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Purpose of review

The emergence of globally resistant enteric Shigella and nontyphoidal Salmonella strains (NTS) has limited
the selection of effective drugs, which has become a major challenge for the treatment of infections. The
purpose of this review is to provide the current opinion on the antimicrobial-resistant enteric Shigella and
nontyphoidal Salmonella.

Recent findings

Enteric Shigella and NTS are resistant to almost all classes of antimicrobials in recent years. Those with
co-resistance to ciprofloxacin, azithromycin and ceftriaxone, the first-line antibiotics for the treatment of
infectious diarrhoea have emerged worldwide. Some of them have caused interregional and international
spread by travel, trade, MSM, and polluted water sources. Several strains have even developed resistance
to colistin, the last-resort antibiotic used for treatment of multidrug-resistant Gram-negative bacteria
infections.

Summary

The drug resistance of enteric Shigella and NTS is largely driven by the use of antibiotics and horizontal
gene transfer of mobile genetic elements. These two species show various drug resistance patterns in
different regions and serotypes. Hence treatment decisions for Shigella and Salmonella infections need to
take into consideration prevalent antimicrobial drug resistance patterns. It is worth noting that the resistance
genes such as blaCTX, mph, ermB, qnr and mcr, which can cause resistance to ciprofloxacin,
cephalosporin, azithromycin and colistin are widespread because of transmission by IncFII, IncI1, IncI2 and
IncB/O/K/Z plasmids. Therefore, continuous global monitoring of resistance in Shigella and Salmonella is
imperative.
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INTRODUCTION

Enteric Shigella and nontyphoidal Salmonella (NTS)
are widely recognized as predominant bacterial
pathogens responsible for foodborne illnesses and
are regarded as a significant public health concern
globally [1,2]. Although acute diarrhoea caused by
Shigella and NTS can be unpleasant, these diseases
are usually self-limiting, and symptoms usually
resolve within a few days with appropriate fluid
and electrolyte management. However, in vulner-
able populations, including children under 5 years
of age, elderly, malnourished and immunocompro-
mised individuals, these diseases can be life threat-
ening. The use of antibiotics is an important means
to shorten duration of illness and reduce infectivity
[1]. However, with the increasing use of antibiotics,
resistance of Shigella and NTS to different antibiotics
continues to emerge, and these bacteria show high
rates of multidrug resistance globally [2,3].
DRIVERS OF BACTERIAL RESISTANCE

The development of bacterial resistance can occur in
certain bacterial strains, and the utilization of anti-
biotics in medical and veterinary practice exerts
selective pressure that expedites this phenomenon
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KEY POINTS

� The drug resistance of enteric Shigella and
nontyphoidal Salmonella is largely driven by the use of
antibiotics and horizontal gene transfer of mobile
genetic elements.

� The antimicrobial resistance patterns of enteric Shigella
and nontyphoidal Salmonella tend to be associated
with certain serovars and regions.

� Ongoing surveillance of the new antimicrobial
resistance patterns is imperative for appropriate clinical
management of infections caused by enteric Shigella
and nontyphoidal Salmonella.

Resistance in Shigella and NTS Yang et al.
[3]. The transmission of resistance to humans can
occur through the consumption of meat products
from treated animals or food that has been cross-
contaminated during processing or retail [4,5]. It has
been confirmed that Salmonella drug resistance is
largely driven by the use of antibiotics in food-
producing animals in developed countries [6,7].
Additionally, the spread of resistance can occur
through direct contact with animals or environ-
mental pathways, such as water or wildlife [8,9].

In Shigella spp., drug resistance ismainly because
of0 their adeptness to survive and replicate in the
human gastrointestinal tract while incorporating
exogenous genetic material, including antimicro-
bial resistance (AMR) genes on mobile genetic ele-
ments, from other Gram-negative bacteria [3,10]. In
recent years, multiple reports have demonstrated
the isolation of multidrug-resistant (MDR) Shigella
spp. from untreated sewage or well water, indicating
that they are likely to easily obtain various drug-
resistant genes or plasmids from the environment
[11–13]. In China, one distinct MDR clone of Shi-
gella sonnei with multiple resistant plasmids caused
six waterborne shigellosis outbreaks from 2015 to
2020 [14

&

]. Fang et al. [15
&

] conducted genomic and
equation model analysis of Shigella flexneri from
1920 to 2020 worldwide, showing that the con-
sumption of antibiotics promoted drug resistance
and that mobile genetic elements were important
contributors to antibiotic resistance genes in
S. flexneri isolates.
REGIONAL DIFFERENCES IN BACTERIAL
RESISTANCE

Antibiotic resistance rates in Salmonella vary by
country and are affected by antimicrobial usage
practices among humans and animals, and geo-
graphical regional differences in Salmonella epi-
demiology and Salmonella serovars. Over the past
0951-7375 Copyright © 2023 The Author(s). Published by Wolters Kluwe
few years, surveillance data have indicated a rise in
the resistance rates in Salmonella isolates from poul-
try in the United States and Brazil and a decline in
Canada and eastern Spain [8,16–18]. In contrast to
other countries, including the United States, China
exhibits a notably elevated incidence of MDR Sal-
monella Enteritidis (S. Enteritidis) [19]. The propor-
tions of MDR Salmonella significantly vary among
different countries and sources. In Bangladesh, 94%
of Salmonella strains isolated from broiler chickens
exhibited multidrug resistance [20]. Drug sensitivity
testing showed that 47.3% of NTS strains in Taiwan
were MDR between 2017 and 2018 [21]. Further-
more, the emergence and widespread dissemination
of a novel Salmonella Typhimurium (S. Typhimu-
rium) sequence type (ST) 313 in sub-Saharan Africa
has resulted in sepsis without accompanying gastro-
enteritis. Additionally, a highly drug-resistant sub-
lineage of ST313 has been identified, characterized
by a combination ofmultidrug resistance, extended-
spectrum b-lactamase (ESBL) production, and resist-
ance to azithromycin [22]. The rise in drug-resistant
S. Typhimurium ST313 isolates can be attributed to
the sustained use of antibiotics [23].

Antimicrobial resistance (AMR) patterns in Shi-
gella spp. are varied in different regions of the world,
which is closely related to the frequency of anti-
biotic use and the development level (Table 1). Shi-
gella isolates from Africa have high resistance to
trimethoprim/sulfamethoxazole, tetracycline and
ampicillin, while their resistance to ciprofloxacin,
azithromycin and third-generation cephalosporin
antibiotics is low [24–26]. In addition to the high
resistance of Shigella isolates in Asia to tetracycline,
ampicillin and other older antibiotics, it is concern-
ing that the resistance to azithromycin, ciproflox-
acin and ceftriaxone is already at a high level or
shows an upward trend [2,27,28]. Whereas shigel-
losis is endemic in Asia andAfrica, burdeningmostly
children younger than 5years, in developed regions,
such as Europe, the Americas and Australia, Shigella
infections are more common among gay or bisexual
men, people with HIV, and homeless people or
travellers. Moreover, the proportion of sexually
transmitted Shigella infections is very high. Their
rates ofmultidrug resistance are higher than those of
Shigella isolates with other modes of transmission,
with gradually increasing resistance trends, mainly
to ampicillin and trimethoprim, azithromycin, cef-
triaxone and ciprofloxacin [29,30,31

&&

,32
&&

].
Although resistance of Shigella spp. has certain

regional differences, the spatiotemporal change in
resistance is of a major concern. Initially, S. sonnei
only developed resistance to some old antibiotics
(such as tetracycline and ampicillin); however, a
ciprofloxacin-resistant clone has later emerged in
r Health, Inc. www.co-infectiousdiseases.com 361



Table 1. Resistance patterns of Shigella spp. and Salmonella spp. in different regions or serovar

Species Region or serovar Antibiotic with resistance Reference

Shigella
spp.

Africa Trimethoprim/sulfamethoxazole, Tetracycline, Ampicillin [24--26]

Asia Tetracycline, Ampicillin, Chloramphenicol, Azithromycin, Ciprofloxacin,
Ceftriaxone

[2,27,28]

Europe, Americas,
Australia

Tetracycline, Ampicillin, Trimethoprim, Azithromycin, Ceftriaxone,
Ciprofloxacin

[29,30,31&&,32&&]

Salmonella
spp.

Typhimurium Ampicillin, Chloramphenicol, Streptomycin, Sulfonamides, Tetracycline [35]

Enteritidis Nalidixic acid, Ampicillin, Streptomyces, Cefoperazone [8,37,40]

1,4,[5],12:i:- Ampicillin, Streptomycin, Sulphamethoxazole, Tetracycline
Sulfaoxazole, Doxycycline

[41&,42]

Infantis Nalidixic acid, Trimethoprim, Tetracycline, Ampicillin, Ciprofloxacin [5]

Albany Ampicillin, Chloramphenicol, Streptomycin, Sulfisoxazole, Tetracycline,
Nalidixic acid

[40]

Gastrointestinal infections
Asia [33]. Subsequently, a clonewithmultiresistance
to azithromycin, ciprofloxacin, and third-genera-
tion cephalosporin emerged in 2014 and was trans-
mitted among MSM in Europe and America during
2015 and 2022 [31

&&

,32
&&

,34]. In recent years, clones
with multiresistance to azithromycin and ceftriax-
one that frequently cause waterborne outbreaks
have been found in Asia, some of which were even
resistant to colistin [14

&

].
SEROVAR DIFFERENCES OF BACTERIAL
RESISTANCE

The AMR surveillance data for Salmonella show that
serovar differences have the most impact on overall
resistance trends [35] (Table 1). The predominant
antibiotic resistance pattern observed in S. Typhi-
murium is ACSSuT (ampicillin, chloramphenicol,
streptomycin, sulphonamides and tetracycline),
which is attributed to the prevalence of phage type
DT104 in S. Typhimurium [36]. Compared with
other serovars, S. Enteritidis exhibited elevated
resistance to nalidixic acid, with reported rates as
high as 94.5% [37]. Medalla et al. [38] conducted a
comparative analysis of the incidence of antimicro-
bial-resistant NTS infections in the United States
during two distinct periods, 2004–2008 and
2015–2016, utilizing a Bayesian hierarchical model.
The results of their study indicated a significant
increase of 40% in the annual incidence of Salmo-
nella infections with clinically important resistance,
specifically to ampicillin or ceftriaxone, or insensi-
tivity to ciprofloxacin. This increase is primarily
attributed to a surge in reports of serotype 1,4,
[5],12:i:- and serovar Enteritidis [38]. The variation
in the resistance observed among poultry isolates
362 www.co-infectiousdiseases.com
from East Asia and the European Union could be
primarily attributed to dissimilarities in the serovar
profiles of the respective isolates [20,39,40]. Most
recently, Salmonella 1,4,[5],12:i:- has emerged as a
significant etiological agent of the NTS disease in
both animals and humans on a global scale. Addi-
tionally, this serotype exhibited the highest preva-
lence of multidrug resistance among all Salmonella
serotypes, with 89.6% reported in Guizhou, China
[41

&

,42].
There are also differences in drug resistance

among Shigella serotypes. The F2a, F3a and F4s
serotypes of S. flexneri have higher multidrug resist-
ance rates than other serotypes [43–45]. In addition,
as S. sonnei is more easily spread than S. flexneri, the
transmission rate of drug resistance gene elements is
higher. Therefore, the multidrug resistance rate of S.
sonnei is higher than that of S. flexneri, especially for
antibiotics such as fluoroquinolones and trimetho-
prim/sulfamethoxazole [31

&&

,46].
MOLECULAR MECHANISMS OF
BACTERIAL RESISTANCE

Resistance of Shigella spp. and Salmonella spp. to
first-line and second-line antibiotics used in clinical
treatment is of particular concern. Ceftriaxone and
ciprofloxacin resistance has been increasingly
reported in Shigella spp. and Salmonella spp. and
multiple molecular mechanisms have already been
described. Genes encoding ESBL such as blaTEM,
blaSHV, blaCMY, blaCTX-M and blaOXA contribute to
ceftriaxone resistance in Shigella spp. and Salmonella
spp. [47–49]. Ciprofloxacin resistance in these bac-
teria is primarily attributed to dual mutations in the
gyrA gene and a singular mutation in the parC gene,
Volume 36 � Number 5 � October 2023



Resistance in Shigella and NTS Yang et al.
with infrequent identification of mutations in the
gyrB and parE genes [50]. Furthermore, the emer-
gence of plasmid-mediated quinolone resistance
and efflux pumps have been identified as contri-
buting factors to the development of low-level
resistance to quinolones and fluoroquinolones
[51]. The qnr genes comprise five distinct families,
each possessing a varying number of alleles, namely
qnrA1-7, qnrS1-4, qnrB1-31, qnrC and qnrD. Among
these, qnrA, qnrB and qnrS are frequently identified
in Salmonella [52

&&

,53]. As there is an increasing
incidence of resistance to ciprofloxacin and cef-
triaxone, azithromycin is regarded as a last resort,
Food and Drug Administration (FDA)-approved
antimicrobial agent for the treatment of systemic
infections, especially those caused by Shigella spp.
and Salmonella spp. The mechanisms of azithromy-
cin resistance vary among bacteria, and carrying
macrolide-resistant genes is considered the main
mechanism of resistance for Shigella spp. and NTS.
The azithromycin resistance phenotype is often
conferred by the erm(B) gene and/or the complete
genetic structure IS26-mph(A)-mrx-mphR-IS6100 in
NTS [54]. The genetic structures IS26-mph(A)-mrx
(A)-mph(R)(A)-IS6100 and mph(E)-msr(E)-IS482-IS6
carrying macrolide-resistant genes were also found
in Shigella [55]. It is worth noting that in recent
years, the emergence of Shigella spp. and NTS
strains resistant to colistin, mediated by a plas-
mid-borne colistin resistance gene mcr, have
become prevalent in many countries [14

&

,56–58].
Additionally, Zhai et al. [59

&

] recently found that
AcrB and CpxR could target ATP and reactive oxy-
gen species generation to potentiate antibacterial
activity of colistin.
CARRIERS OF BACTERIAL RESISTANCE

The dissemination of MDR plasmids among Gram-
negative bacteria is the major factor in the spread of
AMR. Plasmids carrying multiple AMR genes in NTS
are mainly of the IncI1 and IncHI2 types [49,60].
A conjugative IncC type plasmid simultaneously
encoding resistance to ciprofloxacin, ceftriaxone
and azithromycin in NTS was reported in 2021
[51]. A broad-host-range IncC plasmid and its inte-
grative mobilizable Salmonella genomic island 1
(SGI1) counterpart contribute to the spread of med-
ically important antibiotic resistance genes among
Gram-negative pathogens [61]. The emergence of
blaCTX-M-harbouring pESI plasmids was reported in
clinical NTS in Germany [62]. A self-transferable
IncA/C plasmid and a hybrid IncA/C-FIIs MDR
plasmid were found to be the major vehicles for
disseminating both mcr-3 and blaCTX-M55 genes
among Salmonella strains [61].
0951-7375 Copyright © 2023 The Author(s). Published by Wolters Kluwe
Plasmids commonly carrying multiple AMR
genes in Shigella spp. mainly include IncFII, IncI1,
IncI2 and IncB/O/K/Z plasmids, which can carry
the blaCTX-M-3, blaCTX-M-14, blaCTX-M-15, blaCTX-M-27,
blaCTX-M-55, blaCTX-M-134, mphA, aac(3)-IId, dfrA17,
aadA5, sul1 and mcr-1 genes [14

&

,63]. In the last
quarter of 2021, an outbreak of S. sonnei infection
occurred that likely involved multiple European
countries [31

&&

]. From this Shigella strain, researchers
isolated an IncFII plasmid carrying not only the
blaCTX-M-27 resistance gene but also multiple other
resistance genes, such as mphA. Moreover, the S.
sonnei strain causing waterborne outbreaks in China
contains an IncB/O/K/Z plasmid, which carries both
blaCTX-M-14 and mphA. Analysis shows that these
plasmids not only promote the flow of MDR Shigella
strains but can also spread between S. sonnei and
S. flexneri, indicating a high risk of drug resistance
spread [64

&

].
CONCLUSION

In summary, antibiotic resistance exhibited by
enteric Shigella and NTS presents a significant chal-
lenge to the efficacy of treatment. These bacteria are
complex pathogens with multifactorial transmis-
sion, and significant variations in drug resistance
have been observed across different serotypes, iso-
lation sources, or regions. The horizontal transfer of
MDR plasmids is a significant contributing factor
to the dissemination of drug resistance. Therefore,
ongoing global surveillance of enteric Shigella and
NTS resistance is imperative.
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