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Abstract

Three-dimensional (3D) imaging techniques (e.g., confocal microscopy) are commonly

used to visualize in vitro models, especially microvasculature on-a-chip. Conversely,

3D analysis is not the standard method to extract quantitative information from

those models. We developed the μVES algorithm to analyze vascularized in vitro

models leveraging 3D data. It computes morphological parameters (geometry, diame-

ter, length, tortuosity, eccentricity) and intravascular flow velocity. μVES application

to microfluidic vascularized in vitro models shows that they successfully replicate

functional features of the microvasculature in vivo in terms of intravascular fluid flow

velocity. However, wall shear stress is lower compared to in vivo references. The

morphological analysis also highlights the model's physiological similarities (vessel

length and tortuosity) and shortcomings (vessel radius and surface-over-volume

ratio). The addition of the third dimension in our analysis produced significant differ-

ences in the metrics assessed compared to 2D estimations. It enabled the computa-

tion of new indices, such as vessel eccentricity. These μVES capabilities can find

application in analyses of different in vitro vascular models, as well as in vivo and

ex vivo microvasculature.
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3D computational analysis, deep learning, network morphology, segmentation, vasculature-on-
a-chip

1 | INTRODUCTION

Microfluidic models of the human microvasculature, also called

microvasculature-on-a-chip, have been used in the last decade to

study several physiological and pathological phenomena involving the

microvasculature and its microenvironment.1–4 These investigations

have included angiogenesis,5 organoid vascularization,6,7 tumor cell

extravasation,8,9 immune cells extravasation/recruitment,10 tissue-

specific modeling,11,12 and vascular wall properties and their effect on

drug delivery.1,9 One of the strengths of such in vitro modeling

approach is an increased physiological relevance due to the ability to

include human-derived cells. In addition, those models' 3D vascular

architecture results in a better microenvironment replica than classical
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2D cell culture techniques.13 Further physiological relevance of the

models can be achieved by including additional cell types, biochemical

compounds, and mechanical stimuli through direct access to the

microfluidic chip.7,14 Most importantly, perfusion of the microvascular

models can be achieved through a pressure difference at the net-

work's ends.15 Furthermore, even a transmural pressure difference

can be modeled, resulting in fluid flow across the vascular endothe-

lium16 or mechanical characterization.17

To analyze these microvasculature-on-a-chip models and to

observe the microvascular network under different conditions,

researchers usually adopt image-based techniques, obtaining the

images from epifluorescence or confocal microscopes.1,3,4,18 How-

ever, even if the latter enables a 3D analysis, many studies usually rely

on 2D-based elaboration methods. This is particularly the case for

morphological analyses, in which the microvascular networks are eval-

uated in vessel radii, length, and branching. Besides manual analysis,

several algorithms have been proposed in the literature to tackle this

problem. The AngioTool algorithm was developed to analyze the vas-

culogenic potential of endothelial cells and fibroblasts.19 This Matlab-

based code relies on 2D images and provides the radius, length, and

number of junctions, even in a nonuniform image illumination. The

VESGEN2D method starts from 2D binary images and is based on

skeletonization and distance mapping.20 Besides the radius, length,

and the number of junctions, it also provides the vessel density and

the fractal dimension. The RAVE code analyzes 2D images with similar

methods to obtain radii distribution and the vessel density as length

or area ratio.21 Finally, the REAVER method was recently proposed.22

It is based on segmentation and skeletonization and provides the ves-

sels' length, area, average diameter, and the number of junctions. The

authors showed that REAVER is more accurate than the other algo-

rithms while maintaining a reasonable computational time.

Few 3D algorithms have been proposed in the literature as

applied to in vivo images.23–25 They are based on similar steps, seg-

mentation, and skeletonization, leveraging distance mapping to com-

pute different network features. Furthermore, they take advantage of

the third dimension considering a volumetric vascular density. In addi-

tion, the method can provide the fractal dimension, the number of

segments, vessel length, diameter, and tortuosity.23 These methods

have shown that the third dimension can add important information

to the analysis, more properly evaluating the 3D system. The circular-

ity of the vessel cross-section represents a clear example of how the

3D information might be used to enhance the characterization of the

model. For this reason, we have developed the micro-Vasculature

Evaluation System (μVES), an algorithm capable of analyzing the mor-

phology of in vitro microvasculature and estimating intravascular fluid

flow velocity under a given pressure difference. We further show how

this tool can be used to evaluate the physiological relevance of

microvasculature-on-a-chip models.

2 | RESULTS AND DISCUSSION

First, we present the validation of the algorithm, along with the test of

its extended 3D capability. Second, 2D and 3D analyses are compared

for the same microvasculature on-a-chip model. Finally, we show how

the method can be used to evaluate the physiological relevance of

that model.

2.1 | Algorithm validation

Established state-of-the-art methods to analyze microvascular

morphology rely on 2D images from fluorescence microscopy.1

Therefore, we tested a simplified μVES algorithm, μVES2D, that

works with this kind of data for validation purposes. However, not

all the output data are available in this version, such as the vessel

eccentricity, which requires 3D data. Results of the algorithm are

compared with a manual analysis (line-based measures with ImageJ)

and the analysis software REAVER, which provides accurate

results22 and shares the μVES2D Matlab environment.

After a single network analysis (Figure 1a), the radius comparison

shows a good qualitative agreement considering the data distribution

(Figure 1c) with a slight difference in average values (REAVER: 27.8 μm,

Manual analysis: 29.6 ± 12.1 μm, μVES2D [nr = 1]: 32.6 ± 20.5 μm).

Relying on single-image data, the main difference between manual analy-

sis and the μVES algorithm concerns a few large vessels (100–150 μm)

not captured in the manual analysis. Furthermore, algorithms were tested

on 30 different images (Figure 1e). The mean radius for a network has

been computed with nr equal to 1 and 3, and with a weighted average on

the vessel length. The REAVER code also uses the latter technique, not

relying on network branching. When using this method to compute the

radius, μVES and REAVER results are in good agreement (Figure 1e;

Bland–Altman test—Bias = 1.94 μm, biasSD = 0.88 μm, LOA = 0.2107–

3.6688 μm). However, the nr = 1 or nr = 3 method results in a different

mean value due to the different averaging techniques.

The length analysis on a single image reports similar values for the

total network length (REAVER: 13.9 mm, Manual analysis: 15.7 mm,

μVES2D: 14.4 mm, Figure 1b). Furthermore, the cumulative length

curve is similar when comparing μVES2D and the manual analysis, with

smaller vessels identified better by the algorithm. We excluded the

manual analysis to test the length measure on multiple networks and

focused on the total network length (Figure 1d). Good agreement

between the two algorithms can be observed with data close to the

diagonal (Bland–Altman test—Bias = 0.33 mm, biasSD = 1.43 mm, and

LOA = �2.5-3.1 mm). However, in the μVES2D method, vessel length

is computed relying on the interpolation of the coordinates, whereas in

the REAVER method by counting the skeleton pixels. This difference

may contribute to the scatter of the plot.

Comprehensively, these data validate the μVES method by leverag-

ing its 2D version, enabling comparison with available algorithms.

2.2 | From 2D to 3D analyses

The peculiarity of the μVES method is its capability to analyze

3D data. This kind of data can be readily available from confocal

microscopy. With the third dimension added in, it is important to

discuss two main microvascular network images. The first relies on a
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fluorescent marker of ECs, for example, cell membrane, glycocalyx,

and GFP produced by cells. The second is based on the perfusion of

the network with a fluorescent probe. Even if the 2D projection of

these two cases may result similar, they profoundly differ in the 3D

data as the first is comparable to the lateral area of vessels while the

second represents their internal volume. The μVES method uses the

second kind of data, thus excluding the network's nonperfusable part,

which cannot be reached by the fluorescent probe.

We selected a single network and analyzed it with both the 2D

(on the z-projection) and the full version of the μVES algorithm

(Figure 2). The difference in the average radius is significant

(2D: 41.3 ± 22.1 μm, 3D: 28.5 ± 13.0 μm), and the two distribu-

tions look very different. This large discrepancy is due to an ellipti-

cal cross-sectional area of the microvessels.26 The low eccentricity

value confirms this feature of the vessels in the model assessed for

these vessels (Figure S1). This parameter describes an essential

F IGURE 1 2D algorithm
validation against REAVER code22

and manual analysis. (a) Single
image comparison of the skeleton
(centerlines of the vessels and
junctions) with REAVER (left) and
μVES code (right). The network is
also presented in the μVES image
for skeleton accuracy

interpretation. (b) Evaluation of
the radius distribution in the
image and (c) the length of the
network using the three methods.
Agreement between the radius
value (d) and the total length
(e) based on the analysis of
30 images with both REAVER
and μVES.
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feature of the in vitro microvascular networks, typically character-

ized by ellipsoidal cross-sections with the major axis oriented hori-

zontally (Figure S1). Due to this phenomenon, the 2D analysis of

the vessel radius returns incomplete information, losing essential

knowledge on the vertical direction.

Therefore, we recommend adopting the 3D analysis when accu-

rate information is required.

The length of the network is also different in the two analyses,

both as the total length of the network (2D: 17.6 mm, 3D: 19.0 mm)

and distribution (Figure 2). As expected, the total length of the 2D

projection is smaller than the 3D one, given that the third dimension

is removed. On the other hand, the distribution is shifted toward

shorter vessels due to the greater number of small vessels recon-

structed, especially close to the junctions. We point out that a thresh-

old can be set to cut vessels shorter than a value. Such operation

indeed affects the distribution shown and may generate a variation of

the total length.

Finally, the 3D analysis allows the computation of the lateral

area (Figure S1) and the S/V parameter, namely the ratio between

the vascular surface, the area of the microvascular network available

for exchanges, and the extra-vascular volume. This parameter is

essential when analyzing mass transport, as it directly determines

fluid and solute exchanges.27 Importantly, this parameter again

cannot be estimated from 2D analyses, mainly due to the noncircular

cross-section of the vessels, further showcasing the advantages of

3D analysis.

2.3 | Computational cost and downsampling

3D analyses extract more information from the images, but

these methods have a greater computational demand compared

to 2D-based ones. To reduce such requirements, we considered

downsampled analyses (Figure 2). For a reference image, compu-

tational time was reduced from 13.53 to 1.17 min (�91.3%)

when including the downsampling. Results regarding the vessel

radius distribution are similar to the 3D ones and consequently

dissimilar to the 2D ones. Indeed, the vessel cross-section

anisotropy is successfully determined even with a downsampled

volume. Conversely, the results regarding vessel length agree

with the 2D analysis. This phenomenon is related to the resolution

loss that follows from the downsampling operation, which cuts

off shorter vessels, as seen in the three graphs in Figure 2.

Therefore, the 3D downsampled analysis allows the complete

F IGURE 2 Comparison of the network reconstruction and the vessel radius and length distributions for the three types of analysis (2D, 3D
DWS, 3D). The dotted lines on the graphs show average values. DWS, downsampling.
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volumetric image analysis, reducing the computational cost, and

the analysis resolution.

2.4 | Deep learning approach for segmentation

Besides the downsampling operation, we applied a deep learning

approach to reduce computational requirements. This method substi-

tutes the active contour algorithm in the workflow (Figure 3), which is

one of the most demanding operations of the analysis (Figure 4). Based

on 56 augmented images, the training process ended with a validation

binary accuracy of 87.52%, a weighted Jaccard index of 73.20%, and a

Matthews Correlation Coefficient of 69.38%. Additionally, discrete

noise-rejection capabilities are highlighted by a Specificity of 93.16%.

The application of this method to a single image reveals the localization

of the false positive and the false negative pixels to the network edges.

Conversely, the inner part of the vessels is characterized by the strong

presence of true positive pixels (Figure 4a). Being particularly interested

in extracting descriptive parameters, we analyzed the effect of this alter-

native approach on two metrics, vessel length and radius, rather than on

voxel-wise segmentation. On a single image analysis, the distribution of

both the variables is similar (Figure 4b), also reporting similar average

values (deep learning: r = 28.12 ± 11.29 μm, L = 72.13 ± 66.67 μm;

active contour: r = 28.98 ± 11.83 μm, L = 70.32 ± 66.95 μm) with no

statistical difference (p-values 0.39 and 0.62 for radius and length, respec-

tively). When applying the methods on multiple networks, we obtained

similar results (Figure 4c, Bland–Altman test: radius—Bias = 3.39 μm,

biasSD = 3.64 μm, LOA = �10.5–3.8 μm; Bland–Altman test: length—

Bias = 5.7 μm, biasSD = 12.7 μm, LOA = �30.5–19.1 μm). The com-

putational cost reduction for segmentation depends on the sample's

dimension (Figure 4d) and, therefore, on the downsampling factor

(factor 2: �46.12%, factor 1: �78.47%).

F IGURE 3 Scheme of the
μVES algorithm starting from
confocal imaging to the outputs:
(i) image acquisition, (ii) data
preprocessing including possible
downsampling operations and
volumetric interpolation,
(iii) network segmentation with
active contour method or deep

learning-based classification,
(iv) vertical alignment,
(v) skeletonization, (vi) branch
processing identifying different
branches in the network and
interpolating the spatial
coordinates, (vii) descriptive
metrics computation, and
(viii) velocity estimation. The four
images on the right depict key
steps of the algorithm, which are
identified by a dotted line.
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2.5 | Application to microvasculature-on-a-chip

We applied the μVES algorithm to a set of 30 images depicting

microvascular networks on a chip. First, the average capillary length

in the microfluidic chips was 102.9 ± 76.1 μm. This result agrees

with literature reporting capillary vessel lengths from tens to hun-

dreds of microns.23,25,28,29 The average vessel diameter among all

the samples was 31.4 ± 16.2 μm, consistent with data previously

reported for this application.1 Conversely, this result is still some-

what far from the capillary diameter reported in vivo, which

F IGURE 4 Deep learning
segmentation versus Active
contour segmentation on a single
network (a) showing true positive
(TP), false positive (FP), false-
negative (FN), and true negative
(black). Radius and length
comparison over the validation set
(b) and their distribution on a

single image (c). The computational
time (d) was compared using the
two methods with different
downsampling factors (DF).
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approaches the size of a single red blood cell, 6–10 μm.30 In a similar

analysis based on mice coronary capillary networks, Nicolas and

Roux reported a range spanning from 2 to 14 μm in vessel diameter,

in which the 4–6 μm interval is the most frequent.23

The same authors also studied vessel tortuosity. These data are

rarely included in the studies, and when considered, it often involves

different definitions. As we used the same definition as Nicolas and

Roux, we can directly compare our results. They reported a vessel

tortuosity index in vivo from 1 (perfectly straight vessel) to 3, with a

distribution skewed toward 1. In our dataset (in vitro), the tortuosity

index ranged from 1 to 2.35 (average: 1.18). When comparing the

in vitro morphological parameters with in vivo data, we must consider

the restriction of the model in the z-direction, which affects the

microvascular network geometry. Anyway, in vitro tortuosity data

are consistent with the available in vivo data. This observation is

interesting, considering that no flow conditioning has been applied

during EC culture. Indeed, adding mechanical stimuli during culture

(i.e., from intravascular flow) seems unnecessary to replicate the

vessel tortuosity.

A further important feature is the surface of the network

available per unit of volume (S/V), which is particularly meaningful

when studying mass exchanges and microvascular wall properties.

S/V differs from tissue to tissue and from physiological to pathologi-

cal cases. As reference values, we report 7 mm2/mm3 as an average

for healthy tissue,31 whereas hyper-vascularized tumors can

reach up to 26 mm2/mm3.32 Our in vitro samples present an

S/V = 4.5 ± 1.3 mm2/mm3, similar to previously reported data.33

Such value marks a difference between the in vitro networks and the

in vivo reference. Anyway, this last result is undoubtedly affected by

the planar geometry of the microvasculature on a chip, whereas

in vivo vasculature might have a more 3D structure. In vitro models

with a more 3D design have been proposed,34 even if perfusion of

the network has not been achieved.

As described above, the μVES algorithm also allows us to compute

the vessels' eccentricity. Generally, the blood vessel cross-section is

considered circular in vivo, with eccentricity close to 1 (perfect circle).

However, in vitro data show a vessel eccentricity equal to 0.833

± 0.125, implying a noncircular shape (Figure S1) as the in vitro vessel

cross-section approaches an ellipse with the major axis oriented hori-

zontally according to previously reported data.26

Summarizing, the different analyses showed how in vitro micro-

vasculature on-a-chip represents a physiologically relevant model,

even if they can be improved in some features. Differences between

in vivo and in vitro microvascular networks might arise from changes

in the experimental protocols used,35,36 resulting in a better or worse

replica of the characteristics analyzed.

2.6 | Velocity estimation

An essential trait of microvasculature-on-a-chip models is the capabil-

ity to perfuse the system. This enables the modeling of flow-related

phenomena15,16 from the mechanical action of the flow on endothelial

cells37,38 to the pressure-driven exchange through the microvascular

wall. To evaluate the model under this point, we perfused the network

by applying three different pressure gradients (100, 200, and 400 Pa).

The experimental measure revealed median velocities of 126.4, 303.1,

and 545.5 μm/s, respectively. Given the not normally distributed data,

we consider the median values to compare the velocity distribution

referring to a set of vessels. Furthermore, the average velocity

(155, 354, and 596 μm/s) is in the same order of magnitude as

the median. The μVES algorithm further allows the computation of

fluid flow rates in the microvascular networks analyzed. Here, we

applied the algorithm to evaluate a large chip image with dimensions

3.67 � 3.81 � 0.15 mm3 (Downsampling factor = 2), which depicted

a portion of the central channel from side to side (Figure 5). Preferred

flow paths are evident in the flow rate plot yielded by the μVES algo-

rithm, showing heterogeneity of fluid flow within the network. The

μVES algorithm results reasonably agree with the experimental data

(Figure 5), increasing linearly with the applied pressure difference

(median values 171.3, 342.6, and 685.2 μm/s). The small difference

between experimental and computational values has different possi-

ble sources. First, practical measures cannot be performed over a wide

area of the chip, as can be quickly done with computational methods.

Second, these experimental measurements are performed using bead

velocity as a proxy for fluid flow velocity, although adhesive interac-

tions between beads and the vascular wall are common, resulting in

lower velocities measured. Third, modeling approximations play a role,

from geometry reconstruction to the simplified flow model (assuming

circular vessels). Fourth, even if it represents a minor contribution,

experimental data are produced by projection on a plane, therefore

losing the z-direction, as detailed in the Section 3.

Further, based on these results, we used the μVES algorithm to

estimate the wall shear stress (WSS) for each branch, resulting in a

median value of 1.7 � 10�2, 3.5 � 10�2, and 7.0 � 10�2 Pa.

The flow velocity results agree with the reported values from

the literature. Indeed, blood velocity values span from hundreds of

μm/s to several mm/s,39–41 with 1 mm/s accepted as an average

reference in capillaries.14 On the other hand, the WSS results

appear lower than the literature values, which reach a few Pa.42

This is consistent with previous results in terms of velocity and

microvascular radii. Indeed, in vitro vascular radii are more similar

to arterioles or venules. Therefore, in the in vitro system, a physio-

logical flow velocity and WSS cannot be achieved simultaneously

(see the equation for WSS, τi). Instead, the pressure drop can be set

to reproduce a physiological velocity with lower WSS or a physiologi-

cal WSS with velocities greater than the physiological reference.

Further, the ellipticity of the cross-section was not considered in the

velocity and WSS computation, even if it has a minor effect when

considering steady flow.43 Finally, red blood cells are not present in

the in vitro model, and their presence significantly impacts the

WSSs.44 The μVES algorithm estimates WSSs assuming a Newtonian

fluid, which correctly describes the in vitro model. Under these condi-

tions, the algorithm can be used to estimate the pressure drop

required to reach a desired level of WSS. This assessment attests to

the capabilities of the μVES algorithm to go beyond morphological
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analyses of microvascular networks, including evaluations of micro-

vascular function.

As a final remark, we computed how the uncertainty in the radius

affects the velocity and the WSS results. We first show a theoretical

analysis on a single vessel, leveraging uncertainty propagation. Con-

sidering dr≈1:6μm as the uncertainty on the radius, we can estimate

its effect on the uncertainty on the velocity (dv) and the WSS (dWSS)

estimation:

dv¼ Δp
8μ l

2r dr≈107
μm
s
:

dWSS¼Δp
2 l

dr≈14mPa:

We also performed a computational analysis on a simplified ver-

sion of a vascular network, including eight vessels. The uncertainty

effect computed referring to the median values over the network is

still comparable to the theoretical estimates provided (Figure S2).

3 | MATERIALS AND METHODS

The μVES algorithm comprises eight different steps: (i) image acquisi-

tion, (ii) data preprocessing, (iii) network segmentation, (iv) vertical

alignment, (v) skeletonization, (vi) branch processing, (vii) descriptive

metrics computation, and (viii) velocity estimation (Figure 3). The

method* was coded using MATLAB45 (The MathWorks Inc., 2021).

The following paragraphs describe each step of the process.

3.1 | Microvascular network generation and image
acquisition

The microvascular networks are generated within microfluidic chips

(central channel dimension: 3 � 10 � 0.5 mm3) by vasculogenic self-

assembly in a fibrin gel, exactly as described previously.16 Briefly, we

seeded GFP HUVECs (Angio-Proteomie, 6 Mcells mL�1) with human

lung fibroblasts (Lonza, 2 Mcells mL�1) in the central channel

(width = 3 mm) of a three-channel microfluidic chip and cultured the

F IGURE 5 Functional
velocity evaluation. The raw
image of the network—perfused
with FITC labeled IgG (a)—was
used to generate flow rate (b),
velocity (c), and wall shear
stresses (d) map. The distribution
of variables is shown for the
velocity (e)—against in vitro

measures—and for the wall shear
stresses (f). Scale bar in (a) is
500 μm.
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system through daily media changes in the side channels for 7 days.

After microvascular network maturation on day 7, TRITC fluores-

cent dextran is inserted in the chip to assess the vascular network

perfusion by confocal imaging (Olympus FV1000 confocal micro-

scope with a custom enclosure for temperature and atmosphere

control). Images have 800 � 800 pixels resolution in the x–y direc-

tion, with 0.98 μm/pixel, and a 5 μm step in the z-direction, result-

ing in a noncubic voxel.

3.2 | Data preprocessing

First, we processed the images to obtain cubic voxels by interpo-

lating the z-direction (using the x-y pixel dimension). Second, an

optional downsampling operation was performed. Such an opera-

tion reduces the size of the image to be analyzed by selecting one

out of n pixels in the three directions, reducing the number of

pixels by a factor n,3 and decreasing the computational time. This

step is beneficial when dealing with highly detailed images, as a

reduced resolution will not affect the morphology of the network

(see Section 2). Moreover, downsampling may be beneficial in

terms of noise reduction. We remark that no specific procedure to

handle unspecific signals (e.g., autofluorescence of other compo-

nents) is performed. Therefore, these artifacts must be avoided or

minimized during imaging.

3.3 | Network segmentation

The segmentation step generates a 3D matrix of boolean data,

defining the microvascular network volume. Among the available

methods, we selected the “Active Contour Without Edges” algo-

rithm46 due to its large-scale use in the biomedical field.47,48 In this

algorithm, an initial rough approximation of the segmented vascula-

ture gets iteratively refined to convergence until the final binary

mask is obtained. We obtain reliable and consistent segmentations

at the expense of computational time. Alternatively, we implemen-

ted a deep learning method. Such an approach is widely used to

segment 2D images.49–51 Therefore, we modified it to handle 3D

images. The method consists of a convolutional neural network

based on the U-Net model52 trained with a dataset of 3D images

obtained from 70 samples, 80% dedicated to training and 20% to

validation. Due to the scarcity of instances, the training dataset has

been submitted to a data-augmentation procedure. The augment-

ing transformations comprise the randomized combination of hori-

zontal and vertical flipping, rotations, zooms, and translations with

mirror padding. The neural network works on sections of the input

matrix (128 � 128 � 8 pixels), individually segmented and arranged

back into the initial position to recompose the whole volume. This

operation reduces the time required for the training process and,

alongside the data augmentation process (�20 patches extracted

from each image), allows us to obtain a rich dataset from a rela-

tively low amount of 3D images.

3.4 | Vertical alignment

Due to possible small misalignments of the microfluidic chip and the

microscope, the microvascular network may be artificially sloped with

respect to the horizontal plane. Therefore, the network is aligned by

considering an interpolating planar surface and applying the mean

squared error minimization method.

3.5 | Skeletonization

We reduced the segmented network to its centerline, obtaining

single-pixel-wide branches. We employed the well-established

Lee–Kashyap–Chu implementation.53

3.6 | Branch processing

Branches are identified as a set of pixels in the skeleton separated by

either ramifications or terminal voxels. Then, coordinates for each

branch are extracted by applying a graph-theory-based approach54

and interpolated with a spline curve to obtain a continuous branch-

wise representation of the skeleton.

3.7 | Descriptive metrics computation

The morphological parameters are computed starting from the

skeleton and the 3D data. First, the vessel's length is approximated

with the sum of Euclidean distances for adjacent skeleton points.

Tortuosity is then defined for each branch by the start-to-end Euclidean

distance over the length.

Other metrics are computed, complementing the skeleton infor-

mation with the 3D data. The radius of each branch is evaluated at nr

equidistant points on the arc-length coordinate system. For each

point, the binary volume is sliced perpendicular to the vessel, and the

radius is computed as half of the equivalent diameter of the vascular

cross-section. Eccentricity is estimated by approximating ellipses on

the edge pixels of the same cross-sections:

e¼ 1=nr

X
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� br

ar

� �2
s

where a is the major axis, and b is the minor axis. Lastly, the lateral

area of each branch is computed leveraging the nr radii and the length

of each vessel segment.

3.8 | Velocity measures and estimation

Experimental flow velocity measures are based on 2 μm fluorescent

microspheres (R&D Systems) perfused through the vascular network
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under a hydrostatic pressure difference between the two side chan-

nels of the microfluidic chip. The networks are primarily oriented in

the xy plane since they have a height of a few hundred μm (x–y area:

3 � 10 mm2). Velocity measurements for single beads were performed

on a Nikon Eclipse Ti microscope with a 4� objective exactly as done

previously55 by measuring the track length over the image acquisition

time using the software ImageJ. As before, the assumption was made

that most bead movement takes place on the xy-plane, resulting in

the loss of the z-direction component in the analysis of the overall

bead velocity. Computationally, the analysis is based on the skele-

ton computed as above, along with the geometrical data of each

vessel. Neglecting fluid filtration, which is often minimal compared

to the intravascular flow rate, we developed here an algorithm to

solve the algebraic system of Poiseuille flow and mass conservation

equations:

pin,i�pout,i ¼Ri Qi with i¼1,…,nbranchX
i � j

Qj ¼0 with j¼1,…,nnodes

8<
:

where Ri ¼ 128 μ Li
π D4

i
is the hydraulic resistance. The system has a total of

nbranchþnnodesð Þ equations. Results describe the flow rate for each

branch (Qi) and the pressure at each node (pj). Starting with these

results, we evaluated each vessel's velocity (vi), dividing the flow rate

by the cross-section. Furthermore, we estimated the WSS, enforcing

the same assumptions required for Poiseuille flow:

τi ¼4μ vi
ri

Vessels close to the boundary region of the gel have a more com-

plex pattern, and they are usually not considered in the velocity mea-

sures. Therefore, we excluded them and reported all the other

branches in the central portion of the image (1.78 � 2.35 mm2). Then,

we defined constant pressure at the two sides, mimicking the pressure

drop applied in the experimental setups.

Besides the straightforward velocity computation based on

Poiseuille equations, a more advanced algorithm has been proposed.56

Such a computational model solves a fully coupled 3D–1D simulation,

accounting for fluid filtration from the network. Additionally, this

method can account for the red blood cells effect, namely the

Fahraeus–Lindqvist and Zweifach–Fung effects,30 which are not included

in the simplified Poiseuille estimation. The present algorithm provides

the input files required for such a complete simulation.

4 | CONCLUSION

We have presented μVES, a 3D image analysis algorithm for microvas-

cular networks that can be used to assess the physiological relevance

of microvasculature-on-a-chip models in terms of morphology and

functional perfusion capacity. The in vitro model successfully repli-

cated intravascular fluid flow velocity in the microvasculature in vivo.

The associated WSS are still lower than in vivo, but closer values can

be achieved by increasing the applied pressure drop according to the

model prediction. On the other hand, some of the morphological fea-

tures of the in vitro microvascular networks do not fully represent the

microvasculature in vivo. Particularly, the radius of the vessels is larger

in the in vitro model, and the surface-to-volume ratio is still lower

than in the in vivo reference. Conversely, the tortuosity and length of

the in vitro vessels are comparable, achieving a satisfactory replica.

This work has shown the importance of a 3D analysis method for

in vitro microvascular models, which provides information not avail-

able with a classical 2D approach and significantly impacts the com-

puted metrics. The μVES method for morphological and functional 3D

analyses offers significant improvements over previous 2D methods.

The algorithm may find applications in the analysis of other in vitro

models and in vivo microvasculature, comprising imaging methods

that reveal the internal vessel lumen.
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