~ International Journal of
Molecular Sciences

Article

Underlying Molecular Mechanism and Construction of a
miRNA-Gene Network in Idiopathic Pulmonary Fibrosis
by Bioinformatics

Shuping Zheng

check for
updates

Citation: Zheng, S.; Zhang, Y.; Hou,
Y.; Li, H.; He, J.; Zhao, H.; Sun, X,; Liu,
Y. Underlying Molecular Mechanism
and Construction of a miRNA-Gene
Network in Idiopathic Pulmonary
Fibrosis by Bioinformatics. Int. J. Mol.
Sci. 2023, 24, 13305. https://doi.org/
10.3390/1ijms241713305

Academic Editor: Barbara Ruaro

Received: 29 July 2023
Revised: 23 August 2023
Accepted: 23 August 2023
Published: 27 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Yan Zhang

, Yangfan Hou, Hongxin Li, Jin He ©/, Hongyan Zhao, Xiuzhen Sun and Yun Liu *

Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an 710004, China; zsp3117331013@stu.xjtu.edu.cn (S.Z.); zy578180410@stu.xjtu.edu.cn (Y.Z.);
hyf19930226@stu.xjtu.edu.cn (Y.H.); nblhx123@stu.xjtu.edu.cn (H.L.); jin.he@stu.xjtu.edu.cn (J.H.);
3121315361@stu.xjtu.edu.cn (H.Z.); doc-ly@sohu.com (X.S.)

* Correspondence: docykz@mail.xjtu.edu.cn

Abstract: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease, but its patho-
genesis is still unclear. Bioinformatics methods were used to explore the differentially expressed
genes (DEGs) and to elucidate the pathogenesis of IPF at the genetic level. The microarray datasets
GSE110147 and GSE53845 were downloaded from the Gene Expression Omnibus (GEO) database
and analyzed using GEO2R to obtain the DEGs. The DEGs were further analyzed for Gene Ontology
(GO) and Kyoto Encyclopedia of Genomes (KEGG) pathway enrichment using the DAVID database.
Then, using the STRING database and Cytoscape, a protein—protein interaction (PPI) network was
created and the hub genes were selected. In addition, lung tissue from a mouse model was validated.
Lastly, the network between the target microRNAs (miRNAs) and the hub genes was constructed
with NetworkAnalyst. A summary of 240 genes were identified as DEGs, and functional analysis
highlighted their role in cell adhesion molecules and ECM-receptor interactions in IPF. In addition,
eight hub genes were selected. Four of these hub genes (VCAM1, CDH2, SPP1, and POSTN) were
screened for animal validation. The IHC and RT-qPCR of lung tissue from a mouse model confirmed
the results above. Then, miR-181b-5p, miR-4262, and miR-155-5p were predicted as possible key
miRNAs. Eight hub genes may play a key role in the development of IPE. Four of the hub genes were
validated in animal experiments. MiR-181b-5p, miR-4262, and miR-155-5p may be involved in the
pathophysiological processes of IPF by interacting with hub genes.

Keywords: idiopathic pulmonary fibrosis (IPF); bioinformatics; differentially expressed genes (DEGs);
miRNAs (microRNAs)

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease [1], which
is characterized by the development of diffuse, progressively remodeled lung parenchyma,
the deposition of extracellular matrix, and the formation of irreversible scarring [2], eventu-
ally resulting in breathing difficulties and even death [1]. It is a fibrotic chronic interstitial
pulmonary disease of unknown origin. The disease is prevalent in middle-aged and older
people [3], its incidence has increased dramatically in recent years [4], and its prognosis is
poor, with a median time from IPF diagnosis to death of only 2-3 years [5]. According to
incomplete statistics, the incidence of IPF is slightly higher in North America and Europe
compared to South America and East Asia [6].

It has been suggested that factors such as repeated epithelial cell injury, myofibroblast
recruitment and activation, and fibroblast differentiation may be involved in the pathogenesis
of IPF [7,8]. In recent years, many genes have been implicated in the pathogenesis of IPE
However, the underlying molecular pathways of IPF remain elusive. Thus, the molecular
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mechanisms underlying the development of IPF need to be urgently elucidated. This is likely
to provide better targets for finding therapeutic agents and facilitating therapeutic modalities.

Large-scale data analysis using gene sequencing, bioinformatics, and microarray tech-
nology has been widely used to identify disease signatures and potential biomarkers [9].
Uncertain genome sequences of an individual can be identified with gene sequencing
technology, while bioinformatics can process large amounts of genome sequence infor-
mation [10,11]. The identification of differentially expressed genes (DEGs) in healthy
controls and IPF patients, based on the analysis of the Gene Expression Omnibus (GEO)
database [12], provides an avenue for a more effective understanding of the underlying
molecular mechanisms of IPF pathogenesis.

The GSE110147 and GSE53845 datasets were used for this study. DEGs between IPF
lung samples and healthy controls were identified using bioinformatics techniques. The
goal of this study was to elucidate the genetic pathogenesis of IPF and to obtain new clues
for the discovery of therapeutic agents and the advancement of therapeutic approaches.

2. Results
2.1. The Identification of DEGs

From the GEO database, the datasets GSE110147 and GSE53845 were picked. Table 1 and
Figure 1 show the features of normal and IPF lung samples from the two GEO datasets. The
normal and IPF samples were nicely differentiated. Significant DEGs were observed between
the two groups (Figure 1A,D). After standardization of the microarray results, analysis was
performed using the GEO2R. The sample distributions of the two datasets were consistent,
with medians on the same line in Figure 1B,E. All expressed genes are shown as volcano
plots in Figure 1C,E. As displayed in the Venn diagram (Figure 1G) between IPF and normal
lung tissue, the overlapping of the two datasets included 240 genes.

Table 1. Features of the GSE datasets.

Data Set Platforms Sample Normal IPF General Information
GSE110147 GPL6244 33 11 22 disease state, tissue

disease state, tissue, diagnosis,

GSE53845 GPL6480 48 8 40
source, gender, sample type

2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis

According to the GO analysis results, changes in biological processes (BP) of DEGs
were strongly enriched in positive regulation of smooth muscle cell migration, cell adhesion,
extracellular matrix organization, angiogenesis, cellular response to fibroblast growth factor
stimulus, and positive regulation of cell migration (Figure 2A). As shown in Figure 2A,
changes in molecular function (MF) of DEGs were focused on heparin binding, protein
dimerization activity, extracellular matrix structural constituent conferring tensile strength,
extracellular matrix structural constituent, calcium ion binding, integrin binding, serine-
type endopeptidase activity, and identical protein binding. As presented in Figure 2A,
changes in the cell component (CC) of DEGs were mostly enriched in cell surface, extra-
cellular space, extracellular region, integral component of membrane, extracellular matrix,
plasma membrane, and basement membrane. Based on the KEGG pathway analysis results,
the DEGs were mainly enriched in ether lipid metabolism, focal adhesion, mineral ab-
sorption, ECM-receptor interaction, cell adhesion molecules, complement and coagulation
cascades, ovarian steroidogenesis, and protein digestion and absorption (Figure 2B).
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Figure 1. UMAP, boxplot, and volcano plots of the two datasets (/logFC| > 1 and adj. p < 0.01).
(A—C) GSE110147, (D-F) GSE53845, and (G) Venn diagrams. Abbreviations: IPF, idiopathic pul-
monary fibrosis.

2.3. Protein—Protein Interaction (PPI) Network

As shown in Figure 3A, the STRING database was used to construct the PPI network
for the DEGs. Cytoscape was used for the main modules. Then, via a computational method
called Molecular Complex Detection (Mcode), we detected and analyzed four important
modules in the PPI network (Figure 3B-E). Specifically, the first module contained 14
potential hub genes: VCAM1, CCL5, LEPREL1, COL17A1, COL1A1, FAP, ASPN, HIF1A,
CDH2, SPP1, MMP7, MMP13, MMP1, and POSTN (Figure 3B).

2.4. Hub Gene Selection

The Cytoscape plug-in cytoHubba, which facilitates the identification of hub genes,
was used to evaluate the PPI network. Based on the Maximum Clique Centrality (MCC)
algorithm, the top 10 genes, COL1A1, MMP1, SPP1, VCAM1, IGF1, POSTN, MMP7, CDH2,
COL3A1, and MMP13, were selected as potential hub genes (Figure 4A). By overlapping the
hub genes derived from cytoHubba with the hub genes derived from Mcode, we obtained
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eight hub genes: VCAM1, COL1A1, CDH2, SPP1, MMP7, MMP13, MMP1, and POSTN
(Figure 4B). The characteristics of the hub genes are shown in Table 2. Using GeneMANIA,
the co-expression networks and possible functionalities of the hub genes were investigated
(Figure 4C). They discovered sophisticated PPI networks with a co-expression of 45.32%,
genetic interactions of 0.05%, co-localization of 2.53%, protein domains of 15.88%, prediction
of 20.12%, and physical interactions of 16.11%. Functional assessment revealed that they
were mainly involved in a variety of collagen metabolism pathways as well as extracellular
matrix organization, including serine-type peptidase activity, metallopeptidase activity,
extracellular matrix organization, collagen metabolism process, response to UV-A, serine
hydrolase activity, and cellular response to UV, revealing their essential role in contributing
to IPF pathogenesis. The eight hub genes from both datasets were displayed using the
heatmaps, as shown in Figure 5A,B.
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Figure 2. GO and KEGG analysis. (A) GO analysis; (B) KEGG analysis. p < 0.05. Abbreviations: BP,
biological process; CC, cell component; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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Figure 3. PPI network. (A) PPI network of major DEGs. The node in dark blue represents module B,
the node in green represents module C, the node in red represents module D, and the node in purple
represents module E. (B-E) Important PPI network modules. Abbreviations: PPI, Protein—protein

interaction; DEGs, differentially expressed genes.

Table 2. The biological function of biomarkers in detail from GeneCards database.

NO. Gene Symbol Full Name Function
1 MMP13 Matrix Plays a role in the degradation of extracellular matrix proteins including fibrillar
Metallopeptidase 13 collagen, fibronectin, TNC and ACAN.

Major non-collagenous bone protein that binds tightly to hydroxyapatite.

2 SPP1 Phosse}geiiein 1 Appears to form an integral part of the mineralized matrix.
Phop Probably important to cell-matrix interaction.
3 MMP7 Matrix Degrades casein, gelatins of types I, III, IV, and V, and fibronectin.
Metallopeptidase 7 Activates procollagenase.
Cell adhesion glycoprotein predominantly expressed on the surface of endothelial
Vascular Cell . L : . .
4 VCAM1 ) cells that plays an important role in immune surveillance and inflammation.
Adhesion Molecule 1

Acts as a major regulator of leukocyte adhesion to the endothelium through
interaction with different types of integrins.

Calcium-dependent cell adhesion protein; preferentially mediates homotypic cell-cell
5 CDH2 Cadherin 2 adhesion by dimerization with a CDH2 chain from another cell.
Cadherins may thus contribute to the sorting of heterogeneous cell types.
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Table 2. Cont.

NO. Gene Symbol Full Name Function
Collagen Type I . . .
6 COL1A1 Alpha 1 Chain Type I collagen is a member of group I collagen (fibrillar forming collagen).

Induces cell attachment and spreading and plays a role in cell adhesion.
7 POSTN Periostin Enhances incorporation of BMP1 in the fibronectin matrix of connective tissues, and
subsequent proteolytic activation of lysyl oxidase LOX (By similarity).

8 MMP1 Matrix Cleaves collagens of types I, I, and III at one site in the helical domain.
Metallopeptidase 1 Also cleaves collagens of types VII and X.
L4
A CDH2 MMP13
| c

NN LA K @'@@@w
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NS AT @ @@@ &
S @@@ &
oG =
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® g ©

Figure 4. Identification of hub genes using cytoHubba and Mcode. (A) cytoHubba'’s top 10 hub gene
PPI network. (B) Venn diagram. (C) Hub genes and their co-expression genes. Abbreviations: Mcode,
Molecular Complex Detection; PPI, Protein—protein interaction.

2.5. Increased Expression of Hub Gene in IPF Lung Tissues

Figure 6A-H show the expression of SPP1, VCAM1, CDH2 and POSTN by GSE110147
and GSE53845, respectively. Mice in the WT bleomycin (BLM) group showed disorga-
nized alveolar structure, thickened septa, increased collagen deposition, and aggregated
monocyte infiltration (Figure 7A). The mRNA expression levels of SPP1, VCAM1, CDH2,
and POSTN were higher in the WT BLM group compared to the WT saline group, consis-
tent with our bioinformatics predictions (Figure 7B). Immunohistochemistry (IHC) results
showed that SPP1, VCAM1, CDH2, and POSTN were highly expressed in the WT BLM
group, in agreement with our bioinformatics predictions (Figure 7C).
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Figure 6. SPP1, VCAM1, CDH2, and POSTN expression. (A-D) SPP1, VCAM1, CDH2, and POSTN

expression by GSE110147. (E-H) SPP1, VCAM1, CDH2, and POSTN expression by GSE53845.
Abbreviations: IPF, idiopathic pulmonary fibrosis; VCAM1, Vascular cell adhesion molecule 1; SPP1,

Secreted Phosphoprotein 1; CDH2, Cadherin 2; POSTN, Periostin.
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Figure 7. Pathological staining and RT-qPCR. (A) Hematoxylin—eosin (HE) and Masson Trichrome
staining in the WT saline group and WT BLM group (original magnification, x100). (B) RT-qPCR
analysis levels of SPP1, VCAM1, CDH2, and POSTN mRNA expression in the WT saline group and
WT BLM group (data represent the mean + SD, n = 6). **** p < 0.0001. (C) Immunohistochemical
analysis of SPP1, VCAMI, CDH2, and POSTN expression in the WT saline group and WT BLM group
(original magnification, X100, n = 4). Abbreviations: BLM, bleomycin; SPP1, Secreted Phosphoprotein
1; VCAM1, Vascular cell adhesion molecule 1; CDH2, Cadherin 2; POSTN, Periostin.

2.6. Construction of a microRNA (miRNA)-Gene Network

To estimate the target miRNAs of the hub genes, the NetworkAnalyst databases were
used. The miRNA-gene interaction network containing three seeds, 116 nodes and 116 edges
was generated using Cytoscape software (version 3.9.1). Two common miRNA targets (miR-
181b-5p and miR-4262) were found to interact with SPP1 and VCAM!1, as shown in Figure 8.
CDH2 and VCAM1 were able to interact with one common target miRNA: miR-155-5p
(Figure 8). Nevertheless, this remains to be seen and needs further validation.
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hsa-mir-181b-5p

Figure 8. Comprehensive network of miRNA-gene interactions for the three hub genes. Green and orange
squares represent miRNA, and red circles represent three hub genes. Abbreviations: miRNA, microRNA.

3. Discussion

IPF generally has a poor prognosis and limited treatment options [13]. In most countries,
there has been an increase in the incidence of IPF over time [14]. Bioinformatics technology is
widely used in medicine to find disease-causing genes and biomarkers [10]. The pathogenesis
of IPF has been a mystery for many years. Therefore, this work aims to elucidate the critical
DEGs and signaling pathways in IPF based on bioinformatics approaches.

In this study, the GSE110147 and GSE53845 datasets were selected to screen 240
common DEGs. Eight genes (VCAMI1, COL1A1, CDH2, SPP1, MMP7, MMP13, MMP1,
POSTN) were selected as hub genes. The DEGs (COL1A1, MMP7, MMP13, MMP1) were
mainly mapped in fibrotic diseases. Therefore, the present study focused on the remaining
four hub genes (VCAM1, CDH2, SPP1, POSTN). Additionally, the IHC and RT-qPCR results
of lung tissue from a mouse model further confirmed these results. This suggests that DEGs
may play a role in causing IPE.

In our report, enriched GO terms and KEGG pathways revealed a large number of
differences between IPF and normal lung tissues. Then, GO enrichment analysis revealed
that a large variety of biologically relevant processes associated with positive regulation
of smooth muscle cell migration, cell adhesion, cellular response to fibroblast growth
factor stimulus, angiogenesis, positive regulation of cell migration, and extracellular matrix
organization were significantly enriched. Previous studies have clarified that changes in
cell adhesion [15], positive regulation of smooth muscle cell migration, cellular response
to fibroblast growth factor stimulus, positive regulation of cell migration, extracellular
matrix organization [16], and angiogenesis [17] may affect the development of fibrotic
disease [18,19]. Furthermore, KEGG enrichment analysis showed some correlation with cell
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adhesion molecules, protein digestion and absorption, focal adhesion, and ECM-receptor
interaction. In IPE cell adhesion molecules are involved in leukocyte recruitment and
activation, mediate cell-cell interactions between cells of the same type, and mediate cell
interactions with extracellular matrix molecules [20]. A typical signaling pathway in fibrotic
diseases is the ECM-receptor interaction [21]. By stimulating cell spreading and migration,
focal adhesions drive the progression of pulmonary fibrosis [22]. Thus, our conclusions
from the KEGG enrichment analysis are in agreement with earlier results [23].

Subsequently, we structured the PPI network of DEGs. With Mcode’s computational
approach, we discovered four vital modules from this network. Specifically, the first
modules contained 14 potential hub genes. The top 10 genes were selected using the MCC
algorithm. Taking the intersection of the genes by the two methods, the following eight hub
genes were obtained: VCAM1, COL1A1, CDH2, SPP1, MMP7, MMP13, MMP1, and POSTN.
The DEGs (COL1A1, MMP7, MMP13, MMP1) were mainly mapped in fibrotic diseases.
Proteases that degrade all components of the extracellular matrix, matrix metalloproteinases
(MMPs) [24]. Plasma MMP7 levels have been shown to be a biomarker for IPF [25]. The
fibrotic response of the lung to injury is differentially influenced by MMP13 [24]. However,
MMP1 protects against IPF [24]. In particular, COL1A1 is a myofibroblast marker [26].
Therefore, the present study focused on the remaining four hub genes (VCAM1, CDH2,
SPP1, POSTN).

VCAMI1 mediates leukocyte adhesion to the vascular endothelium [27]. VCAM1
protein and mRINA levels were found to be higher in IPF lungs than in control lungs [28].
Further studies revealed that depletion of VCAMI inhibited fibroblast proliferation. Thus,
VCAML is implicated in promoting the progression of fibrotic disease in IPF patients.
CDH2 encodes the N-cadherin protein, a member of the adhesin family of proteins [29].
During epithelial-mesenchymal transition, epithelial cells become more aggressive, with
upregulation of N-cadherin, which is responsible for fibrosis [30]. SPP1 encodes the
osteopontin (OPN) protein, currently recognized as a key cytokine that contributes to
immune cell recruitment [31]. OPN regulates tissue repair and remodeling [32], and helps
fibroblasts adhere, migrate, and proliferate [33]. POSTN encodes the periostin protein,
which maintains extracellular matrix homeostasis [34]. In this paper, the results were
confirmed using IHC and RT-qPCR analysis of lung tissue from a mouse model.

MiRNAs degrade or inhibit translation by binding to target mRNAs and negatively
regulating gene expression [35]. We performed a miRNA-gene network construction in
this project. Two common miRNA targets were found to interact with SPP1 and VCAMI.
CDH2 and VCAM1 could interact with one common target miRNA. Previous studies
on miR-181b-5p and miR-4262 have mainly focused on tumors. However, miR-181b-5p
and miR-4262 have not been reported in IPF. Significantly expressed hsa-miR-181b-5p
and miRNA pathogenesis in childhood acute lymphoblastic leukemia were confirmed
by studies [36]. Studies have shown that miR-4262 is a potential tumor promoter that
promotes the proliferation and invasive ability of cancer cells in human cancers [37]. MiR-
155-5p reduces renal interstitial fibrosis through promoting autophagy [38]. Another
study reported that miR-155-5p exacerbates alveolitis by targeting FOXO3a and promotes
pulmonary fibrosis [39].

In conclusion, this paper used bioinformatics analysis to obtain some hub genes. The
analysis revealed that miRNAs are involved in the pathogenesis of IPF by interacting
with hub genes. However, this study has some shortcomings. First, the almost inevitable
heterogeneity between different data sets, data platforms, and statistical analyses may
affect the reliability of this study. Second, it did not fully review a large enough number of
IPF-related datasets. Only two GSE datasets were analyzed in our report. Finally, detailed
studies on the regulation of these hub genes and miRNAs in IPF are lacking. Despite these
limitations, new understanding of the development of IPF may be gained from this study.
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4. Materials and Methods
4.1. Data Download

From the NCBI GEO (http://www.ncbi.nlm.nih.gov/geo, accessed on 20 February
2023) [40] datasets GSE110147 [11] (excluding non-specific interstitial pneumonia samples)
and GSE53845 [41], which contain clinical information on IPF and normal lung tissue.

4.2. DEGs Screening and Data Processing

To identify DEGs in IPF compared to normal tissue, GEO2R (http:/ /www.ncbi.nlm.nih.
gov/geo/geo2r, accessed on 20 February 2023) was applied (1logFC| > 1 and adj. p < 0.01).
The boxplot was plotted by the Xiantao website (https://www.xiantao.love/, accessed
on 20 February 2023). The Jvenn online tools were used to create the Venn diagrams
(http:/ /www.bioinformatics.com.cn/static/others/jvenn/example.html, accessed on 21
February 2023) [42].

4.3. KEGG and GO Enrichment Analysis

DAVID (http:/ /david.ncifcrf.gov, accessed on 22 February 2023) (DAVID version
2021) [43,44] is a database that collects biological data and analysis tools. The DAVID
database was used for biological analysis (KEGG [45] and GO [46] enrichment analysis).
p < 0.05 was considered statistically significant.

4.4. PPI Network

The PPI network was created using the STRING database (http:/ /string-db.org, ac-
cessed on 23 February 2023) [47] (version 11.5). An interaction was considered statistically
significant if the combined score was >0.4. A platform for the visualization of molecular
interaction networks is Cytoscape (version 3.9.1) [48].

4.5. Hub Genes

To find areas of dense connections, Cytoscape’s Mcode plugin [49] (version 2.0.2)
is used. The criteria for selection were as follows: Mcode scores > 3, degree cut-off = 2,
node score cut-off = 0.2, Max depth = 100 and k-score = 2. Each node gene is scored by
Cytoscape’s cytoHubba plugin using MCC. To screen for pivot genes, the top 10 hub genes
of each algorithm’s MCC score were used. GeneMANIA (http://genemania.org, accessed
on 24 February 2023) generated gene function predictions and gene maps with comparable
effects [50]. To identify PPI networks of eigengenes, we used GeneMANIA. Violin plot was
plotted by http:/ /www.bioinformatics.com.cn/plot_basic_ggviolin_plot_113 (accessed on
25 February 2023). Heatmap was plotted by http://www.bioinformatics.com.cn/plot_
basic_cluster_heatmap_plot_024 (accessed on 25 February 2023).

4.6. Animals and BLM-Induced Mouse Model

C57BL/6 males (8-10 weeks old) were obtained from the Laboratory Animal Center of
Xi’an Jiaotong University. They were maintained in a standard animal facility with a room
temperature of 25 °C, a 12-h light/dark cycle, and food and water were freely available. The
mice in the experiments strictly followed the Guidelines for the Care and Use of Laboratory
Animals and were approved by the Biomedical Ethics Committee of Health Science Center
of Xi'an Jiaotong University (No. XJTUAE2023-1301, 27 February 2023).

A total of 30 male mice were randomly assigned to two groups, namely: (1) WT
saline group, (2) WT BLM group. BLM (Haizhenghuirui, Fuyang, China) was dissolved in
saline. Mice in the experimental group were administered BLM (intraperitoneal injection,
10 mg/kg), and the control group was administered saline. The injections were adminis-
tered for 10 consecutive days. After their weight was measured, samples were taken on
day 29 of the last dose.
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4.7. Collection of Lung Tissue

Lung tissue was rinsed with ice-cold PBS, the right lung tissue was frozen in a —80 °C
refrigerator, and the left lung lobe was fixed with 4% paraformaldehyde for pathological staining.

4.8. Pathological Staining

Lung tissues were embedded in paraffin and sectioned at 4 um. The sections were
stained with H&E or Masson’s trichrome kit (Nanjing Jiancheng Co., Ltd., Nanjing, China).
For IHC analysis of SPP1, VCAM1, CDH2, and POSTN expression in the WT saline group
and WT BLM group, sections were incubated overnight at 4 °C with the appropriate
primary antibodies as follows: immunohistochemical analysis of anti-SPP1 (1:80; Zen-
Bio Science, Chengdu, China), anti-VCAM1 (1:200; Santa Cruz, CA, USA), anti-CDH2
(1:2000; ProteinTech Group, Inc., Rosemont, IL, USA), and anti-POSTN (1:200; Santa Cruz,
CA, USA). The detection system used was a DAB kit from CWBIO Co., Ltd. (Beijing,
China). Slides were counterstained using hematoxylin. At least 4 biological replicates were
performed for each group. There were 3 technical replicates were performed for each lung
tissue sample.

4.9. RNA Extraction and Quantitative Polymerase Chain Reaction (qPCR)

Using TRIzol reagent (cat. no. RK30129, ABclonal, Woburn, MA, USA), RNA was extracted
from lung tissues. cDNA was obtained using a reverse transcription kit (cat. no. RK20428,
ABclonal, Woburn, MA, USA). The primer sequences are as follows: M-VCAM1 (forward,
5-TACTGTTTGCAGTCTCTCAAGC-3'; reverse, 5-CAAGTGAGGGCCATGGAGTC-3'), M-
CDH2 (forward, 5-GGCCTTGCTTCAGGCGT-3'; reverse, 5'-CATTGAGAAGGGGCTGTCCT-
3'), M-SPP1 (forward, 5'-CCTGGCTGAATTCTGAGGGAC-3; reverse, 5'-ATCAGTCACTTTCA
CCGGGAG-3'), M-POSIN (forward, 5-GAAGTGATCCACGGAGAGCC-3'; reverse, 5'-CCTCC
TGTGGAAATCCTGGT-3'), and M-GAPDH (forward, 5'- GCACCGTCAAGGCTGAGAAC-3/;
reverse 5'- TGGTGAAGACGCCAGTGGA-3'). At least 6 biological replicates were performed
for each group. There were 3 technical replicates were performed for each lung tissue sample.

4.10. MiRNAs Associated with Hub Genes

To construct the miRNA-gene interactions of the hub genes, the NetworkAnalyst tool
(version 3.0, https:/ /www.networkanalyst.ca/, accessed on 26 February 2023) was used.

4.11. Statistical Analysis

Image ] and GraphPad Prism software for Windows (v8.0, San Diego, CA, USA) were
used for all statistical analyses. Differences between the two groups were evaluated using
Student’s t-test. p < 0.05 was defined as statistically significant. All experiments were
performed more than three times.

5. Conclusions

Eight hub genes have been implicated in the pathogenesis of IPF. Four of the hub
genes (VCAMI1, CDH2, SPP1, and POSTN) were validated in animal experiments and
were significantly upregulated. Finally, our novel miRNA-gene network provided new
insights into the deeper mechanisms of IPF. MiR-181b-5p, miR-4262, and miR-155-5p may
be involved in the pathophysiological processes of IPF by interacting with hub genes.
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