling of donkey meat with different IMF contents was performed by
UPLC–MS. In all, 876 lipids were successfully discovered and characterized in positive
and negative ion modes. Lipids were classified into 51 subclasses, including 126 TGs,
109 DGs, 79 ePCs, 72 ePEs, 65 Cers, 53 PCs, 40 SMs, 35 FAs, 33 OxTGs, 26 PEs, 16 FAHFAs,
16 eOxPEs, 14 CLs, and others (Figure 2A and Table S2). Furthermore, all lipids were
grouped into six major categories, namely, 369 (42.32%) glycerol phospholipids (GPs), 284
(32.57%) glycerolipids (GLs), 122 (13.76%) sphingolipids (SPs), 70 (8.03%) fatty acyls (FAs),
27 (3.10%) sterol lipids (STs), and two (0.23%) prenol lipids (PRs) (Figure 2A). The relative
contents of lipid classes for the two groups are given in Figure 2B,C. The H-IMF samples
contained the highest relative abundance of the TG lipid class, accounting for 67.35%,
followed by PC (16.70%), ePC (9.76%), and DG (1.91%), and a similar trend was observed
in the L-IMF groups. This finding was consistent with the results obtained in a prior study,
which found that the overall lipid profiles of lambs exhibit similar distributions in the HIMF
and LIMF groups [6]. Past studies have noted that lipid profiles could be affected by the
IMF content [6,32]. As indicated in Figure 2C, the H-IMF group had significantly increased
TG, and lower PC, PE, ePE, and ePG levels than the L-IMF group (p < 0.05); however, the
other lipid classes were unaffected (p >0.05), indicating that glycerides (mainly TG content)
in H-IMF samples may contribute to their high IMF level. These findings are similar to
the results previously obtained by Hou et al. [32] and Li et al. [33], who demonstrated that
Laiwu pork (high IMF content) contained more triglycerides than Yorkshire pork (low IMF
content), and decreases in the PE and PC levels were observed with increasing the IMF
content.



Foods 2023, 12, 3269 6 of 15

Foods 2023, 12, x FOR PEER REVIEW 6 of 16 
 

 

(p < 0.05); however, the other lipid classes were unaffected (p >0.05), indicating that gly-
cerides (mainly TG content) in H-IMF samples may contribute to their high IMF level. 
These findings are similar to the results previously obtained by Hou et al. [32] and Li et 
al. [33], who demonstrated that Laiwu pork (high IMF content) contained more triglyc-
erides than Yorkshire pork (low IMF content), and decreases in the PE and PC levels were 
observed with increasing the IMF content. 

 
Figure 2. Overview of lipid categories and subclasses. (A) Numbers of lipids identified in 51 lipid 
subclasses and percentages of the numbers of 6 lipid categories. (B) Comparison of the percentages 
of lipid subclasses between H_IMF and L_IMF. (C) Comparison of the contents of each lipid sub-
class between H_IMF and L_IMF. Abbreviations: L_IMF, low intramuscular fat; H_IMF, high in-
tramuscular fat; CL, cardiolipin; BMP, bismonoacylglycerophosphate; LPE, lysophosphatidyleth-
anolamine; eLPE, ether-linked lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; 
eLPG, ether-linked lysophosphatidylglycerol; PA, phosphatidic acid; PC, phosphatidylcholines; 
ePC, ether-linked phosphatidylcholine; eLPC, ether-linked lysophosphatidylcholine; ePE, ether 
linked phosphatidylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidyl glycerol; ePG, 
ether-linked phosphatidylglycerol; PI, phosphatidylinositol; ePI, ether-linked phosphatidylinositol; 
PS, phosphatidylserine; ePS, ether-linked phosphatidylserine; PEtOH, phosphatidylethanol; OxPC, 
oxidized phosphatidylcholine; eOxPC, ether linked oxidized phosphatidylcholine; eOxPE, ether 
linked oxidized phosphatidylethanolamine; OxPG, oxidized phosphatidylglycerol; OxPE, oxidized 
phosphatidylethanolamine; OxPS, Oxidized phosphatidylserine; OxPI, oxidized phosphatidylino-
sitol; DG, diacylglycerol; eDG, ether-linked diacylglycerol; MG, monoacylglycerol; OxTG, oxidized 

Figure 2. Overview of lipid categories and subclasses. (A) Numbers of lipids identified in 51 lipid
subclasses and percentages of the numbers of 6 lipid categories. (B) Comparison of the percentages
of lipid subclasses between H_IMF and L_IMF. (C) Comparison of the contents of each lipid subclass
between H_IMF and L_IMF. Abbreviations: L_IMF, low intramuscular fat; H_IMF, high intramuscu-
lar fat; CL, cardiolipin; BMP, bismonoacylglycerophosphate; LPE, lysophosphatidylethanolamine;
eLPE, ether-linked lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; eLPG, ether-
linked lysophosphatidylglycerol; PA, phosphatidic acid; PC, phosphatidylcholines; ePC, ether-
linked phosphatidylcholine; eLPC, ether-linked lysophosphatidylcholine; ePE, ether linked phos-
phatidylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidyl glycerol; ePG, ether-linked
phosphatidylglycerol; PI, phosphatidylinositol; ePI, ether-linked phosphatidylinositol; PS, phos-
phatidylserine; ePS, ether-linked phosphatidylserine; PEtOH, phosphatidylethanol; OxPC, oxidized
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phosphatidylcholine; eOxPC, ether linked oxidized phosphatidylcholine; eOxPE, ether linked ox-
idized phosphatidylethanolamine; OxPG, oxidized phosphatidylglycerol; OxPE, oxidized phos-
phatidylethanolamine; OxPS, Oxidized phosphatidylserine; OxPI, oxidized phosphatidylinositol;
DG, diacylglycerol; eDG, ether-linked diacylglycerol; MG, monoacylglycerol; OxTG, oxidized tri-
acylglycerols; TG, triacylglycerols; SM, sphingomyelin; SL, sulfonolipid; Cer, ceramides; Hex2Cer,
dihexosylceramide; HexCer, hexosylceramide; FA, free fatty acid; OxFA, oxidized fatty acid; CAR,
acylcarnitine; FAHFA, fatty acid ester of hydroxyl fatty acid; NAE, N-acyl ethanolamines; NAGly,
N-acyl glycine; AHexBRS, acylhexosyl brassicasterol; AHexCAS, acylhexosyl campesterol; AHexCS,
acylhexosyl cholesterol; BRSE, brassicasterol ester; CASE, campesterol ester; DCAE, esterified deoxy-
cholic acid; SSulfate, sterol sulfate; VAE, vitamin A fatty acid ester. * p < 0.05; ** p < 0.01.

To further demonstrate the difference between the lipid profiles of the H-IMF and
L-IMF samples, lipidomics were then analyzed by multivariate statistics. We generated the
PLS-DA plots and found that the two groups could be separated clearly without any overlap
(Figure 3A), indicating that the PLS-DA model can be used effectively to filter differential
lipids between groups [34]. Then, 105 significantly differential lipids were identified and
selected with the criteria of VIP scores > 1 and FDR < 0.05 (Table S3). A heatmap (TOP 30)
was generated to visually compare the significantly different lipids of each lipid subclass, as
shown in Figure 3B. As shown in the volcano plots in Figure 3C, 124 significantly different
lipids were identified and filtered with fold change > 2 or <0.5, and 58 and 66 lipids were
up-regulated and down-regulated, respectively, in H-IMF compared to L-IMF. Afterward,
differential lipids were identified and screened under these criteria of volcano plot (FC > 2
or <0.5) and VIP (VIP > 1.0, FDR < 0.01). Subsequently, 29 of these lipids, eight down-
regulated and 21 up-regulated, were kept for further correlation analysis (Table S4). The
outcomes indicate that the most differential molecular makeups of PCs enriched in PUFAs
are more abundant in L-IMF, which is in accordance with the aforementioned change in the
fatty acid composition observed in the study subjects. Moreover, TGs and phospholipids
could offer the aroma and flavor of meat, owing to their high content of unsaturated fatty
acids (more prone to lipid oxidation) [35], indicating that differential lipids could affect the
meat flavor.

Taken together, these findings indicate that lipid profiles of meat with different IMF
contents were distinct, which may influence the flavor production of donkey meat.

3.2. Changes in Aroma Compounds

Volatile compounds can determine the aroma and flavor of meat to some extent.
A total of 158 volatile compounds were analyzed and identified in the H-IMF and L-
IMF groups using HS-SPME-GCMS (Table S5). These compounds are grouped into ten
main classes, including 34 aldehydes, 29 ketones, 11 alcohols, 8 furans, 24 hydrocarbons,
25 esters, 9 acids, 8 S-containing compounds, 6 N-containing compounds and 4 others
(Table S5 and Figure 4A). Among the ten substances in donkey meat observed in this study,
aldehydes were present at the highest levels, accounting for 70% and 66% in H-IMF and
L-IMF, respectively (Figure 4A), indicating that aldehydes might play a key role in the
flavor production of donkey meat. Similarly, a number of studies reported that aldehydes
were more abundant and the most important aroma compounds owing to their low odor
threshold for meat [20,36]. The concentrations of hydrocarbons, furans, N-containing
compounds, and esters were affected by IMF level (p < 0.05, Figure 4B). As given in
Figure 5A, the score plots from the PLS-DA showed an obvious separation between groups,
indicating a difference in volatile flavor compounds between the two groups. It has been
shown that the volatile aroma profiles could be affected by the IMF content [6,37], but there
are also the differential effects on each volatile substance mainly connecting with their
lipophilicity and precursors [6].
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concentrations (B) of volatile categories identified between the two groups. L_IMF, low intramuscular
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In brief, Figure 5B shows a VIP score plot of volatile compounds with a VIP value > 1.0
(top 25). Table S5 also shows 16 volatile compounds with significant differences between
the two groups (p < 0.05, VIP > 1.0). These differential compounds include four aldehydes
(2-octenal,2-butyl-, dodecanal, octanal and pentanal), one ketone (2-butanone), one alcohol
(1-pentanol), one furan (pentylfuran), two sulfur-containing compounds (thiophene, 2-
pentyl- and 2-acetyl-2-thiazoline), one nitrogen-containing compound (ethanone, 1-(2-
pyridinyl)-), and six hydrocarbons ((3Z,5E)-1,3,5-Undecatriene, benzene,1,3-dimethyl-,
decane, ethylbenzene, octane,2,4,6-trimethyl-, and p-xylene). Notably, hydrocarbons are
the most differential volatile compounds, but they do not contribute to the flavor of donkey
meat, owing to low concentrations and high aroma threshold [38]. Thus, to further evaluate
the aroma contribution of volatile compounds in these samples, the odor activity values
(OAVs) are determined, as listed in Table S6. As presented in Figure 5C and Table S7,
23 odor-active volatile compounds with OAV > 1.0 were discovered in the H-IMF and
L-IMF groups, indicating that they may provide a powerful contribution to the aroma and
flavor of donkey meat. Among them, hexanal had the highest OAV in the H-IMF samples,
followed by nonanal, 1-octen-3-one, 2,4-decadienal (E,E) and 2-acetyl-2-thiazoline, all of
which had OAVs > 100, and a similar trend was observed in the L-IMF samples. This
finding corresponded with those obtained in previous results, and some aldehydes (e.g.,
hexanal) and alcohols (e.g.,1-octen-3-ol) were the predominant volatile aroma compounds
in donkey meat [20] and roasted mutton [10].
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Combined with the data for differential volatile compounds, significant differences in
five odor-active volatile compounds (with p < 0.05, VIP score > 1.0 and OAV > 1.0), namely,
pentanal, 2-acetyl-2-thiazoline, 2-pentylfuran, and 1-(2-pyridinyl) ethanone and octanal,
were observed between the two groups, indicating that these compounds could be used as
aroma markers to differentiate the two groups. These compounds were also retained for
further investigation (Table S8). Among them, three compounds (2-pentylfuran, pentanal
and octanal) were mainly derived from lipid oxidation and degradation. For instance,
2-pentylfuran exhibits high flavor activity (musty, beany, butter) due to its low threshold
value, which could be produced from the PUFAs oxidation [39,40]. The 2-pentylfuran
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content was significantly lower in H-IMF than in L-IMF. In contrast, significantly higher
contents of octanal and pentanal were observed in the LD muscle of the H-IMF group
compared to the L-IMF group, which is similar to the data obtained for pork bellies [37].
Octanal can confer pleasant flavors, such as meat-like, green, and citrus-like notes, which are
mainly derived from oleic acid autoxidation [41]. As previously mentioned, apart from the
volatile molecules derived from lipid oxidation/degradation, the compounds produced by
Maillard reaction were also affected by the IMF level [6,7]. This finding was also confirmed
in our study. For example, 2-acetyl-2-thiazoline, which is mainly generated by the Maillard
reaction between cysteine/cysteamine and reducing sugars [42,43], imparts an attractive
aroma with a nutty, roasted meaty-like flavor and popcorn-like aroma [44], and is an
important aroma compound in cooked beef [45] and dry aged beef loin [46]. This compound
was found at significantly higher levels in the H-IMF group than in the L-IMF group. A
similar outcome was observed by Li et al. [6]; the 2-acetyl-2-thiazoline concentration
exhibited an increasing trend (8.03 µg/kg to 9.39 µg/kg) with increasing IMF level (2.24%
to 5.17%), but these values were lower than those detected in our study (18.48 µg/kg and
10.9 µg/kg were detected in H-IMF and L-IMF, respectively). Furthermore, we found that
the OAV of 2-acetyl-2-thiazoline was highest among the five differential aroma compounds,
suggesting that this compound is an important aroma compound of donkey meat and
that improving the IMF content might enhance the production of this compound. Taken
together, the results indicate that the volatile profiles of meat with different IMF contents
are distinct.

3.3. Correlation Analysis of Fatty Acids, Lipidomics Data, and Volatile Compounds

The correlations among fatty acids, lipidomics data, and volatile compounds were
analyzed to assess the contribution and effect of each lipid compound on the flavor of
donkey meat with different IMF contents. The correlation heatmaps are shown in Figure 6.
Five discriminative odorants were significantly correlated with the 18 differential fatty
acids (p < 0.05; Figure 6A and Table S9). We observed that the three aroma compounds,
2-acetyl-2-thiazoline, octanal, and pentanal were positively correlated with palmitoleic
acid (C16:1) and oleic acid (C18:1n9c), whereas most SFAs (e.g., C18:0)) and PUFAs (e.g.,
linoleic acid (C18:2n6c)) were negatively associated. In contrast, two aroma compounds,
namely, 1-(2-pyridinyl) ethanone and 2-pentylfuran, were enriched in the L-IMF group
and were significantly positively correlated with most SFAs and PUFAs (e.g., linoleic acid
(C18:2n6c)) but negatively correlated with palmitoleic acid (C16:1) and oleic acid (C18:1n9c)
contents. This result was confirmed by reports showing that the volatile compounds in
meat could be affected by fat level and may be partly responsible for altering the fatty acid
profiles [37]. According to a report, even a minor alteration in the fatty acid composition
of meat can lead to changes in the aroma volatiles [47]. This finding also agreed with
prior studies that the oxidation of oleic acid (C18:1n9c) could produce octanal [41] and
pentanal [48]. Pentanal was positively related to the content of palmitoleic acid (C16:1)
but negatively related to the concentration of linoleic acid (C18:2n6c) [49]. 2-Pentylfuran
was also observed to have a significant positive correlation with C18:2 in pork [50]. In the
current investigation, 29 differential lipids were significantly related to five discriminative
odorants (p < 0.05; Figure 6B and Table S10). Twenty, eight, and twenty-one differential
lipids, mainly belonging to the TG and PE classes, were positively correlated with 2-acetyl-
2-thiazoline, octanal and pentanal, respectively. Furthermore, a total of eight and seven
differential lipids mainly belonging to the PC class (such as PC15:0_18:2 and PC17:0_18:2)
were positively correlated with 1-(2-pyridinyl) ethanone and 2-pentylfuran, respectively.
Li et al. [51], Liu et al. [10] and Man et al. [52] found a significant relationship between
differential lipids and aroma compounds in meat products, which supports the current
finding. For example, Liu et al. [10] found that differential lipids (especially PC, PE and
TG) were significantly related to predominant aroma compounds (including 1-octen-3-ol,
hexanal, pentanal, and 2-pentylfuran) in roasted lamb at various cooking times. This result
indicates that the 18 differential fatty acids and 29 lipid subclasses (mainly belonging to TG
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and PC) may predominantly contribute to the formation of discriminative odorants affected
by the IMF levels in the donkey meat. Although the lipidomics in this study was used
to detect lipid-soluble flavor precursors, the influence of the IMF content on hydrophilic
metabolites in donkey meat needs to be further investigated.
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4. Conclusions

In summary, the present study investigated the differences in donkey meat with
different IMF content through lipidomic and volatilomic analysis. The MUFA propor-
tion increased but SFA proportion decreased with increasing IMF levels in donkey meat.
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Lipidomic analysis showed a significant impact of IMF levels on lipid profiles. Furthermore,
the integrated analysis of volatile compounds comparison and OAV results (OAV > 1.0)
revealed the presence of five specific volatile compounds in donkey meat. These com-
pounds, namely, 2-acetyl-2-thiazoline, octanal, 2-pentylfuran, pentanal, and 1-(2-pyridinyl)
ethanone, not only exhibit distinct differences between the high and low IMF groups but
also significantly contribute to the flavor of donkey meat.. Additionally, correlation analysis
showed that fatty acids (such as oleic acid and linoleic acid) and lipid species (especially
TG, PC and PE) might be involved in the production of donkey meat flavor. More work is
needed to further unravel these complex relationships, especially in terms of the Maillard
reaction product (e.g., 2-acetyl-2-thiazoline). This study could promote our knowledge of
how the IMF level affects the meat flavor.
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fat group; L_IMF, low intramuscular fat group. * p < 0.05; Table S1: Basic information on 80 donkeys;
Table S2: Lipid molecular species identified in the low and high intramuscular fat groups using
untargeted lipidomics (n = 8); Table S3: Significantly changed lipid molecules between the low and
high intramuscular fat groups (n = 8); Table S4: Significantly changed and FC > 2/FC < 0.5 lipid
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