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Simple Summary: An accurate estimation of the characteristics lactation curves is required to
optimize sheep milk production. The adjustment of the lactation curve is traditionally been performed
using mathematical models through linear and non-linear regression. However, these analytical tools
have several limitations, mainly related to the non-linear pattern of the lactation curve. Machine
learning algorithms have been used successfully to model and predict complex biological processes.
In the current study, we evaluated the ability of seven machine learning algorithms, including linear
and non-linear regression, to estimate total milk yield, peak yield, and time to peak yield of dairy
sheep lactations. In addition, the estimates provided by machine learning algorithms were compared
with the Wood model and the observed values. All algorithms tested showed good estimates, with the
SMOreg algorithm showing the best performance. Furthermore, our results indicated that adequate
estimates can be obtained with only five milk records. Therefore, machine learning algorithms are an
option to correctly predict the characteristics of the lactation curve of dairy sheep, optimizing the use
of available data.

Abstract: In recent years, machine learning (ML) algorithms have emerged as powerful tools for
predicting and modeling complex data. Therefore, the aim of this study was to evaluate the prediction
ability of different ML algorithms and a traditional empirical model to estimate the parameters of
lactation curves. A total of 1186 monthly records from 156 sheep lactations were used. The model
development process involved training and testing models using ML algorithms. In addition to these
algorithms, lactation curves were also fitted using the Wood model. The goodness of fit was assessed
using correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), relative
absolute error (RAE), and relative root mean square error (RRSE). SMOreg was the algorithm with
the best estimates of the characteristics of the sheep lactation curve, with higher values of r compared
to the Wood model (0.96 vs. 0.68) for the total milk yield. The results of the current study showed
that ML algorithms are able to adequately predict the characteristics of the lactation curve, using a
relatively small number of input data. Some ML algorithms provide an interpretable architecture,
which is useful for decision-making at the farm level to maximize the use of available information.
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1. Introduction

The study of the mathematical properties of the lactation curve provides a summary
of the evolution of milk production, which is a multifactorial process determined by the
interaction between the environment and the biological efficiency of the animal [1]. The
analysis of the lactation curve is a valuable tool in research and herd management, as it
is useful for estimating total production during lactation with incomplete records. This is
essential information for farmers to make management decisions, implement and evaluate
genetic improvement programs, monitor health, forecast feed needs, and address economic
and management aspects [2].

Mathematically, the shape of the lactation curve is defined by its characterizing param-
eters, such as total milk yield, peak yield, and time to reach the peak yield [2]. Traditional
statistical techniques such as linear regression, non-linear regression, and random re-
gression are used to calculate the parameters of the lactation curve using empirical and
mechanistic approaches [3]. In addition, in recent years, machine learning (ML) algo-
rithms have emerged as powerful tools for predicting and modeling complex data. These
algorithms have the ability to learn patterns and hidden relationships in large data sets.

For dairy cattle, ML has helped to predict mastitis, to detect oestrus, and to estimate
milk production [3–6]. In the case of buffaloes, the implementation of ML algorithms
produced a correct estimation of the peak of milk production [7]. More recently, artifi-
cial neural networks (ANN) have been used to estimate milk production based on udder
measurements in sheep, showing a better fitting performance compared to multiple re-
gression [8]. Due to their capacity to learn from complex relationships between data and
produce accurate predictions, the ML algorithms are a promising analytical method for
the estimation of milk production in sheep and for a more accurate description of the
lactation curve. Therefore, the aim of the current study was to evaluate the goodness of
fit of different ML algorithms and a traditional empirical model for the estimation of the
parameters of the lactation curve.

2. Materials and Methods
2.1. Database

A total of 1186 monthly records were used according to the A4 method proposed by
ICAR [9] as the standard method for recording milk production in dairy sheep. These
records were obtained from 156 multiparous (second and third lambing) sheep lactations
from a commercial farm located in the Querétaro region, Mexico, with an average annual
temperature of 17.3 ◦C and an average annual rainfall of 485 mm. Lactations with a
minimum of five monthly records were selected, resulting in a database of 119 lactations.
We analyzed the lactation curves of dairy crossbred ewes from the following breeds: East
Friesian, Pelibuey, Suffolk, and Black Belly. The average lactation length was 237.4 days,
with a total milk yield (TMY) of 102.0 l, peak yield (PY) of 0.97 l, and a time-to-peak yield
(TPY) of 30 days.

A descriptive analysis and an outlier screening were performed, which resulted in the
exclusion of lactations with TMY greater than 182 l (n = 8) and TPY greater than 100 days
(n = 6). The current study was performed using a final database of 105 lactations. Actual
total milk yield was calculated from monthly records of milk production using the centering
day method or Fleischmann’s method [10]. PY and TPY were determined by identifying
the highest values on each lactation curve.

2.2. Model Formulation

The following lactating traits were defined as input attributes: (1) first day of milk
production recording; (2) lactation duration (in days); (3) milk yield at first monthly
recording (MP1; l/d); (4) milk yield at second monthly recording (MP2; l/d); (5) milk
yield at third monthly recording (MP3; l/d); (6) milk yield at fourth monthly recording
(MP4; l/d); (7) milk yield at fifth monthly recording (MP5; l/d). The output attributes
corresponded to the following lactation characteristics: TMY, PY, and TPY. Formulating
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the model involves mapping the input attributes (1 to 7) to produce the values of the
output attributes.

The model development process involved training and testing models using ML
algorithms independently for each output variable. During training, predictive models
were constructed using the input and output datasets. The Waikato Environment for
Knowledge Analysis (WEKA, version 3.8.6) was adopted as the standard interface to
compare different data mining algorithms and determine the best analytical approach.
WEKA is a Java-based data mining software available as open source. The database
was transformed into the data format compatible with WEKA (attribute file format; .arff)
in order to run the algorithms. Therefore, the final dataset consisted of 7 independent
attributes and one dependent attribute (TMY, PY, or TPY), depending on the characteristic
to be determined. The following seven ML algorithms were then selected from the 28
available in WEKA based on the results of the root mean square error:

1. Gaussian Processes (GP): is a powerful and flexible tool for modeling and prediction in
regression and probabilistic classification. GP Regression is a probabilistic model that
defines a distribution over functions that implement Gaussian processes for regression
without hyper-parameter tuning. To facilitate the selection of an appropriate noise
level, GP applies normalization/standardization. GP regression also allows the
description of non-linear relationships between input and response variables, as well
as data uncertainty [11].

2. Linear Regression (LR): is a popular and fundamental statistical modeling technique
used to predict a continuous output variable based on one or more input features. It
is a supervised learning algorithm that aims to determine the best linear relationship
between the input features, and the output variable, where the weights are calculated
from the training data and the Akaike Information Criterion, is used for model
selection [12].

3. Multi-layer Perceptron (MP): is a non-linear information algorithm inspired by the
biological nervous system. This type of artificial neural network is based on intercon-
nected elementary processing devices called neurons. The network starts from the
input information through one or more hidden layers to the input layers [8].

4. Sequential Minimal Optimization Regression (SMOreg): SMO is an algorithm for
efficiently solving optimization problems that arise when training a support vector ma-
chine. SMO helps to deal with the problem of quadratic programming associated with
the optimization of the analytical, eliminating the need to use an iterative quadratic
programming optimizer as part of the algorithm. Shevade et al. [13] proposed an
iterative algorithm based on SMO to deal with regression problems.

5. M5 Rules (M5): generates a decision list for regression problems using separate-and-
conquer. In each iteration, it builds a model tree using M5 and makes the “best” leaf
into a rule [12].

6. M5 model tree (M5P): is a decision tree learner for regression tasks used to predict
values of numerical response variables. It is a binary decision tree with linear regres-
sion functions at the terminal (leaf) nodes that can estimate continuous numerical
attributes. The construction of the M5 model tree involves two steps. The first step
involves the use of splitting criterion to create a decision tree, and the second step
involves pruning the overgrown tree and replacing the sub-trees with linear regression
functions [14].

7. Random Forest (RF): is an ensemble learning method that combines multiple decision
trees to make predictions. It is a versatile and powerful algorithm that can be used
for both regression and classification tasks. RF for regression is formed by growing
trees depending on a random vector that takes numerical values as opposed to class
labels. The output values are numerical, and it is assumed that the training data set is
independently drawn from the distribution of the random vector [15].
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Each model was trained and then validated using 10-fold cross-validation. The original
dataset was divided into ten equal partitions, and in each iteration, the data were split into
training and testing sets, ensuring that each instance was used once for testing.

2.3. Mathematical Modeling

In addition to these seven algorithms, lactation curves were also fitted using the
incomplete gamma empirical model proposed by Wood [16]:

Yt = atbe−ct, (1)

where Y is the milk production (l) at time t, a is the production at the beginning of lactation,
b represents the ascending phase, and c describes the descending phase of the lactation
curve. The parameters of the Wood model (a, b, and c) were estimated through the iterative
process of non-linear curve fitting in regression analysis using the “nlsLM” function from
the “minpack.lm” package [17] in the R statistical computing environment (version 4.3.0;
R Core Team, 2020) with all the monthly records from 105 lactating sheep. Based on the
estimated parameters, the following lactation curve characteristics were calculated: TMY,
PY, and TPY.

2.4. Performance Evaluation Criteria

The goodness of fit of the models was evaluated using the following metrics:

1. Coefficient of Correlation (r): This metric measures the strength and direction of the
linear relationship between the predicted and the actual values. A value close to 1
indicates a strong positive correlation, while a value close to −1 indicates a strong
negative correlation.

2. Mean Absolute Error (MAE): This represents the average absolute difference between
the predicted values and the actual values. It measures the average magnitude of the
errors without considering their direction. It is represented by:

MAE = (1/n) ∗ Σ|yi − xi|, (2)

where yi and xi are the observed and estimated values, respectively, and n is the total
number of observations.

3. Root Mean Square Error (RMSE): This is calculated by taking the square root for the
average of the squared differences between the predicted values and the actual values.
The RMSE provides a measure of the overall magnitude of the errors, giving more
weight to larger errors.

RMSE =
√

((1/n) ∗ Σ(yi − xi)2), (3)

where yi and xi are the observed and estimated values, respectively, and n is the total
number of observations.

4. Relative Absolute Error (RAE): This metric is the ratio of the MAE to the mean of the
actual values. It represents the average absolute difference between the predicted
values and the actual values relative to the scale of the actual values.

RAE = (Σ|yi − xi|)/(Σ|ȳ − xi|), (4)

where yi and xi are the observed and estimated values, respectively, and ȳ is the mean of
the observed values.

5. Relative Root Mean Square Error (RRSE): Similar to RAE, RRSE is the ratio of the
RMSE to the mean of the actual values. It represents the average magnitude of the
errors relative to the scale of the actual values.

RRSE =
√

((Σ(yi − xi)2)/(Σ(ȳ − xi)2)), (5)

where yi and xi are the observed and estimated values, respectively, and ȳ is the mean of
the actual values.



Animals 2023, 13, 2772 5 of 11

Finally, the observed (Y) and the estimated values (X) from the Wood model and the
ML algorithms were fitted using a linear regression model. The regression line and the
predicted values were presented graphically in a scatter plot of predicted vs. observed
values. In these scatterplots, the ordinate and abscissa have the same scale, and a 45-degree
line has been drawn to facilitate their interpretation. The accuracy of the estimates is
represented by the distance of a given point from the 45-degree line.

3. Results

In the current study, we evaluated the ability of ML algorithms to estimate lactation
curve characteristics and found a better fit for all ML algorithms than the Wood model.
The goodness of fit criteria for the Wood model and seven ML algorithms applied to sheep
lactation curves are shown in Table 1. The estimated parameters for the Wood model are
presented in the following equation:

Y = (4.006)t(0.055) exp−(0.006)t, (6)

where parameter a had a value of 4.006 l, corresponding to average milk production at
the beginning of lactation. Parameters b (0.055) and c (0.006) represent the ascending and
descending phases of the lactation curve. The values of parameters b and c > 0 indicate the
probable presence of atypical curves.

Table 1. Goodness of fit of the Wood model and ML algorithms for the characteristics of lactation
TMY, PY, and TPY in dairy sheep.

Wood GP LR MP SMOreg M5 M5P RF

Total Milk Yield (TMY)
r 0.68 0.65 0.96 0.95 0.96 0.96 0.96 0.94
MAE 18.26 28.46 8.36 10.27 8.28 8.52 8.52 12.31
RMSE (l) 41.91 34.43 11.09 13.59 11.05 11.22 11.22 15.78
RAE (%) 52.53 81.59 23.96 29.44 23.72 24.42 24.42 35.29
RRSE (%) 101.48 83.10 26.77 32.79 26.67 27.08 27.08 38.09
Peak Yield (PY)
r −0.21 0.60 0.79 0.70 0.80 0.79 0.79 0.73
MAE 3.54 0.20 0.13 0.20 0.13 0.13 0.13 0.15
RMSE (l) 21.33 0.26 0.20 0.28 0.20 0.20 0.20 0.22
RAE (%) 1345.33 77.40 51.52 76.24 49.72 51.52 51.52 57.32
RRSE (%) 6409.03 82.03 61.80 85.93 60.81 61.80 61.80 67.95
Time of Peak Yield (TPY)
r 0.47 0.66 0.65 0.54 0.69 0.65 0.65 0.63
MAE 19.89 13.33 12.09 17.36 10.05 12.06 12.06 12.88
RMSE (l) 29.12 17.66 17.97 22.51 17.68 17.92 17.92 18.10
RAE (%) 101.46 67.57 61.26 88.01 50.96 61.11 61.11 65.29
RRSE (%) 124.48 74.95 76.26 95.53 75.03 76.06 76.06 76.79

GP: Gaussian processes, LR: linear regression, MP: multi-layer perceptron, SMOreg: sequential minimal opti-
mization regression, M5: M5Rules, M5P: M5P tree, and RF: random forest. r: coefficient of correlation, MAE:
mean absolute error, RMSE: root mean squared error, RAE: relative absolute error, and RRSE: relative root mean
squared error.

Based on the coefficient of correlation values, the Wood model showed moderate
goodness of fit (r = 0.68). RMSE represents the mean of residuals for each mathematical
function on the original scale. According to our results, the Wood model had an average
error of 41.9 l in estimating TMY. Regarding the ML algorithms, they all showed lower
RMSE values compared to the Wood model (<34.4 l), where the SMOreg algorithm obtained
the best TMY prediction with an average error of 11.0 l. Moreover, SMOreg obtained the
best estimates for PY and TPY based on all goodness of fit criteria, such as r (0.80 and 0.69)
and RMSE (0.2 l and 17.6 d). However, it is important to point out that LR, M5, and M5P
goodness of fit was similar to the one shown by SMOreg. Figure 1 shows the relationship
between the estimate and the actual values of TMY. These plots show that the magnitude
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of the residuals to TMY estimates are significantly lower for the ML algorithms compared
to the Wood model, confirming their better predictive performance.

Animals 2023, 13, x FOR PEER REVIEW 6 of 11 
 

RMSE values compared to the Wood model (<34.4 l), where the SMOreg algorithm ob-
tained the best TMY prediction with an average error of 11.0 l. Moreover, SMOreg ob-
tained the best estimates for PY and TPY based on all goodness of fit criteria, such as r 
(0.80 and 0.69) and RMSE (0.2 l and 17.6 d). However, it is important to point out that LR, 
M5, and M5P goodness of fit was similar to the one shown by SMOreg. Figure 1 shows 
the relationship between the estimate and the actual values of TMY. These plots show that 
the magnitude of the residuals to TMY estimates are significantly lower for the ML algo-
rithms compared to the Wood model, confirming their better predictive performance. 

 

 
Figure 1. Scatter plots of predicted vs. observed values of the TMY. (A) Wood: gamma incomplete 
model, (B) GP: Gaussian process, (C) LR: linear regression, (D) MP: multi-layer perceptron, (E) 
SMOreg: sequential minimal optimization regression, (F) M5: M5 Rules, (G) M5P: model tree, and 
(H) RF: random forest algorithms. 

Table 2 shows the mean and significance test of the actual and estimated values of 
TMY, PY, and TPY using the Wood model and the best ML algorithm (SMOreg). There 

Figure 1. Scatter plots of predicted vs. observed values of the TMY. (A) Wood: gamma incom-
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Table 2 shows the mean and significance test of the actual and estimated values of
TMY, PY, and TPY using the Wood model and the best ML algorithm (SMOreg). There
was a significant difference between the Wood model and SMOreg (p = 0.03) for TMY
estimates. The SMOreg algorithm showed a better estimation of TMY with a difference of
only 0.82 l compared to the actual value, which is considerably lower than the estimation
error shown by the Wood model (14.1 l). In addition, as can be seen in Figure 2, the TMY
was considerably overestimated by the Wood model in some lactations.
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Table 2. Mean and statistical differences between the actual lactation curve characteristics and
estimated ones by the Wood model and SMOreg algorithm.

Actual Wood SMOreg SE p-Value

Total milk yield (l) 101.02 a 115.08 b 100.2 a 4.44 0.03
Peak yield (l) 0.97 4.29 0.93 1.19 0.07
Time to peak yield (days) 30 23 25 2.35 0.07

a,b Within a row, means followed by a common superscript do not differ significantly (p < 0.05).
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A trend (p = 0.07) was identified by comparing the actual values of PY and TPY with
the estimates of the Wood model and the SMOreg algorithm. Once again, SMOreg showed
a better estimate of PY than the Wood model (0.93 vs. 4.29 l), which overestimated TPY by
341.4%. Both estimation strategies underestimated the time of maximum production. The
actual TPY was reached at 30 days postpartum, a value underestimated by seven days for
the Wood model and five days for SMOreg.

4. Discussion

Our results show that all ML algorithms have a better predictive ability of lactation
curve parameters than the Wood model. The Wood model is the most widely used mathe-
matical function to describe the lactation curve, probably due to its simple mathematical
structure and partial biological interpretation of its parameters [2]. However, as shown by
the results of the current study, the Wood model is less accurate in estimating milk produc-
tion in early lactation, PY and TYP [18], which could be related to the higher presence of
atypical curves (without a lactation peak). Angeles-Hernandez et al. [18] indicated that
52.06% of sheep milk curves in Mexico had atypical shapes, which affected the fit of the
Wood model due to significant variations in parameter b. The value of the b parameter in
the Wood model is critical because it controls the degree of curvature in the milk curve,
which affects the accuracy of estimating TMY, PY, and TPY [19].

In relation to the analytical procedure for fitting the lactation curve, the Wood model,
like most lactation models, uses linear and non-linear regression for estimating its param-
eters and calculating lactation curve characteristics. [20]. The main advantage of these
analytical approaches is the simplicity of implementing and interpreting their parame-
ters [21]. However, linear regression methods have shown limited flexibility and poor
predictive performance when the relationship between inputs and outputs cannot be rea-
sonably established by linear function [22]. On the other hand, non-linear regression is
more flexible and accurate for lactation curve fitting than linear regression [22], but they
might be more sensitive to noise, outliers, or multicollinearity in the data than other ML
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algorithms. Therefore, the use of new analytical approaches, as proposed in the current
study, is crucial to obtain better estimates of lactation curve characteristics. At the farm and
research level, the accurate estimation of TMY, PY, and TPY allows the calculation of feed
requirements, the costs associated with nutritional management, the evaluation of genetic
potential, and the prevention of metabolic disorders [2,18].

In this sense, the proposed ML algorithms had a much better performance for the
estimation of TMY, PY, and TPY of dairy sheep in comparison with the Wood model.
However, there were some differences in the goodness of fit between the algorithms
tested. The techniques used to generate the output attribute may explain the differences in
goodness of fit between algorithms. In our study, the SMOreg algorithm showed the best
performance for the estimation of TMY, PY, and TPY, which can be related to the fact that
SMOreg aims to find the best regression function by projecting into a high-dimensional
space where linear optimization techniques are applied and then projecting the resulting
regression function back into the original low-dimensional feature space of the actual
variables [23]. Additionally, this algorithm outperformed the others at predicting outcomes
from databases containing noise and uncertain attributes due to its ability to normalize
and separate data using a hyperplane as a decision boundary [24,25]. This is useful in
biological problems such as milk production, where noisy data scenarios are common [26].
In the same line, our results are in agreement with Nguyen et al. [27], who indicated that
support vector machine (SVM), the algorithm category in which SMOreg falls, is the most
efficient method for milk production prediction in terms of accuracy and computational
cost compared to multiple linear regression, MP and RF algorithms.

GP regression has been reported to be an efficient non-parametric tool for the devel-
opment of prediction models. Compared to the Wood model, the GP algorithm showed
a better prediction of PY and TPY in the current study. The improvement in estimating
lactation curve characteristics may be related to the fact that GP requires no predefined
fitting function specification and, therefore, has a general ability to adequately estimate all
types of non-linear data [11], in our case, different lactation curve shapes. Studies reporting
GP use in animal science are limited [28,29]. Baiz et al. [28] reported a higher accuracy (r2)
and precision (RMSE) for the GP regression model in comparison with multiple regres-
sion models for the estimation of the energy content of maize for poultry. These authors
pointed out that the superior performance of the GP is related to its higher degree of
freedom and flexibility. Another advantage of GP is its ability to estimate an interpretable
uncertainty. This is useful in the inference process to know the standard deviations of
the predictions [29]. Compared to other ML algorithms, such as artificial neural networks
(ANN), GP can be less sensitive to the amount of available data [30]. This is advantageous
in animal science, where databases are usually small.

The appropriate fitting performance of the MP algorithm can be related to its extremely
flexible structure, which allows it to represent a wide range of response surface shapes [31].
In this sense, when enough data are provided, the MP algorithm can adequately model
curvatures, interactions, plateaus, and step functions. In our study, the ability of this
algorithm to deal with different shapes of lactation curves compared to the Wood model
is demonstrated by the better estimates of TPY, PY, and TPY. In addition, MP (as a type
of ANN) does not require the standard assumptions of regression, such as the mutual
independence of the true residual, the normal distribution, and the constant variance [31].

MP is actually a non-linear model; however, this algorithm has several advantages
over non-linear regression models. Firstly, MP uses activation functions (e.g., sigmoid, arcus
tangens, etc.) that are flexible and can be adapted to a wide range of circumstances [32].
Additionally, MP minimizes the sum of squares errors. This is performed using a gradient
descent approach called backpropagation. This approach calculates by sweeping forward
and backward through the network to update weights and bias parameters to make ANN
predictions more accurate [33].

The M5 and M5P showed exact goodness of fit for the estimation of the characteristics
of the lactation curve in dairy ewes. This is in agreement with Witten et al. [12], who
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indicated that the rules algorithm (M5) and its corresponding decision tree (M5P) produce
exactly the same predictions. However, rule sets can be more confusing when decision
trees suffer from replicated subtrees. Additionally, in multiclass situations, the coverage
algorithm focuses on one class at a time, whereas the decision tree learner considers all
classes [12]. In our study, this situation could be evident if lactations were classified by
their shape (typical or atypical), number of lambs (primiparous and multiparous), and type
of lambs (single or multiple). The analysis according to the mentioned class can be useful
mainly for PY and TPY, which showed a high variability of their values (Table 2). Among
the logarithms used and proposed in the current study, the RF is the one most widely used
in the animal science field. This algorithm has been particularly useful in the solution of
classification problems [34] and in genetic improvement programs [35,36]. Although the
goodness of fit of RF was lower in our study compared to SMOreg, M5, and M5P, RF has
the advantage of its interpretable architecture, which contrasts with other ML algorithms
considered uninterpretable black boxes [35].

5. Conclusions

The result of the current study shows that the ML algorithms make it possible to
adequately predict the characteristics of the lactation curve with a relatively small number
of input data. In fact, five monthly records of milk production were sufficient to obtain ade-
quate estimates of TMY, PY, and TPY using the ML algorithms, overcoming the predictive
capacity of the Wood model. All the algorithms tested depicted good estimates with better
performance shown by the SMOreg algorithm. The techniques used to generate the output
attribute may explain the differences in fitting performance between the algorithms. In our
case, the algorithms that focus on the generation of predictions of continuous variables are
the most suitable (i.e., SMOreg). It is also important to point out that some ML algorithms
provide an interpretable architecture that is useful for decision-making at the farm level
(i.e., rules and decision trees), maximizing the use of the available information. In this
sense, as a future trend, we are conducting a series of experiments with the aim of applying
automatic rules extraction algorithms to provide a better interpretation and explanation of
the dairy sheep lactation curves by means of obtaining linguistic rules. These actionable
rules will facilitate the decision-making farm stage.
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