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Abstract: This study aimed to compare the image quality and diagnostic accuracy of deep-learning-
based image denoising reconstructions (DLIDs) to established iterative reconstructed algorithms
in low-dose computed tomography (LDCT) of patients with suspected urolithiasis. LDCTs (CTDI-
vol, 2 mGy) of 76 patients (age: 40.3 ± 5.2 years, M/W: 51/25) with suspected urolithiasis were
retrospectively included. Filtered-back projection (FBP), hybrid iterative and model-based iterative
reconstruction (HIR/MBIR, respectively) were reconstructed. FBP images were processed using a
Food and Drug Administration (FDA)-approved DLID. ROIs were placed in renal parenchyma, fat,
muscle and urinary bladder. Signal- and contrast-to-noise ratios (SNR/CNR, respectively) were
calculated. Two radiologists evaluated image quality on five-point Likert scales and urinary stones.
The results showed a progressive decrease in image noise from FBP, HIR and DLID to MBIR with
significant differences between each method (p < 0.05). SNR and CNR were comparable between
MBIR and DLID, while it was significantly lower in HIR followed by FBP (e.g., SNR: 1.5 ± 0.3;
1.4 ± 0.4; 1.0 ± 0.3; 0.7 ± 0.2, p < 0.05). Subjective analysis confirmed best image quality in MBIR,
followed by DLID and HIR, both being superior to FBP (p < 0.05). Diagnostic accuracy for urinary
stone detection was best using MBIR (0.94), lowest using FBP (0.84) and comparable between DLID
(0.90) and HIR (0.90). Stone size measurements were consistent between all reconstructions and
showed excellent correlation (r2 = 0.958–0.975). In conclusion, MBIR yielded the highest image quality
and diagnostic accuracy, with DLID producing better results than HIR and FBP in image quality and
matching HIR in diagnostic precision.

Keywords: deep learning; diagnostic imaging; image enhancement; kidney calculi; tomography;
X-ray computed

1. Introduction

Urolithiasis represents an increasing issue in industrialized countries [1]. Especially in
younger patients, its incidence and reoccurrence are on the rise, which is primarily due to
changes in consumption behavior and decreased physical activity [2].

In symptomatic patients with suspected urolithiasis, unenhanced computed tomog-
raphy (CT) of the abdomen is the modality of choice due to its high diagnostic accuracy,
high accuracy of size measurements and precise assessment of stone localization, which
is relevant for treatment decision making [3,4]. Due to an increasing use of CT scans,
especially in patients undergoing repetitive scanning, the radiation dose has to be as low as
reasonably achievable [5]. As a consequence, low-dose CT protocols have been extensively
investigated and are recommended by current guidelines in non-obese patients [6].
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One of the main technical advances in CT imaging was the implementation of iterative
reconstruction algorithms into clinical routine, which gradually replaced the standard of
the past decades, filtered-back projection (FBP) [3,7]. As of today, hybrid and model-based
iterative reconstruction algorithms (HIR and MBIR) are used across a wide range of clinical
scenarios. HIR executes multiple iterations to reduce image noise and improve the signal-
to-noise ratio of CT data; while the same applies to MBIR, here knowledge on the geometry
of the acquisition process is added to the statistical model of noise [8]. Both have shown to
significantly improve the image quality and hence the diagnostic accuracy of urinary stone
detection, particularly when using low-dose techniques [3,9]. Despite these promising
results, iterative reconstruction algorithms rely on powerful hardware and time-intensive
analytical computations [10].

A more recent and thriving approach is the use of artificial intelligence in terms
of deep-learning-based image reconstruction techniques (DLRs) [8]. So far, DLRs in CT
have demonstrated promising results in different areas of use such as low-dose thoracic,
abdominal and whole-body CT [11–13]. One of the commercially available DLRs performs
deep-learning-based denoising of image data, resulting in a noise-reduced image (DLID,
PixelShine, AlgoMedica) [14]. The fact that no raw CT data are needed and that hardware
requirements are less demanding compared to iterative reconstruction suggests a large
potential for widespread clinical use [15]. Yet, information about the efficacy of these deep-
learning-based reconstructions for image denoising of low-dose CT scans is sparse. To our
best knowledge, prior research has not conducted an in-depth assessment of subjective
image quality and diagnostic precision regarding detectability of urinary stones compared
to each common reconstruction technique, including the cutting-edge MBIR [14,16–18].
Furthermore, the impact of denoising in the removal of small structures (e.g., urinary
stones) is unknown [14].

Hence, this study aimed to compare (i) image quality and (ii) diagnostic accuracy
of (A) deep-learning-based image denoising compared to (B) state-of-the-art hybrid and
(C) model-based iterative reconstruction algorithms in unenhanced, low-dose CT scans in
suspected urolithiasis.

2. Materials and Methods

This retrospective, single-center study was performed after the institutional review
board waived informed consent. A structured search in the picture archiving and com-
munication system as well as the radiology information system was performed with the
following inclusion criteria: (1) age ≥ 18 years, (2) unenhanced CT scan of the genitouri-
nary system in patients with suspected urinary stones between April 2016 and June 2017,
(3) standardized imaging protocol using a low-dose imaging technique with a volumetric
computed tomography dose index (CTDIvol) of 2 mGy and (4) FBP, HIR and MBIR image
reconstructions available for analysis. Out of these patients, 13 patients were excluded due
to incomplete imaging data and 1 patient due to a genitourinary system filled with contrast
media following a prior intervention. Eventually, 76 patients were identified eligible for
this study.

2.1. Acquisition Parameters

All examinations were performed in the cranio-caudal direction and a head-first,
supine position for clinical indications on the same 256-row computed tomography scanner
(iCT, Philips Healthcare, Best, The Netherlands). Scan parameters were as follows: colli-
mation 128 × 0.625 mm, matrix 512 × 512, tube voltage 100 kVp, fixed tube current-time
product 50 mAs, pitch factor 0.977 and rotation time 0.5.

Images were reconstructed using a filtered-back projection reconstruction algorithm (FBP,
Philips healthcare), a hybrid iterative reconstruction algorithm (HIR, iDose; Philips Healthcare)
and a model-based iterative reconstruction algorithm (MBIR, IMR; Philips Healthcare).

Filtered back projection is a method used to correct blurring in analytic reconstruction.
It works by using a convolution filter and calculating the attenuation coefficients in a cross-
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section based on ray sums at varying sine wave angles. This complex process involves
an algorithm with 250,000 equations, which requires a high-powered computer to solve.
Once solved, the computer stores a projection that represents the anatomy. Each pixel of
this projection corresponds to a voxel of the actual image [8]. HIR combines traditional
filtered-back projection with iterative methods, enhancing image clarity while reducing
noise [7,8]. On the other hand, MBIR utilizes sophisticated models of the CT scanner’s
physics and statistics to iteratively refine images, offering potential for significant dose
reductions and superior noise suppression [8].

Throughout all reconstructions, a soft tissue kernel and medium denoising level has
been used:

- FBP: soft tissue kernel (B, Philips Healthcare), no denoising.
- HIR: soft tissue kernel (B, Philips Healthcare) and medium denoising (3/7).
- MBIR: soft tissue kernel (Sharp Plus, Philips Healthcare) and medium denoising (2/3).

All images were reconstructed using a slice thickness of 2 mm and a section increment
of 1 mm using a 512 × 512 matrix. Subsequently, FBP images were post-processed using
a commercially available deep-learning-based image denoising algorithm (PixelShine,
AlgoMedica, Sunnyvale, California, USA) with default presets. DLID, a component of
artificial intelligence and machine learning, efficiently processes CT scans, consistently
eliminates ‘noise’ and yields high-contrast images with intricate detail. Furthermore, DLID
maintains complete image integrity, ensuring no data are omitted from the dataset [19].

The dose-length product and CTDIvol were recorded from the radiation dose report.
Size-specific dose estimate (SSDE) was determined based upon the effective diameter
of patients and its corresponding conversion factor for the 32 cm phantom for CTDIvol
as suggested earlier [20]. The effective diameter was obtained by performing manual
measurements of the abdominal anterior–posterior and lateral dimensions of each patient.

2.2. Quantitative Image Analysis

Region of interest (ROI)-based quantitative image analysis was performed by a radiolo-
gist with two years of experience in abdominal imaging using the local picture archiving and
communication system (Impax EE, Dedalus) to obtain the mean CT numbers in Hounsfield
units (HU) and their standard deviation (SD). ROIs with a constant size (100 mm2) were
placed in the following areas on MBIR and copied to identical positions on FBP, HIR and
DLR: (1) upper and lower renal parenchyma of the left and right kidney, respectively,
(2) subcutaneous fat of the anterior abdominal wall (n = 2), (3) psoas muscle on each side
and (4) urine within the bladder (Figure 1).
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Figure 1. Boxplot diagrams depicting signal-to-noise ratio (SNR) of renal parenchyma (A) and
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signs are stated as commas.
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The SD of muscle was defined as image noise, the signal-to-noise ratio (SNR) of
renal parenchyma as SNR = HU/SD and the contrast-to-noise ratio (CNR) of the renal
parenchyma vs. urine as the difference of the average Hounsfield units divided by the
square root of the sum of the SD of the two ROIs.

2.3. Qualitative Image Analysis

Reference standard regarding the presence, number, location and size of urinary stones
was assessed by one board-certified radiologist with six years of experience in abdominal
imaging on MBIR images as it showed superior image quality and urinary stone detection
as well as size assessment over FBP and HIR [21–23]. The location of urinary stones was
classified as (1) pelvicalyceal system, (2) proximal ureter, (3) mid ureter, (4) distal ureter
and (5) bladder for the right or left side, respectively.

Two radiologists with five years of experience in abdominal imaging independently
evaluated image quality and noted the presence of urinary stones on all reconstructions in
a randomized order. Readers were blinded to the reconstruction technique and were free to
adjust window settings. Image quality was rated on 5-point Likert scales regarding image
noise, overall image quality and delineation of the ureter (Table 1). Urinary stones were
evaluated regarding presence, number, location and size. The maximum size of each stone
was measured on multiplanar reformations (MPR) as suggested earlier [24]. All stones were
annotated to compare findings with the reference standard regarding diagnostic accuracy
and size of missed stones.

Table 1. Likert scales of qualitative analysis.

Likert Scale Image Noise Overall Image
Quality

Delineation of
Ureter

1 Excessive Non-diagnostic Poor
2 Severe Suboptimal Difficult
3 Moderate Acceptable Intermediate
4 Some Good Good
5 No visually perceptible noise Excellent Excellent

2.4. Statistical Analysis

Data processing and statistical analyses were performed using Microsoft Excel (Ver-
sion 16.63.1, Microsoft Corporation, Redmond, Washington, DC, USA) and JMP Software
(16.1.0), respectively, unless specified below. A p-value ≤ 0.05 was considered statistically
significant.

The Shapiro–Wilk test was used to rule out normal distribution of the data. Steel–
Dwass test was performed to compare non-parametric statistical data between the different
reconstruction algorithms. For the detection rate of urinary stones, pooled sensitivity
and specificity were calculated using a contingency table. Correlation of the urinary
stone size measurements between the different reconstruction techniques was assessed
using the coefficient of determination. Inter-rater reliability regarding the qualitative
image analysis was determined by means of intra-class correlation estimates (intra-class
correlation coefficient (ICC)) using R Studio (Version 2021.09.01, RStudio Inc., Boston,
Massachusetts, USA). ICCs were calculated based on a mean of two raters, consistency
and a 2-way mixed-effects model [25]. It was evaluated as described earlier: excellent
(ICC > 0.8), good (ICC > 0.6), moderate (ICC > 0.4) and poor agreement (ICC < 0.4), [26].

3. Results
3.1. Study Characteristics

The study cohort comprised 76 patients with a mean age of 40.3 ± 15.2 years (range,
18–81 years). Out of these patients, 25 (32.9%) were women and 51 (67.1%) men. The
dose-length product was 97.9 ± 13.2 mGy*cm, and SSDE was 2.7 ± 0.4 mGy.
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In total, 104 stones were present within the urinary tract: 69 (66.3%) in the pelvicalyceal
system, 17 (16.3%) in the upper ureter, 1 (1.0%) in the middle ureter, 12 (11.5%) in the distal
ureter and 5 (4.8%) in the bladder. Out of the 99 stones in the pelvicalyceal system or ureter,
61 (61.6%) were on the right side and 38 (38.4%) on the left side.

3.2. Quantitative Image Analysis

Values of the quantitative image analysis are reported in Table 2.

Table 2. Quantitative results of attenuation and noise in different tissues, SNR and CNR.

FBP HIR MBIR DLID

Attenuation
Renal parenchyma 36.4 ± 5.0 35.8 ± 4.6 35.2 ± 4.6 36.5 ± 4.7
Fat −119.2 ± 10.4 −118.5 ± 10.2 −119.5 ± 9.7 −117.9 ± 10.2
Muscle 58.1 ± 6.8 56.6 ± 4.8 54.2 ± 4.1 58.0 ± 6.6
Urine 13.5 ± 15.4 16.0 ± 12.9 15.0 ± 13.2 14.9 ± 14.5

Noise
Renal parenchyma 62.1 ± 25.6 40.9 ± 12.1 24.3 ± 5.4 29.2 ± 12.0
Fat 34.0 ± 10.8 25.0 ± 6.7 18.5 ± 3.5 16.5 ± 4.8
Muscle 71.3 ± 29.4 44.7 ± 12.9 22.0 ± 5.6 33.3 ± 12.8
Urine 78.4 ± 30.3 44.9 ± 11.7 23.5 ± 5.1 35.1 ± 14.0
SNR 0.7 ± 0.2 1.0 ± 0.3 1.5 ± 0.3 1.4 ± 0.4
CNR 2.2 ± 1.0 2.3 ± 1.2 3.1 ± 1.7 3.0 ± 1.4

Results are means ± SDs. FBP, filtered-back projection; HIR, hybrid iterative reconstruction algorithm; MBIR,
model-based iterative reconstruction algorithm; DLID, deep-learning-based image denoising reconstruction; SNR,
signal-to-noise ratio; CNR, contrast-to-noise ratio.

3.2.1. Attenuation

Attenuation in renal parenchyma, fat and urine were comparable between the different
image reconstruction techniques (p > 0.05). Attenuation in muscle was significantly lower
in MBIR compared to FBP, HIR and DLID, respectively (54.2 ± 4.1 HU vs. 58.1 ± 6.8 HU,
56.6 ± 4.8 HU and 58.0 ± 6.6 HU; p < 0.05).

3.2.2. Noise

Image noise as defined by SD in muscle gradually decreased from FBP, HIR and
DLID to MBIR with significant differences between each image reconstruction technique
(71.3 ± 29.4, 44.7 ± 12.9, 33.3 ± 12.8 and 22.0 ± 5.6; each p < 0.05).

3.2.3. Signal-to-Noise Ratio (SNR)

The SNR of renal parenchyma was comparable between MBIR and DLID (1.5 ± 0.3
and 1.4 ± 0.4; p > 0.05), while it was significantly lower in HIR followed by FBP (p < 0.05)
(Figure 1A).

3.2.4. Contrast-to-Noise Ratio (CNR)

The CNR for renal parenchyma vs. urine was significantly higher in MBIR and DLID
compared to HIR and FBP (3.1 ± 1.7 and 3.0 ± 1.4 vs. 2.3 ± 1.2 and 2.2 ± 1.0; p < 0.05)
(Figure 1B).

3.3. Qualitative Image Analysis
Image Quality

The overall intraclass correlation between the two independent readers was 0.792
(95% confidence interval, 0.763–0.818), indicating a good inter-reader reliability; here, no
differences between reconstruction techniques were found.

Subjective image quality parameters were rated comparable between HIR and DLID
(p > 0.05), while FBP received significantly lower and MBIR significantly higher scores with
regards to all parameters: image noise, overall image quality and delineation of ureters,



Diagnostics 2023, 13, 2821 6 of 11

respectively (p < 0.05) (Figure 2). Qualitative results of subjective image parameters are
reported in Table 3.
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Figure 2. Results of qualitative analysis. Visualization with Likert scale (scoring between 1 and 5,
see also Table 1). Image noise, overall image quality and delineation of ureter received significantly
higher ratings in MBIR, followed by HIR/DLID and FBP.

Table 3. Qualitative results of subjective image parameters a.

FBP HIR MBIR DLID

Image noise 2 (1–2) 3 (2–3) 4 (4–5) 3 (2–3)
Overall image quality 2 (2–3) 3 (3–3) 4 (4–4) 3 (3–3)
Delineation of ureters 2 (2–3) 3 (2–3) 4 (3–4) 3 (2–3)

a Results are medians (quartiles). FBP, filtered-back projection; HIR, hybrid iterative reconstruction algorithm;
MBIR, model-based iterative reconstruction algorithm; DLID, deep-learning-based image denoising reconstruction.

3.4. Urinary Stones
3.4.1. Detection Rate

The diagnostic accuracy for urinary stone detection was best using MBIR (0.94, sen-
sitivity 0.94, specificity 0.95), comparable between DLID (0.90, sensitivity 0.88, specificity
0.93) and HIR (0.90, sensitivity 0.89, specificity 0.91) and lowest using FBP (0.84, sensitivity
0.82, specificity 0.89).

3.4.2. Stone Size Measurements

Of the 104 present urinary stones, 77 stones were detected on all image reconstruction
techniques by both readers and showed an overall CT-based size of 7.2 ± 4.4 mm. Stone
size measurements were comparable between the different image reconstruction techniques
(FBP, 7.3 ± 4.3 mm; HIR, 7.2 ± 4.5 mm; MBIR, 7.3 ± 4.4 mm; DLID, 7.1 ± 4.6 mm; p > 0.05)
and showed good correlation (r2 = 0.958–0.975). The intraclass correlation between the
two independent readers was 0.983 (95% confidence interval, 0.979–0.987), indicating an
excellent inter-reader reliability. The size of missed urinary stones based on the reference
standard was 3.5 ± 1.5 mm and comparable between the different image reconstruction
techniques (FBP, 3.3 ± 1.5 mm; HIR, 3.9 ± 1.4 mm; MBIR, 3.2 ± 1.7 mm; DLID, 3.6 ± 1.5 mm;
p > 0.05).

4. Discussion

This retrospective study investigated the image quality of a deep-learning-based image
denoising reconstruction technique for the evaluation of unenhanced, low-dose CT scans
in suspected urolithiasis compared to state-of-the-art hybrid and model-based iterative
reconstruction algorithms. DLID images showed significantly lower image noise and
improved S-/CNR compared to HIR and FBP. Subjective image quality and diagnostic
accuracy of urinary stone detection was similar to HIR and better compared to FBP. While
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SNR and CNR were comparable with MBIR, image noise, subjective image quality and
diagnostic accuracy of urinary stone detection was best in MBIR (Figures 3 and 4). Size
measurements of urinary stones were independent of the image reconstruction technique.
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(B), hybrid iterative reconstruction (C) and model-based iterative reconstruction (D).
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Deep-learning-based reconstruction algorithms have already been investigated in
other clinical areas, e.g., one study group evaluated the value of DLID in ultra-low-dose
pediatric thorax CT, low-dose whole-body CT and peri-interventional cone-beam CT of
the liver [12,13,27]. These studies report on improvement of image quality compared to
FBP and HIR, e.g., yielding a reduction of radiation dose of up to 30% in whole-body
CT regardless of the scanner type [12,13]. However, data about the effect of DLID on the
evaluation of unenhanced low-dose CT in patients with suspected urinary stone formation
are scarce (Table 4).

Table 4. Overview of studies on urinary stones investigation DLR.

Zhang et al. [18] Thapalia et al.
[17] Delabie et al. [16] Steuwe et al. [14] This Study

Deep-learning
algorithm

(commercial
name), vendor

AiCE, Canon AiCE, Canon TrueFidelity, GE PixelShine,
AlgoMedica

PixelShine,
AlgoMedica

Preprocessing data Raw data Raw data Raw data FBP FBP

Techniques
compared DLR, HIR DLR, HIR DLR, HIR, FBP DLID, HIR, FBP DLID, MBIR, HIR,

FBP

Type of CT scans
included

Abdomen + pelvis,
low-dose

Abdomen + pelvis,
low-dose

Abdomen + pelvis,
low-dose

Abdomen + pelvis,
low-dose

Abdomen + pelvis,
low-dose

N of patients 51 14 75 45 76

Objective Criteria Noise, SNR,
radiation dose n/a Attenuation, noise,

S-/CNR
Attenuation, noise,

S-/CNR
Attenuation, noise,

S-/CNR

Subjective Criteria Image quality n/a Image quality n/a

Image quality,
image noise,

delineation of
ureters

Task-based criteria Stone detectability
Stone detectability,

stone size
measurement

Stone detectability Stone size
measurements

Stone detectability,
stone size

measurement

Conclusion

Comparable
detectability and

size assessment of
urinary stones
while reducing
radiation dose.

Comparable
detectability of
urinary stones

between DLR and
HIR.

DLR image quality
superior to HIR

and FBP. Excellent
detection of

urinary stones.

DLID to decrease
image noise
significantly.

Improved objective
image quality

while maintaining
correct stone size
measurements.

DLID produced
better image

quality than HIR
and FBP and

matching HIR in
diagnostic

precision. MBIR
yielded the best

results.

FBP, filtered-back projection; HIR, hybrid iterative reconstruction algorithm; DLR, deep-learning-based image
reconstruction techniques; DLID, deep-learning-based image denoising reconstruction; SNR, signal-to-noise ratio;
CNR, contrast-to-noise ratio.

The results of the few earlier studies investigating DLID and other DLR for the
evaluation of low-dose CT scans in suspected urinary stones are mainly in line with the
results of our study. While Delabie et al., Thapaliya et al. and Zhang et al. investigated
vendor-specific commercially available deep-learning-based reconstruction algorithms, to
the best of our knowledge, only Steuwe et al. also investigated DLID for the assessment of
urinary stones [14,16–18].

Steuwe et al. evaluated objective image quality, the size as well as CT attenuation
values of urinary stones in DLID-processed images compared to FBP and HIR in low-dose
CT scans of 45 patients with urinary stones. All urinary stones were detected in the three
different image reconstructions, while size measurements and attenuation values were
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comparable. In line with our study, DLID significantly reduced image noise and as a
consequence improved SNR and CNR. Contrary to the study by Steuwe et al., we included
a detailed subjective image quality evaluation and the detectability of urinary stones [14].

In another approach, Delabie et al. compared a different, vendor-specific DLR (TrueFi-
delity, GE Healthcare, Chicago, IL, USA) with FBP and HIR regarding image quality, CT
attenuation values and detectability of urinary stones in 75 patients with suspected urolithi-
asis undergoing low-dose CT. All image quality parameters were significantly raised, and
detectability was excellent for stones > 3 mm in DLR images, respectively. Contrary to
the studies of Steuwe et al. and Zhang et al., which both reported comparable attenuation
values between DLR and HIR, Delabie et al. reported lower attenuation values of urinary
stones when using deep-learning-based reconstruction techniques [16].

Furthermore, Thapaliya et al. compared another vendor-specific DLR (Advanced
intelligent Clear-IQ Engine (AiCE), Canon Medical Systems) with different degrees of noise
reduction and sharpening available to HIR in 14 unenhanced CT scans. Results showed
similar stone detectability and stone size measurements between all different DLR used
compared to HIR, whereas image quality was not assessed [17]. The same vendor-specific
DLR (AiCE) was evaluated by Zhang et al. in a prospective study regarding diagnostic
accuracy and image quality of ultra-low-dose CT in 60 patients with suspected urinary
stones. Objective image quality was higher in ultra-low-dose CT with DLR compared to
HIR, irrespective of the used radiation dose, which is partly in line with the results of our
study. Furthermore, detectability of urinary stones was similar between ultra-low-dose CT
using DLR compared to HIR, while stone size and attenuation values were comparable
between all the different image reconstruction techniques. In addition, the average size of
missed stones was slightly smaller (<3 mm) compared to our study (3.5 ± 1.5 mm), yet
there was no significant difference in stone size between the evaluated image reconstruction
techniques in our study [18].

The aforementioned studies and the results of our study have in common that image
noise was decreased in DLR, which lead to an increase in SNR and CNR as well as subjective
image quality when comparing DLR with FBP and HIR. Furthermore, diagnostic accuracy
and stone size measurements seem to remain unaffected by DLR, whereas attenuation
values of urinary stones may vary [14,16–18]. In the study by Zhang et al., these findings
showed the potential of DLR to reduce radiation dose by 76.6%, while maintaining superior
image quality and comparable diagnostic accuracy compared to HIR [18]. Yet, all of the
published studies only compared different DLR techniques with FBP and HIR, although
MBIR images have shown superior image quality and urinary stone detection [22,28].
Hence, studies addressing a direct comparison between the different DLR techniques and
MBIR are encouraged in order to further evaluate their diagnostic benefit.

Several technical differences exist between the commercially available DLR techniques.
Whilst the DLID investigated in this study is compatible with all CT scanners from different
vendors and only needs FBP image data for image reconstruction, making it more widely
accessible, most other DLR algorithms are bound to vendor-specific CT scanners and need
raw data for image processing [19,29,30]. Additionally, DLID software is a flexible system
and parameters can be adjusted to the user’s preferences allowing for potentially optimized
results adapted to radiologists’ needs regarding different examination protocols.

Apart from the retrospective study design, several limitations need to be discussed.
First, this study included a limited number of patients and stones, respectively. Second, the
reference standard regarding the presence of urinary stones was determined on MBIR im-
ages, which possibly affected the results of diagnostic accuracy in favor of MBIR. However,
MBIR images have been chosen as the reference standard based on their superior image
quality and urinary stone detection compared to FBP and HIR [22,28]. Opposed to MBIR,
noise texture remains unaltered in DLID images, which have shown to comprise the least
noise power spectrum shift [31], which is possibly preferred by some readers [32]. Lastly,
we only included data from a single CT scanner, and therefore, results might vary between
different vendors, scanners and protocols, respectively.
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In conclusion, deep-learning-based image denoising reconstruction techniques in-
crease the image quality of low-dose CT scans in patients with suspected urinary stones
compared to FPB and HIR, while diagnostic accuracy is comparable to HIR and superior to
FBP. MBIR remains the state-of-the-art reconstruction technique in the CT imaging of urinary
stones, exhibiting the best image quality compared to all other reconstruction techniques.
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