Skip to main content
. 2023 Aug 25;13(17):2754. doi: 10.3390/diagnostics13172754

Table 1.

Previously published machine learning-based Gestational risk prediction models.

Authors Subject/Data Algorithms AUC-ROC Prediction Clinical Support
Qiu et al. [12] 4378 pregnancies Hybrid model of logistic regression, support vector machine 0.847 No No
Ye et al. [13] 22,242 pregnancies Gradient boosting, decision tree 0.74 No No
Zheng et al. [14] 4771 pregnancies Multivariate Bayesian logistic regression 0.766 No No
Artzi et al. [15] 588,622 pregnancies Gradient boosting 0.854 No No
Xiong et al. [16] 490 pregnancies Light gradient boosting machine 0.942 No No
Yan et al. [17] 3988 pregnancies Logistic regression 0.779 No No
Hou et al. [18] 1000 pregnancies Light gradient boosting machine 0.852 No No
Wu et al. [19] 32,190 pregnancies Deep neural network 0.80 No No
Wu et al. [20] 17,005 pregnancies Random forest 0.746 No No
Wang, F. [21] 4260 pregnancies Random Forest, logistic regression 0.953 Yes No
Our paper 699 Pregnancies Logistic Regression, Random Forest, SVM 0.91 Yes Yes