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Abstract: Fruits, vegetables, and spices are natural sources of bioactive phytochemicals, such as
polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids, and capsaicinoids, possessing
multiple health benefits and relatively low toxicity. These compounds found in the diet play a central
role in organism development and fitness. Given the complexity of the whole-body response to
dietary changes, invertebrate model organisms can be valuable tools to examine the interplay between
genes, signaling pathways, and metabolism. Drosophila melanogaster, an invertebrate model with its
extensively studied genome, has more than 70% gene homology to humans and has been used as a
model system in biological studies for a long time. The notable advantages of Drosophila as a model
system, such as their low maintenance cost, high reproductive rate, short generation time and lifespan,
and the high similarity of metabolic pathways between Drosophila and mammals, have encouraged
the use of Drosophila in the context of screening and evaluating the impact of phytochemicals present
in the diet. Here, we review the benefits of Drosophila as a model system for use in the study of
phytochemical ingestion and describe the previously reported effects of phytochemical consumption
in Drosophila.

Keywords: Drosophila; phytochemical; human health; metabolism; disease

1. Introduction

Phytochemicals are specialized metabolites with biological properties stored in plant
tissues, such as roots, stems, leaves, flowers, and fruits [1]. Phytochemicals include a wide
range of compounds such as polyphenols, carotenoids, flavonoids, coumarins, terpenoids,
glucosinolates, saponins, and capsaicinoids, which are often associated with the vibrant
colors of fruits and vegetables [2]. Although phytochemicals are not essential nutrients in
plants, they are responsible for many health benefits associated with a plant-based diet [3,4].
Potential phytochemical health benefits include antioxidant, anti-inflammatory, anti-cancer,
and anti-microbial properties [5]. Currently, numerous phytochemicals are being studied
for their possible use in developing novel drugs and dietary supplements [6].

Phytochemicals exhibit their beneficial and harmful effects by interaction with multi-
ple cell signaling molecules [7]. Nevertheless, the molecular mechanisms underlying the
effectiveness of phytochemicals continue to grow. In this context, employing cost-effective,
rapid, reliable, and efficient in vitro and in vivo assays will facilitate analyzing these com-
pounds’ metabolic processes, dosage response, and pharmacological and toxicological
profiles [8–10]. D. melanogaster, known as the fruit fly, has emerged as an alternate animal
model. Due to its short lifespan, small size, and well-understood genome, it has been
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widely used to examine the efficacy and safety of phytochemicals on various physiological
processes, including metabolism, aging, and immunity [11,12].

Moreover, the central nervous system of Drosophila allows the study of diverse func-
tions, including special senses, such as olfaction, taste, hearing, and vision, as well as motor
behavior, including flight, walking, learning, and memory in response to phytochemical
consumption [13,14]. Likewise, Drosophila has been shown to play a crucial role in deci-
phering fundamental molecular mechanisms and aiding in developing phytochemical base
drugs for cancer and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s,
and their associated genes [15–18]. In this chapter, we provide a brief overview of the
effectiveness of Drosophila as an alternative model organism for evaluating the impact of
phytochemicals on human diseases.

2. Phytochemicals and Their Potential Therapeutic Benefits

Regular consumption of fruits, vegetables, and grains has been associated with a
reduced risk of certain chronic diseases due to phytochemicals with antioxidant and anti-
inflammatory properties (Table 1) [19]. Phytochemicals regulate oxidative stress, which
has been recognized as a significant factor in the pathogenesis of metabolic disorders and
cancer [20]. Phytochemical therapeutic benefits are divided mainly into five categories
(i) enhancers of the body’s immune system; (ii) preventers of diabetes and heart diseases;
(iii) hypocholesterolemic agents; (iv) promoters of digestion and absorption; and (v) re-
tardants of aging [21,22]. The major classes of phytochemicals with disease-preventing
functions are dietary fiber, antioxidants, detoxifying agents, immunity-potentiating, and
neuropharmacological agents [23].

Table 1. Source of phytochemicals in plants and fruits and their potential beneficial activity against
human diseases.

Plant/Fruit Phytochemicals Description Beneficial Activity in
Human Related Disease

Pepper Capsaicinoids
Carotenoids

Promote fatty acid oxidation and antioxidant
activity Obesity

Curcuma
domestica Curcumin Antioxidant, inhibition of lipid peroxide-induce

DNA damage
Cancer

Lifespan

Moringa
oleifera

Polyphenols
Flavonoids

Tannins

Antioxidant response by
glutathione-S-transferase and catalase

Aging
Lifespan

Withania somnifera Withanolides Reduces oxidative stress Aging

Coffee Phenolic caffeic Prevent dysregulation of regeneration and
differentiation cells Lifespan

Camellia sinensis Catechins Upregulates superoxide dismutase and catalase Lifespan

Papaver
somniferum Morphine Stimulate growth and nervous fibers Lifespan

Red grapes Resveratrol Antioxidant activity reduces lipid accumulation Obesity

Radish sprouts Glucosinolates Influence energy metabolism and the expression
of insulin signaling gene Diabetes

Phaseolus vulgaris Cyanidin-3-O-glucoside Reduces tumor proliferation and blocks
autophagy Cancer

Pueraria tuberosa Puerarin Inhibit the development of beta-amyloid plaques Alzheimer

Lemongrass

Flavonoids
Tannins

Alkaloids
Glycosides

Decreases ROS levels Parkinson

Imperata
cylindrica

Alkaloids
Polyphenolic compounds

Inhibition of voltage-gated sodium channels and
reduce inflammation Epilepsy
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For instance, polyphenols such as resveratrol have been associated with decreased
risk of myocardial infarction, stroke, and diabetes [24,25]. Polyphenols in diet also help to
improve lipid profiles, blood pressure, insulin resistance, and systemic inflammation [26].
Furthermore, vitamin C and carotenoids may benefit immune function, thereby reducing
cancer risk by enhancing the tumor surveillance of the immune system [27]. Capsaicinoids,
including capsaicin and dihydrocapsaicin found in peppers, have been found to have
beneficial roles in humans, including managing pain inflammation during rheumatoid
arthritis, anti-cancer agent by generating reactive oxygen species, and in the prevention or
treatment of neurodegenerative diseases such as Alzheimer’s disease due to its antioxidant
activity [28–30]. Likewise, carotenoids and capsaicin have been found to have anti-obesity
effects during dietary consumption by promoting fatty acid oxidation and regulating
appetite and satiety, respectively [31,32]. Moreover, it has been shown that intake of
carotenoids besides β-carotene, such as lutein, zeaxanthin, and lycopene, resulted in
elevated levels of blood carotenoids related to a reduced risk of lung cancer [33,34].

Other spices, such as turmeric obtained from the roots of Curcuma domestica, contain a
yellow coloring principle, curcumin, a powerful antioxidant that can offer protection against
cancer, inhibiting lipid peroxide-induced DNA damage [35]. Flavonoid consumption, such
as quercetin and kaemferol, through vegetables and fruits, reduces the risk of death from
coronary heart disease [36]. Besides the chemicals with specific functions in plant food,
plant foods also contain many other chemical compounds, such as acids, esters, bases,
and phenolic compounds [37]. It is unclear whether these compounds also have any
beneficial biological function in the body. They may have a role in stimulating appetite and
satiety [38].

3. Advantages of Using Drosophila as a Translational Model for
Testing Phytochemicals

For decades, D. melanogaster has been widely used as an excellent animal model to
study genetics, evolution, and developmental biology [39]. It is a cost-effective option due
to its high reproductive rate (30–50 eggs/day), short generation time (approximately ten
days at 25 ◦C), and low maintenance cost. In addition, Drosophila short lifespan (average
three months at 25 ◦C) and easy generation of large populations allow for performing
longevity and lifespan assays in only a few months [40]. Furthermore, it offers powerful
molecular and genetic tools that permit gene overexpression or knock-down studies [41].

Although Drosophila is evolutionarily distant from humans, fly development, phys-
iological, biological, and metabolic processes are equivalent to many of those found in
mammals. Recently, similarities between humans and fruit flies in terms of metabolic
regulation, including the role of insulin signaling, nutrient sensing, and energy homeostasis
in metabolic disorders, such as diabetes and obesity [42–45]. Moreover, ingesting complex
foods rich in phytochemicals by an organism leads to the degradation of nutrients that
directly affect the gastrointestinal microbiome because the host and microbiome share
the same food source [46]. These microbiome changes influence the organism’s pheno-
type and behavior by altering the genome, transcriptome, epigenome, proteome, and
metabolome [47].

Furthermore, the similarities between pathological mechanisms of diseases in flies
and humans and the ease of genetic manipulation of the fly make Drosophila suitable as a
primary model for the study of phytochemical effects in neurodegenerative diseases, such
as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, cardiovascular disease,
muscular atrophy, aging, and metabolic diseases [48–50]. These advantages of Drosophila
are even more evident in the field of research into plant-based drug discovery. As it allows
whole-organism screening, using a Drosophila model for nutraceutical effects has distinct
advantages over cell-based assays when investigating more complex phenotypes [51]. To
date, Drosophila has been used as a model for in vivo screening of candidate plant-derived
compounds for use in age-neurodegenerative-related diseases and metabolic disorders to
investigate the action mechanisms of phytochemicals with therapeutic potential [52].
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4. Methods for Testing the Efficacy of Phytochemicals in Drosophila

Phytochemical ingestion effects are observed in general physiology, including
metabolism, behavior, stress resistance, reproductive capacity, nervous system, and im-
mune capacity in both Drosophila and humans, and aspects of these physiological changes
can be used as parameters to determine the phytochemical effects and toxicity [50]. Among
them, lifespan and survival rate are simple and efficient longitudinal assays to determine
the effects after administration of the candidate plant-based compounds [53]. In addition,
various strains with different lifespan characteristics and transgenic flies with symptoms
similar to human diseases are available to evaluate plant compounds’ effects on mortality
rate. Notably, the direct and indirect effects of phytochemical compounds on mortality
rate should be determined since mortality rate can be affected by several physiological
confounders such as fecundity, metabolic rate, and amount of food administered [54]. In
addition to establishing the mortality rate, determining changes in fly motility by quan-
tifying the ability to climb (negative geotaxis) and reproductive output is popular when
assessing the health span of Drosophila [55].

Oxidative stress mitigation in Drosophila is also an essential parameter in assessing
the efficacy of phytochemicals. Levels of reactive oxygen species (ROS), activities of
antioxidant enzymes, such as superoxide dismutase and catalase, and lipid peroxidation in
treated fly cells provide insight into the potential antioxidative activities of phytochemicals
(Figure 1) [56]. Moreover, Drosophila has a relatively simple nervous system, making
it an ideal model to study neurodevelopment and neurodegeneration using automated
tracking systems, locomotor activity, ring assay, gustatory, social, and circadian rhythm
patterns, providing insight into potential impacts of phytochemicals on the nervous system
function and behavior [57]. Further, omics technologies, including transcriptomics and
metabolomics, are also applied to Drosophila, allowing for a more global survey of the
regulation of genes and metabolites, resulting in even more fine-grained analyses and
deeper insights [58]. Using omics technologies, for example, the differential metabolic and
gene expression of female and male flies can be analyzed. In addition, special genetic tools,
such as RNA interference and CRISPR/Cas9 gene editing, can be used to investigate the
biological function of genes that may be up or down-regulated in response to phytochemical
consumption.
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Although administration of compounds via feeding is the most typical method of
phytochemical delivery to Drosophila [50], it is important to consider several concerns
about feeding-related artifacts, such as reduced feeding related to the preference of flies
for each compound, uncertainty about the amount of food consumed by each individual
and of the actual phytochemical concentration achieved in the tissues of the flies. Thus,
it is necessary to measure the food amount ingested by the flies, which can be done by
several methods, such as using food colorant or capillary feeding assays to monitor food
intake [59]. Various phytochemical concentrations should also be tested to evaluate dose
responses and outcomes controlling supplementation timing and diet composition.

5. Studies Evaluating the Effect of Phytochemicals by Using Drosophila
5.1. Phytochemical Effect on Aging

Anti-aging research has gained significant attention due to the growing aging pop-
ulation, which experiences a natural decline in the body’s capacity to repair molecu-
lar, biochemical, and organ damage, resulting in increased susceptibility to age-related
diseases [60]. The primary cause of radical damage to macromolecules in aging is the pro-
gressive decline of the endogenous antioxidant system, triggered by reactive oxygen species
(ROS). To restore the ROS balance, natural plant-derived antioxidants can be utilized to
reinforce the endogenous antioxidant system [61].

Plant-derived compounds with anti-aging properties have been investigated. Moringa
oleifera has been identified as one of the plants with the highest levels of bioactive molecules,
such as polyphenols, flavonoids, and tannins, which elicit an antioxidant response [62].
Iorjiim et al. [63] reported a significant increase in the activity of antioxidant enzymes
glutathione-S-transferase and catalase in Drosophila treated with M. oleifera extract, sug-
gesting its role in enhancing the activity of antioxidant enzymes and reducing the harmful
effects of ROS on aging. Likewise, when leaf extracts of M. oleifera were administered to
Drosophila at a dose of 5 mg·mL−1 as a dietary supplement, the flies exhibited a remark-
able increase in lifespan compared to the control group. The survival rate of the treated
Drosophila was extended by 20 days, and their mobility and climbing activities were also
enhanced, indicating a positive impact on aging and survival. However, concentrations
exceeding 2000 mg·mL−1 increase the risk of fly deterioration caused by toxic effects [64].

Withanolides are widely found in Solanaceae species and have been investigated for
their potential to enhance resilience against age-related stress [65]. Withania somnifera
extracts with high withanolides concentration have been shown to ameliorate behavioral
deficits in an in vivo D. melanogaster model of oxidative stress, reducing the effects of aging
in locomotion and cognition [66]. In addition, W. somnifera extracts have been reported to
improve physical fitness and alleviate age-related sleep fragmentation [67].

5.2. Development and Lifespan

Age-related dysregulation of development is closely associated with functional organ
and tissue decline, affecting lifespan and age-related disease development [60]. A modern
lifestyle characterized by high caloric intake and minimal physical activity in humans
results in high lipid storage levels that reduce overall lifespan [68]. Nevertheless, several
studies have shown that several phytochemicals can expand the lifespan using Drosophila
as a model (Figure 2) [69].

For instance, in the Drosophila midgut model, phenolic caffeic has been shown to
slow down the decline of intestinal functions in aged Drosophila, preventing dysregulation
of regeneration and differentiation cells during aging and thus increasing lifespan [70].
Moreover, Li et al. [71] reported that catechins, commonly found in foods such as cacao
and edible plants such as green tea and red wine, can decrease mortality rates and prolong
the lifespan of flies reared on a high-fat diet when supplemented with a 10 mg·mL−1

extract of green tea containing 62% epigallocatechin gallate and 19% of epicatechin gallate.
Similarly, it has been reported that epigallocatechin gallate affects glucose metabolism and
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upregulates superoxide dismutase and catalase enzymatic activities in fruit flies, increasing
fitness and lifespan [71,72].
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Likewise, curcumin is an effective inhibitor of inflammation and oxygen radicals [73].
It has been shown that fruit flies maintained on a media containing 1.0 mg of curcumin
per gram had a higher mean lifespan, linking this effect to the enhancement of superoxide
dismutase activity [74,75]. In addition to the previously mentioned compounds, other
phytochemicals, such as morphine, an opiate analgesic extracted from opium poppies, have
been recognized as a significant signaling molecule. Despite its undesirable effects, such as
respiratory depression and physical dependence, morphine has been identified as crucial
in protecting against post-traumatic stress. Additionally, it stimulates the growth and
regeneration of nervous fibers and has also been found to increase the lifespan of Drosophila
flies [76]. In a study, male and female Oregon-R flies were given morphine hydrochloride
once a week at a dosage range of 0.001–0.25 mg·mL−1, which resulted in an extended
lifespan [50].

5.3. Metabolism

Recent evidence suggests that the metabolic state of an organism is closely tied to
its diet, with an important factor being that the dietary habits of parents can impact
the metabolic states of their offspring [77]. Controlled dietary conditions are crucial
for studying metabolism and organism physiology [78]. Drosophila possesses notable
metabolic systems that share many conserved functions with vertebrates, including in-
sulin, insulin-like growth factor, the target of rapamycin signaling pathways, and energy
regulation [79,80].

Obesity is a prevalent metabolic syndrome in humans, leading to various metabolic
complications, such as impaired glucose tolerance, insulin resistance, dyslipidemia, hyper-
tension, type 2 diabetes, and premature heart disease [81]. Heinrichsen et al. [82] evaluated
the metabolic response of Drosophila fed a high-fat diet, which resulted in increased lev-
els of triglyceride and glucose, decreased stress tolerance and lifespan, and activation
of pathways associated with fat metabolism, insulin signaling, cardiac fat accumulation,
and dysfunction. Currently, the options for treating obesity and implementing lifestyle
interventions are limited, making it challenging to maintain a healthy lifestyle [83]. To
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address this, researchers have explored the potential of various phytochemicals for their
anti-obesity properties [84].

Recently, it was reported that flies reared on a habanero pepper-supplemented diet
with high capsaicin and carotenoid content showed a significant body weight and triglyc-
eride reduction compared to those fed with the control diet [31]. Carotenoids and capsaicin
in pepper have been reported to have anti-obesity effects when consumed in the diet,
promoting fatty acid oxidation and regulating appetite and satiety, respectively [85,86].

Moreover, the effects of resveratrol were also analyzed in Drosophila metabolism. It
was observed that resveratrol supplementation improved metabolic parameters, such as
enhanced glucose tolerance and reduced lipid accumulation. Nevertheless, the imple-
mentation of target-specific therapy might be beneficial in mitigating any negative conse-
quences arising from the pro-oxidant activity associated with high dosages [87]. Meanwhile,
quercetin supplementation, a flavonoid in various fruits and vegetables, improved glucose
homeostasis, reduced oxidative stress, and enhanced mitochondrial function in flies [88].
Further, garlic and purple onion were tested for their biological properties in metabolic
disorders. Combined as a diet, these vegetables significantly ameliorated total glucose and
triglyceride levels, surpassing the effects of consuming each vegetable individually. This
suggests that the combination of garlic and purple onion may possess antihyperglycemic
properties [89]. Likewise, it was reported that radish sprouts (Raphanus sativus cv. Rambo),
a Brassicaceae species rich in glucosinolates, influenced energy metabolism in Drosophila,
leading to lower glucose levels and altered the expression of the insulin signaling-related
gene called “spargel” [90]. Leaf and root extracts have also been used to treat Diabetes
mellitus, the most common human metabolic disorder [91]. For instance, Drosophila flies
treated with Senna occidentalis and Artocarpus camansi leaf extracts showed a significant
decrease in serum glucose levels and antioxidant properties that mediate hyperglycemia in
diabetes compared to the control flies [92,93].

5.4. Microbiome

The gut microbiome in the human intestines plays a critical role in nutrient absorption,
lysis, and storage [94]. Additionally, they are essential for various physiological processes,
including metabolism, digestion, circadian rhythms, and vitamin synthesis in humans [95].
Imbalances in the gut microbiota (dysbiosis) due to diet, antibiotic use, age, and stress
contribute to disease development, including diabetes, obesity, colon cancer, inflammatory
bowel disease, inflammation, and neurodegeneration [96].

The Drosophila gut microbiome is extracellular and encompasses three regions: the
foregut, midgut, and hindgut, each creating distinct conditions for microbial cells [97].
Although the Drosophila gut microbiome has been well-documented, it is important to
note that fruit flies have a limited number of microorganisms, about 30 species, com-
pared to mammals with more than 500 species [98]. The gut microbial population is
profoundly influenced by the dietary habits associated with consuming different types
and amounts of phytochemicals (99). It also varies depending on the host genotype, age,
sex, and habitat [99,100]. Garcia-Lozano et al. [101] conducted a study using three different
Drosophila genotypes (Berlin-K, Oregon-RC, and Canton-s) and three distinct diets supple-
mented with bell, serrano, and habanero peppers, respectively. The results showed that
pepper-containing diets appeared to enhance members of Lactobacillaceae and Acetobacter-
aceae in the Drosophila gut microbiome (Figure 3). Among them, L. brevis belonging to the
Lactobacillaceae family was 4-fold higher in flies reared on pepper-containing diets than in
the guts of flies raised on the control diet. L. brevis is traditionally consumed for its pro-
phylactic and therapeutic benefits against various diseases, such as human inflammatory
bowel syndrome [102].
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Moreover, Jimenez-Padilla et al. [103] found that Drosophila flies fed diets with straw-
berries and blueberries had an increased abundance of Acetobacter in their microbiome.
Acetobacter, particularly Acetobacter pomorum, has probiotic properties and produces acetic
acid, which promotes insulin signaling, reducing lipid and sugar levels in adult flies [104].
The blueberry diet also led to higher levels of Actinobacteria compared to the control
diet [103]. Actinobacteria, including the genus Bifidobacterium, metabolize anthocyanins
into small compounds with probiotic effects for obesity and gastrointestinal and systemic
diseases [105,106].

Furthermore, it has been reported that Triphala, a novel polyphenol-rich prebiotic at
0.5% w/v concentration, supports the growth of beneficial bacteria such as Lactobacillus plan-
tarum, Lactobacillus fermentum, and Bifidobacteria infantis while inhibiting pathogenic species
by using a simulated model of the human gastrointestinal tract (SHIME) in
D. melanogaster [107].

5.5. Neurodegenerative Diseases

D. melanogaster has been widely used in drug screening studies to identify high-quality
hits that exhibit crucial characteristics, including metabolic stability, oral or transder-
mal availability, and, most notably, low toxicity, providing a valuable resource for drug
development [40]. Phytochemicals have been extensively studied for their potential in
preventing and controlling the proliferation and development of tumor cells [108]. Black
beans, specifically Phaseolus vulgaris, contain phenolic compounds, including cyanidin-
3-O-glucoside (C3G), recognized as an anti-cancer compound [109]. A recent study by
Wei et al. [110] investigated the effects of an extract from the black bean seed coat on
a Drosophila model with an activated oncogene Raf (Table 2). It was observed that flies
treated with black bean extract exhibited a significant reduction in tumor proliferation and
a blockage of autophagy in the tumor cells.

Likewise, phytochemicals can offer neuroprotection, which is crucial for developing
new treatments for neurodegenerative diseases, such as Alzheimer’s. In Alzheimer’s dis-
ease, memory loss is associated with the forming beta-amyloid plaques, which give rise to
oligomers that generate reactive oxygen species (ROS) and promote Tau protein aggrega-
tion, ultimately leading to neuronal cell death [111]. Studies have shown that extracts from
Pueraria tuberosa can inhibit beta-site amyloid precursor protein cleaving enzyme (BACE1),
a key target in forming beta-amyloid plaques [112]. Significant improvements in cognitive
decline were observed in Drosophila models treated with these extracts, whereas in humans,
adverse effects such as nausea and vomiting have been observed [113]. Additionally, ex-
tracts rich in limonene (+) have demonstrated a neuroprotective effect by reducing cell
death in treated Drosophila and lowering brain ROS levels and inflammation [111].
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Table 2. The effects of phytochemicals on genes associated with degenerative diseases.

Gene ID Gene
Name Annotation Human Orthologue Disease Plant

Extract

FBgn0003079 Raf
Encodes a serine-threonine protein kinase; it
activates the MEK/ERK pathway to regulate

cell proliferation.
Raf-1 Cancer Phaseolus vulgaris

FBgn0032049 Bace
Beta-site APP-cleaving enzyme encodes an

aspartic protease that cleaves amyloid
precursor proteins.

BACE1 Alzheimer Pueraria tuberosa

FBgn0026420 SNCA

Engineered foreign gene involves several
processes, including negative and positive

transport regulation and protein
metabolic process.

SNCA Parkinson Lemongrass

FBgn0285944 para
A gene is required for locomotor activity. It

encodes an α-subunit of voltage-gated
sodium channels.

SCN Epilepsy Imperatacylindrica

Similarly, studies have shown that plant-derived molecules can be effective in treat-
ing Parkinson’s disease (PD), which is characterized by the formation of Lewy bodies
containing alpha-synuclein and the loss of dopaminergic neurons resulting in motor
symptoms [114]. Gardenine-A, a phytochemical derived from the plant Gardenia resinifera,
has been found to have neuroprotective effects in Drosophila models of PD by reducing
mortality and modulating inflammatory and cellular responses [115]. In another study,
lemongrass citral extract was tested in silico and in vivo in Drosophila models of PD, show-
ing enhanced climbing ability. It reduced ROS levels, with positive interactions observed
between citral and alpha-synuclein in molecular docking analyses [116].

Moreover, epilepsy is a neurological disorder characterized by sensory-motor deficits
and convulsions. It can have various causes, including gene mutations that encode ion
channels in brain cells responsible for transmitting signals between neurons [117]. To
alleviate epilepsy symptoms, researchers have investigated using Imperata cylindrica root
extracts in a mutant Drosophila “para” gene model. The treated flies exhibited an inhibitory
effect on voltage-gated sodium ion channels, which reduced inflammation and increased
tissue repair in brain cells, confirming the extract’s efficacy in treating epilepsy [117].

6. Gene Regulation Induced by Phytochemicals in Drosophila

Phytochemical intake can modulate gene expression, influenced by factors, such as
cell type, life stage, and growing conditions. Different mechanisms of gene regulation,
including cis-regulatory elements, repressor proteins, non-coding RNA, and epigenetic
processes, such as methylation, may be affected by phytochemicals [93,118–120]. High-
throughput technologies, such as RNA-seq, are commonly used to study gene regulation
and metabolic pathways on a genome-wide scale [120,121]. Phytochemicals have the poten-
tial to modulate metabolic pathways and coping mechanisms that counteract age-related
neurodegenerative diseases [122]. Although phytochemicals can positively influence the
health of D. melanogaster by upregulating genes associated with longer lifespans and down-
regulating genes related to diseases and stress, they can also have negative effects by
upregulating genes associated with reduced growth rates. Additionally, they may trigger
mechanisms related to detoxification and reduce the expression of genes involved in coping
with reactive oxygen species (ROS) and hormone-signaling receptors (Figure 4).

A study by Lee et al. [75] revealed that supplementing Drosophila with curcumin can
influence the expression of aging-related genes such as mth, thor, InR, and JNK. These genes
are associated with the insulin, JNK, and methuselah signaling pathways. The modula-
tion of gene expression by curcumin leads to a delay in the onset of age-associated gene
expression and an increase in the lifespan of Drosophila flies. Likewise, Zhang et al. [121]
have reported that curcumin can augment the activities of the Notch and Wnt signaling
pathways, leading to the disruption of the cell division cycle, specifically in cells harboring
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DNA damage. Nevertheless, flies fed Piper nigrum extract-supplemented diets showed
reduced activity of the Tom gene (CG5185), part of the Notch signaling pathway. Piper
nigrum extracts contain active compounds, such as 4,5-dihydropiperlonguminine and
piperine, which interact with sodium channels, leading to sustained neuronal activation.
However, these compounds also inhibit polysubstrate monooxygenase, potentially slowing
metabolism in Drosophila [123].
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Moreover, Adedara et al. [124] reported that resveratrol supplementation in flies
with parkin gene mutations resulted in the upregulation of ple and Sod1 genes involved
in dopamine biosynthesis and counteracting free oxygen radicals, respectively. The up-
regulation of these genes, especially ple, is significant in preventing Parkinson’s disease,
associated with the depletion of dopamine levels and aging. However, Staats et al. [125]
found that resveratrol did not affect the expression of other stress-related genes, such as
catalase or longevity assurance genes, such as sirtuin (Sir2) and spargel (srl).

In a recent study, Lopez-Ortiz et al. [31] examined the transcriptional responses to a
habanero-pepper diet in the Drosophila fly model. Five hundred thirty-nine genes were
differentially expressed in flies fed a pepper versus a control diet. Transcriptome results
indicated that genes were upregulated, including gustatory receptors and odorant-binding
proteins involved in olfactory perception and nutrient processing. In contrast, some
stress response-related genes were down-regulated. In addition, Muc68Ca, Muc30E, and
CG2839, orthologs of human Muc2 and Reg3g, respectively, were upregulated. These
genes are known to play a protective role and regulate hormone secretion in the digestive
system [126,127]. Pepper consumption also upregulated an adipokinetic hormone, Akh,
principally known for its mobilization of energy substrates, triggering the conversion of
stored glycogen and lipids to free energy through triglyceride breakdown [128]. Moreover,
the gene inactive (iav), which is an orthologue of TRPV1 (transient receptor potential
cation channel subfamily V member 1) in humans in response to capsaicin and has been
reported to promote chemoresistance in non-small-cell lung cancer [129]. In Drosophila, iav
is involved in several processes, including adult walking behavior, negative gravitaxis, and
sensory perception of mechanical stimuli, such as the sensation of heat caused by capsaicin
from habanero peppers [130]. Overall, these findings suggest that the consumption of
pepper-containing phytochemicals such as capsaicin and carotenoids can lead to altered
perception and behavior in Drosophila, as well as an impact on nutrient sensitivity and fat
oxidation metabolism.

7. Challenges and Limitations of Using Drosophila as a Translational Model

The significant genetic and physiological differences between Drosophila and humans
and the additional layers of regulation and organ systems in humans hinder the direct
translation of phytochemical consumption observed responses in flies. Likewise, metabolic
and pharmacokinetic variations between Drosophila and humans can lead to differences
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in exposure levels and bioavailability of phytochemicals, affecting the observed effects
and limiting the translation of dosage and treatment regimens. Moreover, the complex
nature of human diseases, involving multiple factors, makes it challenging for Drosophila
models to fully capture disease mechanisms and reflect the intricacy of human diseases.
To overcome these limitations, it is essential to integrate findings from multiple model
systems, starting from the Drosophila model, including in vitro studies in rats and human
clinical trials. This comprehensive approach will help bridge the gap between Drosophila
research and translational applications in human health, providing more reliable evidence
regarding the potential benefits and risks associated with phytochemical use in humans.

8. Future Directions and Opportunities for Using Drosophila to Test Phytochemicals

D. melanogaster has proved to be an invaluable model organism for investigating the
impact of phytochemicals on various biological processes. Future studies can further our
understanding of the underlying molecular mechanisms that drive these effects, including
identifying specific target genes, signaling pathways, and molecular interactions involved
in mediating observed phytochemical effects. In addition, comparative analyses across
different Drosophila strains or species can provide information on the genetic variations
contributing to differential responses to phytochemical ingestion. It is also essential to
investigate the long-term effects of phytochemical exposure, including transgenerational
and age-related outcomes, to assess the potential benefits or risks associated with prolonged
phytochemical consumption.

9. Conclusions

Plant extracts have long been employed for their therapeutic and preventive properties
in addressing various disorders. These extracts encompass a wide array of bioactive
compounds, including polyphenols, carotenoids, flavonoids, curcuminoids, terpenoids,
and capsaicinoids, contributing to their potential beneficial effects. Drosophila is an excellent
model organism with extensive use in studying diverse biological processes. Leveraging
the vast range of powerful genetic and molecular biology tools available, the Drosophila
model offers a valuable and cheap alternative for investigating the effects of plant extracts
and their derived compounds on large populations in a short period.
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